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Abstract

This chapter considers advances over the past 15 years achieved by the authors
and coworkers on generalized crystal plasticity to address size and configuration
effects in dislocation plasticity at the micron scale. The specific approaches
addressed here focus on micropolar and micromorphic theories rather than
adopting strain gradient theory as the starting point, as motivated by the pio-
neering ideas of Eringen (Eringen and Suhubi 1964; Eringen and Claus Jr 1969;
Eringen 1999). It is demonstrated with examples that for isotropic elasticity and
specific sets of slip systems, a dislocation-based formulation of micropolar or
micromorphic type provides results comparable to discrete dislocation dynamics
and has much in common with the structure of Gurtin’s slip gradient theory
(Gurtin 2002; Gurtin et al. 2007).

Keywords
Micropolar · Strain gradient · GNDs · Crystal plasticity · Finite elements

Introduction

The collective behavior of dislocations in a single crystal can be described by
means of the continuum theory of dislocations. The material volume element is
assumed to contain a suitable density of dislocations for the continuum theory
of dislocations to be applicable. Nonhomogeneous plastic deformations induce
material and lattice incompatibilities that are resolved by a suitable distribution
of the dislocation density tensor field which can be interpreted as a second rank
statistical mean for a population of arbitrary dislocations inside a material volume
element (Kröner 1969; Cermelli and Gurtin 2001). Nye’s fundamental relation
linearly connects the dislocation density tensor to the lattice curvature field of the
crystal. This fact has prompted many authors to treat a continuously dislocated
crystal as a Cosserat continuum (Günther 1958; Kröner 1963; Schäfer 1969; Forest
et al. 2000). The Cosserat approach records only the lattice curvature of the crystal
but neglects the effect of the rotational part of the elastic strain tensor, which is a
part of the total dislocation density tensor (Cordero et al. 2010). Full account of
plastic incompatibility is taken in strain gradient plasticity theories, starting from
the original work by Aifantis (1984) up to the work of Gurtin (2002). Formulation
of crystal plasticity within the micromorphic framework is more recent and was
suggested by Clayton et al. (2005) for a large spectrum of crystal defects, including
point defects and disclinations. Limiting the discussion to dislocation density tensor
effects, also called geometrically necessary dislocation (GND) effects, Cordero et
al. (2010) showed, within a small deformation setting, how the micromorphic model
can be used to predict grain and precipitate size effects in laminate crystalline
materials. In particular, the micromorphic model is shown to deliver more general
scaling laws than conventional strain gradient plasticity. These models represent
extensions of the conventional crystal plasticity theory (cf. Teodosiu and Sidoroff
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1976) that accounts for single crystal hardening and lattice rotation but does not
incorporate the effect of the dislocation density tensor.

The layout of the chapter is as follows. Classical single crystal plasticity theory
is first recalled in section “Finite Deformation Kinematics” including the thermody-
namical framework and the definition of the continuum dislocation density tensor.
The Cosserat generalization of crystal plasticity is presented in section “Micropolar
Single Crystal Plasticity” with its relation to strain gradient plasticity. The section
“Applications: Comparison to 2D Discrete Dislocation Dynamics Simulations”
provides applications including a comparison between Cosserat constitutive laws
and results from discrete dislocation dynamics in the case of constrained thin films
in shear and bending.

Classical Single Crystal Plasticity

Finite Deformation Kinematics

The classical theory of finite deformation single crystal plasticity is based on a
multiplicative decomposition of the deformation gradient into elastic and plastic
parts,

F D FeFp (1)

where Fp describes the plastic deformation of the continuum that leaves the under-
lying lattice vectors unaltered and Fe describes the elastic stretching and rotation
of the lattice relative to this intermediate, isoclinic configuration. The deformation
gradient maps infinitesimal vectors from the reference to current configuration and
can be expressed in terms of the referential gradient of the displacement field as

dx D FdX; F D 1CH; H D ur0 (2)

H is the distortion (or displacement gradient) tensor and has been introduced
for use in subsequent sections. The theory is completed by supplying constitutive
prescriptions for the relationships between Fe and the Cauchy stress and to provide
an evolution equation for Fp (and any associated internal state variables) consistent
with thermodynamics.

Thermodynamics

The standard nonpolar mechanical balance laws (neglecting inertial terms) are given
in the current configuration as

� � r C f D 0; � D � T (3)
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with the associated traction boundary condition, t D �n, where � is the Cauchy
stress tensor, f is a body force vector, t is the traction vector, and n is the unit normal
to the external part of the boundary where tractions are specified. The total energy
balance can be expressed as

� PU D � W D � r � q (4)

where � is the current density, U is the specific internal energy, D is the rate of
deformation tensor, and q is the heat flux vector. The entropy inequality which will
be used to derive the state equations and guide the construction of plastic evolution
equations is given as

� P�Cr �
� q
T

�
� 0 (5)

where � is the specific entropy, and T is temperature. Using the state relation
 D U � T�, Eqs. (4) and (5) can be combined to obtain the Clausius-Duhem
inequality

� W D � �
�
P C PT �

�
�
1

T
q � rT � 0 (6)

where the intrinsic (�intr) and thermal (�th) dissipation are defined as

�intr D � W D � �
�
P C PT �

�
; �th �

1

T
q � rT (7)

Next, we derive an expression for the stress power in the intermediate config-
uration by using the relationship between the Cauchy stress and the second Piola-
Kirchhoff stress with respect to the intermediate configuration QS D J eFe�1�Fe�T

and by writing the velocity gradient in terms of the multiplicative decomposition,
i.e.,

L D PFF�1 D PFeFe�1 C Fe PFpFp�1Fe�1 (8)

such that

1

�
� W L D

1

Q�

�
QS W PQE

e

C…M W QLp
�

(9)

where Q� is the density in the intermediate configuration, QEe is the elastic Green-
Lagrange strain, …M is the Mandel stress tensor, and QLp is the plastic velocity
gradient in the intermediate configuration which have the following definitions

QEe D
1

2

�
FeTFe � 1

�
; …M D FeTFe QS; QLp D PFpFp�1: (10)
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Equation (9) identifies the appropriate power-conjugate variables in the inter-
mediate configuration, from which it can be seen that QEe is the strain measure
power-conjugate to Q…

e
and that…M is power-conjugate to QLp . If we now introduce

the Helmholtz free energy,  D O 
�
QEe; T; �˛

�
, the following expression is obtained

by inserting the right-hand side of Eq. (9) along with the chain rule expression of
the time derivative of  into the Clausius-Duhem inequality

�
…e � Q�

@ 

@ QEe

�
W PQEe � Q�

�
�C

@ 

@T

�
PT C…M W QLp � Q�

X
˛

@ 

@�˛
� P�˛ � 0: (11)

where � ˛ is a set of internal state variables. Here, “*” is an appropriate scalar
product operator for the rank of tensor � ˛ . The state laws are then deduced as

…e D Q�
@ 

@ QEe
; � D �

@ 

@T
: (12)

and the residual intrinsic dissipation is then expressed as

�intr D …M W QLp �
X
˛

r˛ � P�˛ � 0; r˛ D Q�
@ 

@�˛
: (13)

Therefore, thermodynamically consistent evolution equations for QLp and P�˛ may
be derived by introducing a convex dissipation potential� D O�

�
…M ; r˛

�
such that

QLp D
@�

@…M
; P�˛ D �

@�

@r˛
(14)

Representative functional forms for O and O� are given for completeness below.
It is typical to use a free energy that is quadratic with respect to its arguments, i.e.,

Q� 
�
QEe; �˛

�
D
1

2
QEe W QC W QEe C

1

2

X
˛;ˇ

a˛ˇ�˛�ˇ (15)

where QC is the fourth-order elasticity tensor in the intermediate configuration and
a˛ˇ is positive definite interaction matrix that describes the coupling between the
�˛ . Likewise, a typical power law potential for the inelastic evolution equations is
given as

�
�
…M ; r˛

�
D

P�0

nC 1

X
˛

g˛
�F˛

g˛

	nC1
(16)

where n is the power law exponent, g˛ is viscous stress, P�0 a typical strain rate
parameter, and F˛ is a yield function. The brackets h•i D Max (•, 0) have been
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introduced. The yield function is defined in terms of the resolved shear stress, �˛ ,
and the energetic flow resistance, r˛ , as

F˛ D �˛ � .r0 C r
˛/ ; �˛ D …M W .Qs˛ ˝ Qn˛/ (17)

The slip direction vector and the normal to the slip plane for slip system ˛ are
respectively denoted by Qs˛ and Qn˛ in the undistorted lattice configuration.

Deformation Incompatibility and the GND Density Tensor

Finite Deformation Kinematics
For a classical Cauchy continuum, compatibility of the displacement field requires
that the curl of the deformation gradient vanishes, i.e.,

I

c

dx D
I

C

FdX D 0) F � r0 D 0 (18)

During an inhomogeneous elastic-plastic deformation, the elastic and plastic
deformation maps are not compatible and can be used to quantify the heterogeneity
of the deformation field in terms of the net Burgers on the intermediate configura-
tion, i.e.,

Qb D
I

Qc

d Qx D
I

c

Fe�1dx D
I

C

FpdX (19)

Making use of Stokes’ theorem, the last two expressions in Eq. (19) can be
expressed in terms of surface integrals as

Qb D
Z

s

Aenda D
I

S

ApNdA (20)

where Ae D Fe � 1 � r and Ap D Fp � r0 are the corresponding two-point
geometrically necessary dislocation density tensors that map from current to
intermediate and reference to intermediate configurations, respectively.

There have been many works in the last two decades focused on incorporating
the effects of GNDs into crystal plasticity modeling frameworks. It is beyond the
scope of this chapter to attempt to review the myriad ways in which these extensions
are carried out. The vast majority of generalized crystal plasticity models that
incorporate the effects of GNDs do so by computing them from the plastic slip
gradients (so-called slip gradient theories) rather than via gradients of Fe�1. While
the connection between slip gradients and GND densities can be established in a
finite deformation context (see Kuroda and Tvergaard 2008), in this section, the
presentation is limited to the linearized kinematic setting for ease of presentation
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and direct connection with the pioneering work of Nye (1953). The subsequent
developments closely follow the presentation of Arsenlis and Parks (1999).

Linearized Kinematics
In the case of linearized kinematics, the multiplicative decomposition of the
deformation gradient is replaced with an additive decomposition of the distortion
tensor, i.e., HD He C Hp and Eq. (18) may conveniently be rewritten as

H � r D 0 (21)

The continuum GND density tensor, A�Ae�Ap, can be equivalently expressed
in terms of either the elastic or plastic distortion as

A D �He � r D Hp � r (22)

The lattice torsion-curvature is defined as the gradient of the lattice rotation
vector (Nye 1953), i.e.,

� D 	r (23)

where 	 is given by

	 D �
1

2
� W skw .He/ (24)

where “skw” is the skew operator providing the antisymmetric part of the tensor.
The notation � is used for the permutation tensor. Combining Eqs. (22), (23), and
(24) the lattice torsion-curvature may be expressed as

~ D �AT C
1

2
tr .A/ 1

„ ƒ‚ …
Nye curvature;�

� ."e � r/T (25)

where "e is the elastic strain tensor which is symmetric. As indicated in Eq. (25),
the first two terms represent Nye’s original torsion-curvature tensor since it was
assumed that He � skw(He).

Next, we seek an expression for A in terms of slip gradients which can be
obtained from taking the curl of the plastic distortion. First, note that the discrete
version of Nye’s tensor, Ad, for a population of straight edge and screw dislocations
can be written as

Ad D b
X
˛

�
%˛? � %

˛
>

�
„ ƒ‚ …

%˛
G?

s˛ ˝ t˛ C
�
%˛ˇ � %

˛
˝

�
„ ƒ‚ …

%˛
Gˇ

s˛ ˝ s˛ (26)
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where %˛? is the positive edge dislocation density, %˛> is the negative edge dislocation
density, %˛ˇ is the positive screw dislocation density, %˛˝ is the negative screw
dislocation density, %˛G? is the edge GND density, and %˛Gˇ is the screw GND
density. The continuous expression of Nye’s GND density tensor is then obtained
as

A D Hp � r

D
P
˛

�˛s˛ ˝ n˛ � r

D
P
˛

.�r�˛ � s˛/ s˛ ˝ t˛ C .r�˛ � t˛/ s˛ ˝ s˛
(27)

Comparing these two expressions for Nye’s tensor, it may be shown that
the continuum GND densities are given by slip gradients projected in the glide
directions for the respective dislocation populations, i.e.,

%˛G? D �b
�1r�˛ � s˛; %˛Gˇ D b

�1r�˛ � t˛ (28)

An expression relating Nye’s torsion-curvature tensor, �, to the GND densities
is obtained by inserting Eq. (27) into the first two terms in Eq. (25)

� D �b
X
˛



%˛G?t˛ ˝ s˛ C %˛Gˇ

�
s˛ ˝ s˛ �

1

2
1
��

(29)

We will revisit the expression given in Eq. (29) when motivating constitutive
equations in subsequent sections.

Micropolar Single Crystal Plasticity

Finite Deformation Theory

The presentation is given here within the finite deformation framework before
returning to the linearized case.

Kinematics
A micropolar continuum is a generalized continua with extra rotational degrees of
freedom. Considering two sets of vector triads attached to each material point in
the reference configuration, X, there is an independent mapping of the two sets of
vectors to the current configuration such that

dxi D FdXi ; di D RDi 8i D 1; 3 (30)

where F is the usual deformation gradient (see Eq. (2)) and R is the two-point tensor
that maps the microstructure triad in the reference configuration, Di to its image in
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the current configuration, di. R is the micropolar rotation tensor; the overbar is used
to distinguish it from the rotational part of the deformation gradient obtained via
the polar decomposition, i.e., F D RU. The micropolar rotation tensor is a proper
orthogonal tensor such that the following relations hold:

R R
T
D 1; R .X; t D 0/ D 1; det

�
R
�
D 1 (31)

The micropolar rotation field can also be expressed in terms of the axial vector
field, 	, via

R D exp
�
ˆ
�
; ˆij D �"ijk	k (32)

where ˆ is the skew symmetric tensor associated with the axial vector 	. The three
components of 	 along with the displacement field, u, comprise the six independent
degrees of freedom for the micropolar continuum. It has been shown by Eringen
and Suhubi (1964) that a suitable set of invariant Lagrangian strain measures for the
micropolar continuum may be defined as

U D R
T

F; � D R
T
�

Rr0
�

(33)

where U is called the relative deformation tensor and � is the third-rank wryness (or
torsion-curvature tensor. The Lagrangian micropolar strain is defined in terms of the
relative distortion tensor as E D U � 1. Due to the antisymmetry with respect to its
first two indices, it is convenient to express the torsion-curvature as a second-order
tensor, i.e.,

K D �
1

2
� W � (34)

The rates of the micropolar strain and torsion-curvature tensors are related to the

velocity, v D Pu, and the microstructural angular velocity,� D PR R
T

, as

PU U
�1

D R
T �

L ��
�

R (35)

P
K U

�1

D R
T
.!r/R (36)

where L D PFF�1 is the velocity gradient and ! D �1=2� W � is the axial vector
associated with �. From Eqs. (35) and (36), it is clear that the rate expressions on
the LHS are pull-backs from the current configuration via the microrotation.
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Thermodynamics
The mechanical balance laws under static equilibrium for the micropolar continuum
are

r � � T C f D 0; r �mT � � W � C c D 0 (37)

where � is the unsymmetric Cauchy force stress tensor, f is a body force vector, m
is the couple stress tensor, and c is a body couple vector. These balance laws can
be deduced using the principle of virtual work (Germain 1973; Forest and Sievert
2003). The energy balance and Clausius-Duhem inequality for the micropolar
continuum are given, respectively, as

� PU D � W
�
L ��

�
Cm W !r � r � q (38)

O� W

�
PU U
�1
�
C Om W

�
P
K U

�1
�
� �

�
P C � PT

�
�
1

T
q � rT � 0 (39)

where O� and Om are the Cauchy and couple stress tensors pulled back to the reference
configuration via R, i.e.,

O� D R
T
�R; Om D R

T
mR (40)

The specific form of Eq. (39) was obtained by using the kinematic relations
given in Eqs. (35) and (36). Let us first consider the case of finite micropolar

thermoelasticity and assume that  D O 
�

U;K ; T
�

. Taking the time derivative

of  and inserting into Eq. (39) leads to

�
O�U
�T
� �

@ 

@U

�
W PUC

�
OmU
�T
� �

@ 

@K

�
W PK � �

�
�C

@ 

@T

�
PT � 0 (41)

Therefore, the state laws for the micropolar material are

O� D �
@ 

@U
U
T
; Om D �

@ 

@K
U
T
; � D �

@ 

@T
(42)

Next we must introduce elastic-plastic decompositions for U and K . We start
with the natural assumption that the hyperelastic relations will have the same form
as Eq. (42) with respect to the elastic deformation measures, i.e.,

O� D �
@ 

@U
e U

eT
; Om D �

@ 

@K
e U

eT
(43)

Consistent with this assumption, it can be shown (Sievert et al. 1998) that the
appropriate decompositions are given as
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U D U
e
U
p
; K D K

e
U
p
CK

p
(44)

Substituting the rate forms of these decompositions back into the Clausius-

Duhem inequality with  D O 
�

U
e
;K

e
; T; �˛

�
yields

† W
�
PU
p

U
p�1

�
CM W

�
P
K
p

U
p�1

�
C �

X
˛

@ 

@�˛
� P�˛ � 0 (45)

where the driving forces for the plastic evolution equations are identified as

† D U
eT
O�U

e�T
CK

eT
OmU

e�T
; M D OmU

e�T
(46)

Specific constitutive equations must be provided for the free energy and plastic
evolution equations to complete the formulation. The procedure for doing so can be
undertaken in analogous fashion to what is done in the classical theory. However,
there is some additional flexibility that is afforded in constructing the plastic evolu-
tion equations in this case compared to the classical theory (see Forest and Sievert
(2003) for an in-depth discussion of single vs. multi-criterion flow rules). Rather
than narrowing to specific constitutive choices in the current finite deformation
context, we will discuss these issues within the small deformation framework in
the subsequent sections. The principles guiding constitutive equation development
are the same for both finite and infinitesimal deformations and we choose to
discuss these aspects with respect to the theories used in the numerical simulations
appearing later in the chapter. A more complete exposition of constitutive equation
development in the finite deformation context has been given elsewhere (Forest
et al. 1997; Forest 2012).

Linear Deformation Theory

Linearized Kinematics
In the case of small deformations and rotations, the following notation is introduced
for the micropolar strain, ", and torsion-curvature, �:

E D U � 1 � ur �ˆ DW " D "e C "p (47)

K D �
1

2
� W � � 	r DW � D �e C �p (48)

As indicated in Eqs. (47) and (48), we assume an additive elastic-plastic
decomposition of the strain and torsion-curvature tensors. Note that the symmetric
part of " is the classical small strain tensor: sym .
/ D 
 D sym .H/, and the
skew-symmetric part is a measure of the difference between the continuum rotation,
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w D skw (H), and microrotation: skw ."/ D w � ˆ. The additive decomposition
of the distortion tensor, H, into elastic and plastic parts is assumed (see section
“Linearized Kinematics”) and the micropolar plastic strain is defined to be equal to
the plastic distortion such that the evolution equation of "p has the form

P"
p
D
X
˛

P�˛s˛ ˝ n˛ (49)

Therefore, elastic micropolar strain is defined as

"e D He �ˆ D "e„ƒ‚…
sym."e/

C
�
we �ˆ

�
„ ƒ‚ …

skw."e/

(50)

Equation (50) shows that the skew-symmetric part of the micropolar elastic
strain is just the difference between the lattice rotation embodied by we and the
microrotation. Using the relationship between the lattice torsion-curvature and
GNDs presented in section “Linearized Kinematics” as motivation, Forest et al.
(1997) proposed a micropolar plastic torsion-curvature evolution equation of the
form (note there is a sign convention difference between the screw GND term
presented here and what was originally proposed in that work):

P�
p
D
X
˛



P'˛?
L?

t˛ ˝ s˛ C
P'˛ˇ

Lˇ

�
s˛ ˝ s˛ �

1

2
1
��
: (51)

Here, P'˛? and L˛? are the plastic rotation rate and plastic length scale associated
with edge GNDs and P'˛ˇ and L˛ˇ are the analogous quantities for screw GNDs.
Comparing Eqs. (29) and (51) reveals the relationship between the GND densities
and the micropolar plastic torsion-curvature parameters, namely

P%˛G? D �
P'˛?
bL?

; P%˛Gˇ D �
P'˛ˇ

bLˇ
(52)

The introduced length scales are expected to be in the range of micron and
submicron sizes as illustrated in the examples provided in this chapter.

Thermodynamics at Small Strains
Let us now revisit the Clausius-Duhem inequality for the micropolar material
expressed in terms of the rates of linearized kinematic variables as a guide to
constitutive equation development, i.e.,

� W P"Cm W P� � �
�
P C � PT

�
�
1

T
q � rT � 0 (53)

We assume a general form of the free energy that depends on the elastic strain,
the elastic torsion-curvature, temperature, and a set of internal state variables, i.e.,
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 D O ."e;�e; T; �˛/. Taking the chain rule expression for the time derivative of
O along with the elastic-plastic decompositions for the strain and torsion-curvature

and inserting into Eq. (53) and following the Coleman-Noll procedure, the following
state laws are obtained:

� D �
@ 

@"e
; m D �

@ 

@�e
; � D �

@ 

@T
(54)

along with the expression for the intrinsic dissipation, i.e.,

�intr D � W P"
p
Cm W P�

p
�
X
˛

r˛ � P�˛ � 0; r˛ D �
@ 

@�˛
(55)

Elastic Free Energy Function
The most general form of the elastic strain energy for a linearized micropolar
continuum is given by the quadratic form viz (Eringen 1999):

� e D
1

2
"e W C W "e C

1

2
�e W D W �e C "e W E W �e (56)

where C, D, and E are fourth-order tensors of elastic moduli. However, the
coupling moduli E are equal to zero for materials exhibiting point symmetry (Forest
et al. 1997). Therefore, the stress and couple-stress constitutive equations for single
crystals may be expressed as

� D C W "e ; m D D W �e (57)

For an elastically isotropic material, these expressions have the form

� D œ tr ."e/ 1C 2� "e C 2�c
�
!e �ˆ

�
m D ˛ tr .�e/ 1C 2ˇ sym .�e/C 2�skw .�e/

(58)

where œ and � are the usual Lamé’s constants and �c, ˛, ˇ, and � are nonstandard
and/or higher-order elastic moduli. The coupling modulus, �c, gives rise to the skew
symmetric part of the Cauchy stress and the couple-stress moduli, ˛, ˇ, and � ,
can be interpreted as elastic length scales; when they are normalized, for example,
with respect to the shear modulus the resulting quantities have units of length, e.g.,
`e D

p
ˇ=�.

Flow Rules
The development of dissipative constitutive equations follows the standard approach
utilizing a flow potential and associative flow rules. As discussed in Forest and
Sievert (2003), one can formulate the rules either in terms of a single or multiple
criteria, i.e., either a single flow potential for both strain and torsion-curvature or
independent flow potentials for the respective deformation variables. Mutli-criterion
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theories are more general and require the specification of additional material
parameters and should only be used if there is compelling need for this additional
flexibility/complexity of the model. Representative multi-criterion micropolar single
crystal plasticity models were presented by Forest et al. (2000) and Mayeur and
McDowell (2013). The subsequent treatment of this section will focus on a single
criterion framework since the numerical results presented later in the chapter were
obtained using this type of model, and we have found it to suffice for most purposes.
The plastic strain and torsion-curvature evolution equations are derived from a
unified slip system flow potential, F˛ , i.e.,

P"
p
D
X
˛

P�˛
@F˛

@�
; P�

p
D
X
˛

P�˛
@F˛

@m
(59)

Given the suggested kinematic forms for the plastic strain and torsion-curvature
rates (Eqs. (49) and (51)), we propose a yield function, F˛ , of the form

F˛ D O�˛ � .r0 C r
˛/ � 0 (60)

Here, O�˛ is an effective resolved shear stress and r0 is the initial yield strength.
The effective resolved shear stress is defined with respect to the projections of the
force and couple stress tensors as

O�˛ D

rˇ̌
ˇ�˛eff

ˇ̌
ˇ
2

C
ˇ̌
˛?=L?

ˇ̌2
C
ˇ̌
˛ˇ=Lˇ

ˇ̌2
: (61)

where �˛eff is the resolved shear stress, ? is the resolved couple stress acting on
edge GNDs, ˇ is the resolved couple stress acting on screw GNDs, and L?, Lˇ
are normalizing length scales for edge and screw GNDs, respectively. The resolved
shear and couple stresses are defined as

�˛eff D � W .s
˛ ˝ n˛/ (62)

˛? D m W .t˛ ˝ s˛/ (63)

˛ˇ D m W
�

s˛ ˝ s˛ �
1

2
1
�

(64)

The “eff ” subscript has been applied to the resolved shear stress to emphasize
that the driving force for slip has a contribution from the skew-symmetric part
of the stress tensor and also to distinguish it from the classical resolved shear
stress, which is computed using only the symmetric part of the Cauchy stress. The
contribution of the skew-symmetric part of the Cauchy stress to �˛eff gives rise to
gradient-dependent kinematic hardening which is elaborated upon further in section
“Relationship to Slip Gradient Theory.” The flow directions then follow as
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@F˛

@�
D
�˛eff

O�˛
s˛ ˝ n˛ (65)

@F˛
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t˛ ˝ s˛

˛?=L?

O�˛
C

1

Lˇ

�
s˛ ˝ s˛ �

1

2
1
�
˛ˇ=Lˇ

O�˛
: (66)

Herein, we work within an elastic-viscoplastic setting and propose a power law
expression for P�˛ , i.e.,

P�˛ D P�0

�
O�˛ � .r0 C r

˛/

g˛

	m
(67)

where P�0 is a reference effective deformation rate, g˛ is a viscous drag stress, and
m is an inverse rate sensitivity exponent. Inserting Eqs. (65), (66), and (67) into Eq.
(59) and comparing with the expressions given in Eqs. (49) and (51), the expressions
for the slip system deformation rates are obtained as

P�˛ D P�0

�
O�˛ � .r0 C r

˛/

g˛

	m �˛eff
O�˛

(68)

P'˛? D
P�0

�
O�˛ � .r0 C r

˛/

g˛

	m˛?=L?
O�˛

(69)

P'˛ˇ D
P�0

�
O�˛ � .r0 C r

˛/

g˛

	m˛ˇ=Lˇ
O�˛

(70)

It is easily shown from Eqs. (68), (69), and (70) that the slip system plastic
multiplier is related to the slip and curvature rates as

P�˛ D

q
j P�˛j2 C

ˇ̌
P'˛?
ˇ̌2
C
ˇ̌
P'˛ˇ
ˇ̌2

(71)

Equation (71) reveals that P�˛ is an effective slip system deformation rate
accounting for both slip and torsion-curvature deformation modes.

Internal State Variable Evolution
Consider the case where the evolution of the internal state variable associated with
energetic isotropic hardening with the effective deformation rate, i.e.,

P&˛ D P�˛ (72)

Further, a quadratic dependence of the free energy on −˛ is assumed

� in D
1

2

X
˛

X
ˇ

H˛ˇ&˛&ˇ; H˛ˇ D H0 (73)
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where H˛ˇ is the hardening matrix and H0 > 0 is the hardening modulus. The
energetic isotropic hardening stress is then given as

r˛ D
X
ˇ

H˛ˇ&ˇ D H0

X
ˇ

&ˇ (74)

Given the preceding evolution equations, the intrinsic dissipation inequality may
now be expressed in terms of slip system variables as

�intr D
X
˛

�
�˛eff P�

˛ C ˛?
P'˛?
L?
C ˛ˇ

P'˛ˇ

Lˇ
� r˛ P&˛

�
� 0 (75)

which may be further simplified and expressed as

� D
X
˛

. O�˛ � r˛/ P�˛ � 0 (76)

For nonzero values of P�˛ , Eq. (67) can be inverted to obtain the expression for
O�˛ as

O�˛ D g˛

 
P�˛

P�0

! 1
m

C r0 C r
˛ (77)

Inserting this expression into Eq. (76) yields

�intr D
X
˛

2
4g˛

 
P�˛

P�0

! 1
m

C r0

3
5 P�˛ � 0 (78)

Therefore, the dissipation inequality is unconditionally satisfied for this set of
constitutive equations.

While the illustrative example given in this particular section yields a simple
linear isotropic hardening behavior, it is straightforward and often preferable in
practice to use nonlinear hardening laws; general examples of such extensions were
previously given by Forest et al. (1997) and Mayeur et al. (2011). In the sequel, we
present a dislocation density-based hardening framework (Mayeur and McDowell
2013) that has been compared to a number discrete dislocation dynamics boundary
value problems; some of which will be presented as representative applications of
the theory.

Dislocation Density-Based Strength Model
Previously, Mayeur et al. (2011) and Mayeur and McDowell (2013) have employed
both single and mutli-criterion flow rules with a variety of hardening laws to
simulate size-dependent behavior observed in 2D discrete dislocation dynamics
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(DDD) simulations to varying degrees of success. The hardening model presented
is the simplest version capable of reproducing the observed DDD behavior.

We take the statistically stored dislocation density on each slip system, %˛S , as our
primary internal state variable to describe the hardening behavior. The slip system
yield stress is defined in terms of a Taylor relation that is assumed to depend only
on the SSD density, i.e.,

r˛ D r0 C c1�b

sX
ˇ

h˛ˇ%
ˇ
S (79)

where c1 is a constant, b is the Burgers vector, and h˛ˇ is an interaction matrix.
We do not use a generalized Taylor relation that directly includes a dependence
on the GND density, which is a commonly employed assumption in other classes
of generalized single crystal models. It was shown (Mayeur and McDowell 2013)
that a hardening model based on the generalized Taylor relation leads to excessive
and unrealistic hardening as compared to the DDD simulations. The SSD density
evolves according to a Kocks-Mecking (Mecking and Kocks 1981) relation which
represents a competition between storage and recovery mechanisms until the steady-
state value of dislocation density is reached:

P%˛S D
1

b

�
1

ƒ˛
� 2yc%

˛
S

�
P�˛ (80)

Here, ƒ˛ is the mean free path between dislocations, and yc is the capture radius
for dislocation annihilation. The mean free path is defined in terms of the SSD
density, an average dislocation junction strength, K, and an interaction matrix, a˛ˇ as

ƒ˛ D
KqP
ˇ a

˛ˇ%
ˇ
S

(81)

Since the SSD evolution equation is defined with respect to P�˛ rather than P�˛ , it
naturally includes scale-dependence by virtue of P�˛ being an effective slip system
deformation measure (see Eq. (71)). We found this type of scale-dependent isotropic
hardening described the DDD results better than either a direct dependence of the
Taylor stress and/or the mean free path on the GND density. We note that size
effects of initial yield stress, r0, are not addressed by the hardening relations and
may depend on the initial dislocation source distribution as well as obstacles and
interfaces that impede slip.

Relationship to Slip Gradient Theory

In this section, we briefly discuss the relationship of micropolar crystal plasticity to
slip gradient crystal plasticity theory in the form developed by Gurtin (2002, 2007).



18 J. R Mayeur et al.

A more in-depth comparison of the two model frameworks and simulation results
has been given by Mayeur and McDowell (2014). Gurtin’s theory is based on taking
the slip system shears as continuum degrees of freedom and contains an additional
balance equation – the so-called microforce balance – in addition to the classical
force and angular momentum balances. The microforce balance is given as

�˛ Cr � �˛ � q˛ D 0 (82)

where �˛ is the classical resolved shear stress, �˛ is a higher-order stress that is
power-conjugate to the slip rate gradient, r P�˛ , and q˛ is the stress power-conjugate
to the slip rate, P�˛ . In addition to Dirichlet micro-boundary conditions on the slip
system shears, complementary micro-traction boundary conditions may also be
prescribed in terms of the micro-traction „˛ , i.e.,

„˛ D �˛ � n (83)

The macroscopic and microscopic scales are coupled by the presence of the
resolved shear stress, �˛ D n˛ � � � s˛ , in the microforce balance. The microforce
balance is a partial differential equation that governs the evolution of the slip system
shears and can be interpreted as a nonlocal yield condition.

Thermodynamics
Thermodynamically consistent constitutive equations have been developed by
Gurtin using a purely mechanical form of the 2nd law, i.e.,

�intr D � W P"e C
X
˛

.q˛ P�˛ C �˛ � r P�˛/ � P � 0 (84)

The free energy is assumed to depend on the elastic strain and the set of slip
system shear gradients, r E� D

˚
r�1; : : : ;r�N

�
, i.e.,
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Expressing the time derivative of the free energy via the chain rule and inserting
into Eq. (84) yields
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It is assumed that �˛ can be decomposed additively into energetic and dissipative
components such that

�˛ D �˛en C �
˛
d ; �˛en

:
D

@ 

@r�˛
(87)



Micropolar Crystal Plasticity 19

Following the Coleman-Gurtin (Coleman and Gurtin 1967) thermodynamic
procedure, the state law for the Cauchy stress obtained is identical to that of Eq.
(54)1. Making use of Eq. (87), the reduced dissipation inequality is given as

�intr D
X
˛

�
q˛ P�˛ C �˛d � r P�

˛
�
� 0 (88)

Classical quadratic elastic free energy potentials are employed within the
Gurtin-type theory since the treatment of the macroscopic forces is unaltered.
Representative constitutive equations for the defect energy and dissipative stresses
are presented below.

Energetic Constitutive Equations (Defect Energy)
Several variations of the defect energy have been proposed in the literature and can
be classified as either recoverable or nonrecoverable. A recoverable defect energy
depends on the current values of the slip gradients and vanishes when there are no
slip gradients regardless of prior loading history, whereas a nonrecoverable energy
does not vanish upon unloading. A typical recoverable defect energy is given as
(Reddy 2011)

 d D
1

2
g0`

2
en

X
˛

h
c`
�
Q%˛`
�2
C cˇ

�
Q%˛ˇ
�2i

(89)

where g0 is the initial flow stress, `en is an energetic length scale, and c`/cˇ are
dimensionless constants defining the relative contributions of edge and screw GNDs,
respectively. The edge and screw GND measures used in Eq. (89) are defined as

Q%˛` D �r�
˛ � s˛; Q%˛ˇ D �r�

˛ � t˛ (90)

Note the dimensional and sign difference of the screw GND term with respect to
the GND density definitions used in section “Linearized Kinematics.” The energetic
microcouple stress vector corresponding to  d is given as

�˛en D �g0`
2
en

�
c` Q%

˛
`s˛ C cˇ Q%˛ˇt˛

�
(91)

The microcouple stress vector lies in the slip plane and decomposes naturally
into edge and screw components. Gurtin et al. (2007) view �˛en as reflective of a
net distributed Peach-Koehler force acting on the GNDs since its components are
perpendicular to the respective dislocation line directions and have units of force per
unit length.

Dissipative Constitutive Equations
The dissipative constitutive equations are introduced with the aid of an effective slip
system deformation rate, d˛ , defined as

d˛ D

q
j P�˛j2 C L2dkr

˛
tan P�

˛k2 (92)
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where Ld is a dissipative length scale and the tangential gradient operator is defined
as r˛tanf D .rf � s

˛/ s˛C.rf � t˛/ t˛ . The scalar dissipative microstress is posited
to have the functional form

q˛ D g˛
�
d˛

d0

� 1
m P�˛

d˛
(93)

where g˛ is a viscous drag stress, d0 is the reference effective deformation rate,
and m is the inverse rate-sensitivity exponent. The dissipative microcouple stress is
introduced in an analogous manner, i.e.,

�˛d D g
˛L2d

�
d˛

d0

� 1
m r˛tan P�

˛

d˛
(94)

Inserting Eqs. (93) and (94) into Eq. (88) and making use of Eq. (92) yields

�intr D
X
˛

Q�˛d˛ � 0; Q�˛ WD g˛
�
d˛

d0

� 1
m

: (95)

Here, we introduce the implicitly defined effective dissipative stress, Q�˛ , that is
power-conjugate to the effective slip system deformation rate d˛ . It is straightfor-
ward to show that Q�˛ can also be expressed in terms of the dissipative microstresses,
i.e.,

Q�˛ D
h
.q˛/2 C k�˛d=Ldk

2
i1=2

: (96)

Inverted Flow Rule Versus Microforce Balance
An examination of the micropolar and slip gradient theories reveals many similar-
ities between the two sets of governing equations. Central to both theories is the
notion that the presence of GNDs gives rise to both energetic and dissipative contri-
butions to scale-dependent mechanical behavior. In general, nonlocal strengthening
effects are manifested in both the isotropic and kinematic hardening responses of
the material. A key component of the slip gradient theory is the microforce balance,
which couples the macroscopic and microscopic responses and represents a nonlocal
flow rule governing the evolution of the slip system shears. Typically, the r � �˛

term in the microforce balance induces kinematic hardening and the q˛ term leads
to isotropic hardening, although the exact nature of the hardening contributions
depends on the specific constitutive forms employed. The noteworthy feature of
second term in the microforce balance is that it is a function of second gradients
of slip since �˛ D f

�
r˛tan�

˛
�
. The relationship between second gradients of slip

(GND gradients) and kinematic hardening is in accordance with other dislocation-
based gradient single crystal plasticity theories (Yefimov et al. 2004a; Evers et al.
2004; Forest 2008).
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A similar result is obtained for the micropolar theory by considering the inverted
flow rule, which is obtained from the coaxiality relations �˛eff = O�

˛ D P�˛= P�˛ .
Neglecting the isotropic energetic hardening terms in Eq. (77), the coaxiality
relations may be rearranged and expressed as

�˛ C �˛b � g
˛

 
P�˛

P�0

! 1
m
P�˛

P�˛
D 0: (97)

Here, the resolved Cauchy stress, �˛eff , is explicitly written as two terms where

the second term is a back stress, �˛b WD
1
2
t˛ �

�
r �mT

�
, related to the projection

of the skew symmetric part of the stress tensor. The back stress may be expressed
as a function of the couple stress since 2 skw(� ) D � � (r � mT). Thus, the back
stress in the micropolar theory is a function of lattice torsion-curvature gradients.
This is analogous to the dependence exhibited by the slip gradient theory since
second gradients of slip (GND gradients) are directly connected to lattice torsion-
curvature gradients via Nye’s relations (see section “Linearized Kinematics”). In
both theories, the higher-order balance law leads to the coupling of the micro
and macro scales and to the natural inclusion of gradient-dependent kinematic
hardening. Compare Eq. (97) to the microforce balance augmented with the
constitutive equation for q˛ given in Eq. (93)

�˛ Cr � �˛ � Qg˛
�
d˛

d0

� 1
m P�˛

d˛
D 0: (98)

The similarities between the two expressions given in Eqs. (97) and (98) are
obvious, although some key differences emerge when the constitutive equations for
m and �˛ are considered. To illustrate these differences, we compare the microforce
balance and inverted micropolar flow rule augmented with simple constitutive
equations for the 2D case (e.g., edge dislocations only). Inserting Eqs. (91) and
(94) into Eq. (98), the following expression is obtained:
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(99)

An analogous expression for the inverted micropolar flow rule is obtained by
using a simplified version of Eq. (58)2 where m D 2�`2e�

e in Eq. (97), i.e.,
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Note that the energetic and dissipative length scales appear isolated in separate
terms in Eq. (99), whereas the third term in Eq. (100) contains both the elastic
and plastic length scales. Therefore, both energetic and dissipative gradient effects
are eliminated when `e D 0 in the micropolar theory; however, the dissipative
gradient term is suppressed for L? 	 `2e irrespective of the value of `e.
The separation of energetic and dissipative gradient hardening terms in the slip
gradient theory is a direct consequence of the assumed additive decomposition
of �. Another, perhaps more subtle, difference between the two expressions is
that the dissipative gradient term in the microforce balance is a function of slip
rate gradients, while it is a function of total plastic curvature in the inverted
micropolar flow rule. We remark that if the micropolar theory was cast in terms
of an additive energetic/dissipative decomposition of the couple stress tensor rather
than an additive elastic-plastic decomposition of the torsion-curvature tensor, the
micropolar model would mirror the phenomenology of the slip gradient model in
terms of a strict separation of energetic and dissipative gradient hardening effects,
and the dissipative gradient hardening would be proportional to the rate of lattice
torsion curvature.

Curvatures, Couple Stresses, and Gradient Terms
With the connection between the vectorial microcouple stress, �˛ , and the second
rank couple stress tensor, m, established, additional analogies between the two
models are explored. A comparison of Eqs. (90) and (52) reveals a relationship
between the micropolar plastic torsion-curvature flow rates and the directional slip
gradients, i.e.,

P'˛? $ Ldr P�
˛ � s˛ ; P'˛ˇ $ Ldr P�

˛ � t˛ (101)

where$ is used to signify that the two terms have analogous roles in the respective
theories. This association is further evident when the effective deformation rate in
Eq. (92) is expressed in component form as

d˛ D

q
j P�˛j2 C jLdr P�˛ � s˛j

2 C jLdr P�˛ � t˛j
2: (102)

which establishes d˛ $ P�˛ (see Eq. (71)). If the energetic isotropic hardening
term in Eq. (76) is neglected and compared to the analogous expression in Eq. (95),
we see that the two dissipation inequalities have identical forms. Therefore, it is
straightforward to show that the resolved couple stresses in the micropolar theory
can be related to the dissipative microcouple stresses of the slip gradient theory
by expressing the dissipation inequality in a form that parallels Eq. (75). First, the
dissipative constitutive equation for �˛d given in Eq. (94) is written in component
form as

�˛d D g
˛L2d

�
d˛

d0

� 1
m .r P�˛ � s˛/ s˛ C .r P�˛ � t˛/ t˛

d˛
D �˛d`s˛ C �˛dˇt˛ (103)
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where �˛
d`

and �˛dˇ are the edge and screw components of �˛d . Inserting Eq. (103)
into Eq. (88) and making use of the microforce balance, the dissipation inequality
may be expressed as
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(104)

A comparison of Eqs. (75) and (104) in conjunction with the relationships
identified in Eq. (101) reveals that

�˛eff $ �˛ Cr � �˛ (105)

˛?=L? $ �˛d`=Ld (106)

˛ˇ=Lˇ $ �˛dˇ=Ld (107)

The association established in Eq. (105) was already apparent from a comparison
of the inverted micropolar flow rule and the microforce balance, whereas the
relationships established by Eqs. (106) and (107) were revealed by inserting the
component form of �˛d into the reduced dissipation inequality. Furthermore, we
can rewrite the effective dissipative stress in the slip gradient theory using the
component form of �˛d as

Q�˛ D

q
j�˛ Cr � �˛j

2 C
ˇ̌
�˛
d`
=Ld

ˇ̌2
C
ˇ̌
�˛dˇ=Ld

ˇ̌2
: (108)

This expression is consistent with Eq. (61) of the micropolar theory given the
relationships established by Eqs. (105), (106), and (107).

As a final remark, we remind the reader that the micropolar theory differs
from slip gradient theory by its adoption of the rotation of the microstructure
director vectors in Eq. (30) as an independent constitutive prescription. This also
simplifies the numerical implementation since slip gradients need not be computed
or estimated. The remainder of section “Micropolar Single Crystal Plasticity”
explores applications of this single crystal micropolar framework. The chapter
dedicated to micromorphic crystal plasticity considers further extension of the
micropolar theory to a micromorphic theory that includes distortion of the director
vectors.

Applications: Comparison to 2D Discrete Dislocation Dynamics
Simulations

This section presents a comparison of two-dimensional micropolar crystal plasticity
and discrete dislocation dynamics simulations of single crystal thin films subjected
to a variety of loading conditions. Specifically, we examine three widely studied
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boundary value problems: constrained simple shear, pure bending (single and dou-
ble slip configurations), and simple shear of a particle reinforced composite. These
problems are routinely used as benchmarks to evaluate the ability of generalized
single crystal plasticity models to accurately capture size effects. A micropolar
single crystal model with the hardening described by Eqs. (79), (80), and (81) was
implemented in an Abaqus/Standard Version 6.7.1 (2007) user element subroutine
(UEL) for the simulations presented below. The element is a four node quadrilateral
and the integration is performed using a B-bar technique to prevent volumetric
locking. Both the displacement and rotation fields are interpolated using standard
bilinear shape functions.

The micropolar model has been independently calibrated for each boundary
value problem by fitting to both average (e.g., stress-strain curves) and microscopic
(e.g., dislocation density distributions) deformation behavior. It was previously
demonstrated that fitting to multiple aspects of the deformation behavior is nec-
essary to obtain a unique set of micropolar constitutive parameters (Mayeur et al.
2011). As a result of the 2D nature of the problems considered, the calibration
procedure is simplified in the sense that there are only a few parameters to be
determined. Essentially, there are four fitting parameters that are summarized by
the set: M D fr0, K, `e, L?g. All of the other material parameters are either known
as inputs (e.g., classical elastic parameters, Burgers vector magnitude) or can be
assigned standard values based on experience from classical local crystal plasticity

models. For example, the viscoplastic parameters
�
P�˛; g˛;m

�
cannot be explicitly

determined due to lack of DDD results at multiple strain rates, so reasonable
values for these parameters are prescribed and held fixed throughout the calibration
process. Note that only a single elastic and plastic length must be determined. For
plane strain problems, the couple stress constitutive relation given in Eq. (58)2

reduces to

m3i D 2ˇ�
e
3i D 2�`

2
e�
e
3i ; i D 1; 2; (109)

where it has been assumed, without loss of generality, that ˇ D � . Recall, the
couple stress constitutive parameter, ˇ, is related to an elastic length scale parameter,
`e D

p
ˇ=�. As discussed by Forest (2008), the nonclassical elastic constant, �c,

Eq. (58)1, is not a free fitting parameter in micropolar single crystal plasticity.
Rather, it serves as an internal penalty constraint forcing the lattice rotations to
coincide with the rotational part of the elastic distortion. Because of this constraint,
the micropolar torsion-curvature is identified as the lattice torsion-curvature thereby
making the connection between GNDs and the scale effects predicted by the model.
Since screw GNDs do not contribute to plastic torsion-curvature evolution in the 2D
boundary value problems, there is a single plastic length scale parameter, L?, to be
determined.

Here, we briefly outline how the length scale parameters affect material response
a general strategy for calibrating them to the DDD simulations. The elastic length
scale parameter, `e, is related to the initial scale-dependent kinematic hardening
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modulus and the ratio L?/`e dictates the saturation rate of gradient hardening. Larger
L?/`e ratios are associated with slower transients such that when L? 	 `e, the
strengthening effect reduces to that of linear gradient kinematic hardening (Mayeur
et al. 2011). The elastic length scale should also be small enough so as not to
induce size-dependent effects in the elastic deformation regime. The plastic length
scale, L?, determines the magnitude of the GND density distributions; however, its
influence is not independent of the prescribed value of `e. As shown in Mayeur
et al. (2011), it is the ratio L?/`e that dictates the maximum value of the local GND
density fields. If `e is varied while holding L?/`e and all other model parameters
constant (including specimen dimensions), the resulting GND density field will be
essentially unchanged. To illustrate how the length scale parameters influence the
average stress strain response, we show two plots in Fig. 1 where the elastic length
scale is varied while keeping the ratio L?/`e fixed (here Lp D L?) and another with
fixed elastic length scale and varying L?/`e for the problem of constrained simple
shear (Mayeur and McDowell 2014).

The parameter r0 is used to fit to the initial yield strength rather than a prescribed
initial dislocation density since the DDD simulations are assumed to be initially
dislocation free. However, in the planar double slip simulations, a negligibly small
value of initial SSD density (10�6 �m�2) is specified for each slip system so that
SSD evolution is nonzero. This approach is taken in lieu of introducing a nucleation
term in the SSD density evolution equation. It is worth mentioning that r0 should not
necessarily be treated as a fixed material constant due to the statistical variations in
the source strength and spatial distribution in the discrete dislocation simulations, as
well as the mean free path of initial obstacles or impenetrable interfaces. The initial
yield point in the discrete simulations will depend significantly on the availability
of weak sources in highly stressed regions. Given a fixed value for the initial slip
system yield strength, approximate upper bounds can be established for `e and K
by isolating the effects of the two distinct material strengthening mechanisms. For
example, given a target stress-strain curve, the maximum value of `e is determined
by assuming that all of the material hardening is due to the gradient-induced back
stresses (1/K D 0), whereas the maximum value of K is determined by assuming that
all of the material hardening is due to slip threshold hardening (`e D 0). In general,
both mechanisms will contribute to the material strengthening and the actual values
will fall below the upper bounds. As discussed in Mayeur and McDowell (2013),
either the unloading behavior or some other attribute of the local deformation field
(e.g., shear strain distributions) must be used in order to differentiate between the
relative hardening contributions. A list of micropolar constitutive parameters used
in all of the simulations is given in Table 1.

Constrained Shear of Thin Films

Here, we compare results of the micropolar model to DDD results for a constrained
thin film subjected to simple shear originally presented by Shu et al. (2001).
Related studies were also conducted by Yefimov and van der Giessen (2005b)
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Fig. 1 Average shear
stress-strain response for
constrained simple shear with
(a) different values of Lp/`e

with `e D 100 nm and (b)
different elastic length scale
parameters with Lp/`e D 5.
Slip threshold hardening is
suppressed (r˛ D r0)

∞�
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and Limkumnerd and van der Giessen (2008). A more detailed exposition of the
micropolar results are contained in Mayeur and McDowell (2013). The specimen
geometry is film oriented for symmetric slip with thickness, H, in the x2-direction
as shown in Fig. 2. The slip systems are oriented at ˙30ı with respect to the
x2-direction. The top and bottom surfaces are modeled as rigid dislocation barriers
(impenetrable), the bottom surface is fully constrained against displacement, and
a uniform horizontal displacement is applied to the top surface while the vertical
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Table 1 Summary of constitutive model parameters used in the micropolar single crystal
simulations

Parameter Symbol Magnitude Unit
– – Constrained

shear
Bending SS Bending

DS
Composite –

Shear modulus � 26.3 26.3 26.3 26.3 GPa
Poisson’s ratio � 0.33 0.33 0.33 0.33 –
Couple
modulus

�c 263 263 263 263 GPa

Elastic length
scale

`e 10, 15 125, 125 300, 600 125 nm

Plastic length
scale

L? 45 562.5, 250 750, 700 125 nm

Reference
threshold stress

r0 12.78 10 10 13, 21, 30 MPa

Threshold
stress
coefficient

c1 0.5 N/A 0.5 N/A –

Burgers vector
magnitude

b 0.25 0.25 0.25 nm

Hardening
matrix
coefficients

h˛ˇ ı˛ˇ N/A 1.0 N/A –

Initial SSD
density

¬S0 10�6 N/A 10�6 N/A �m�2

Dislocation
interaction
coefficients

a˛ˇ ı˛ˇ N/A 1.0 N/A –

Dislocation
segment length
constant

K 16.67,18.18 N/A 160, 26 N/A –

Dislocation
capture radius

yc 0 N/A 1.5 N/A nm

Reference
deformation
rate

P�0 10�3 10�3 10�3 10�3 s�1

Drag stress g 5 5 5 5 MPa
Inverse rate
sensitivity
exponent

m 20 20 20 20 –

displacement is constrained. The load is applied under displacement control up to an
average strain of � D 0.03. The discrete dislocation problem was modeled as a unit
cell of width, W, and thickness, H, and was spatially discretized with uniformly sized
quadrilateral finite elements with an element size of he D W/30. The material was
modeled as having zero initial dislocation density and the sources were distributed
randomly throughout the spatial domain. Individual dislocation source strengths
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Fig. 2 Geometry schematic and boundary conditions for the constrained shear initial-boundary
value problem

were determined by randomly sampling from a Gaussian distribution with a mean
nucleation strength, �nuc D 50 MPa, and a standard deviation of 0:2�nuc .

The displacement boundary conditions were applied at the top surface consistent
with a constant strain rate of 103 s�1. The constitutive parameters used in the
simulations are representative of an aluminum single crystal.

u1 .x1; 0; t/ D u2 .x1; 0; t/ D 	 .x1; 0; t/ D 0
u1 .x1;H; t/ D � .x1;H; t/H; u2 .x1;H; t/ D 	 .x1;H; t/ D 0
u1
�
W
2
; x2; t

�
D u1

�
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2
; x2; t

�
; u2

�
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2
; x2; t

�
D u2

�
�W

2
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�
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W
2
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�
D 	

�
�W

2
; x2; t

�
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We only used the data for the 1 �m thick film in the calibration process since this
is the only thickness for which all relevant deformation fields have been reported.
Consistent with earlier nonlocal single crystal plasticity simulations of this problem,
the isotropic hardening response is assumed to be linear (Shu et al. 2001; Bittencourt
et al. 2003). Due to the symmetry of the problem and since it is impossible to dif-
ferentiate between self and latent hardening effects from the available DDD results,
we assume that h˛ˇ D a˛ˇ D ı˛ˇ . Results are presented for two sets of constitutive
parameters. As shown in Fig. 3, the stress-strain curves are nearly identical for both
fits and are in good agreement with the discrete dislocation results. Fit 1 uses slightly
more threshold hardening (K1 D 16.67 vs. K2 D 18.18), whereas fit 2 has a larger
contribution from gradient kinematic hardening (`e2 D 15 nm vs. `e1 D 10 nm).
The differences in the relative proportions of isotropic versus gradient kinematic
hardening are evident in the shear strain distributions shown in Fig. 4. The profiles
for fit 1 have a blunted shape as compared to the rounded morphology observed for
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Fig. 3 Comparison of the
average shear stress-strain
response for H D 1 �m.
Results for two parameter sets
are shown to illustrate how
differences in the local fields
can vary for an identical
average response. The
discrete dislocation results are
from Shu et al. (2001) and are
given by the solid black line

fit 2, which is consistent with the general observation that larger elastic length scales
result in parabolic shear strain distributions. The signed GND density distributions
for both fits are shown in Fig. 5a. The maximum GND densities at the boundary are
marginally overpredicted and display steeper gradients in the near boundary regions
than the discrete dislocation results, but compare favorably overall.

Pure Bending of Thin Films: Single Slip

The discrete dislocation results of the single slip bending configuration presented
in this section were obtained by Yefimov et al. (2004b) and the micropolar results
were given by Mayeur and McDowell (2011). The initial-boundary value problem
is a thin film of width, W, and thickness, H, subjected to pure bending in a state
of plane strain as sketched in Fig. 6. Considering a coordinate system attached to
the midpoint of the film, the deformation is defined by the edge rotation angle, ‚,
and is prescribed through a linear variation of the x1 displacement component as a
function of distance from the neutral axis:

u1

�
˙
W

2
; x2; t

�
D ˙‚.t/x2: (111)

The displacements are applied consistent with a constant average rotation rate,
10�3 s�1, until a final rotation angle of ‚ D 0.02 is reached. The top and bottom
surfaces of the beam are traction-free. As shown in Fig. 6, a single slip system is
oriented at an angle ª with respect to the x1-axis, and slip is constrained to occur
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Fig. 4 Comparison of shear
strain distributions at
different levels of applied
strain for H D 1 �m: (a) fit 1
and (b) fit 2. The discrete
dislocation results are from
Shu et al. (2001) and are
given by the dashed lines

a

b

within region demarcated by the internal solid black lines. This restriction has been
imposed in the discrete dislocation simulations in order to avoid the complication of
having dislocations exit the crystal through the lateral faces where the displacement
boundary conditions are prescribed. Two different film thicknesses are considered
for the single slip configuration, H D 2 and 4 �m, respectively, with a fixed width-
to-thickness ratio of W/H D 3. Slip system orientations of 30ı and 60ı are studied
and will be referred to using the shorthand notation ª30 and ª60 in the following.
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Fig. 5 Comparison of
discrete dislocation and
micropolar crystal plasticity
dislocation density
distributions at � D 0.0168
for H D 1 �m: (a) signed
GND density and (b) SSD
density. The discrete
dislocation result is from Shu
et al. (2001) and are given by
the solid black line

a

b

The average loading response is quantified by the bending moment, M, work-
conjugate to ‚ which is given by

M D

Z H=2

�H=2

�11

�
˙
W

2
; x2

�
x2 dx2: (112)
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Fig. 6 Schematic of the geometry and slip system configuration for the single slip bending initial-
boundary value problem

A thickness-independent measure of the average loading response is given by
the normalized bending moment, M/Mref , with the reference bending moment

defined as: Mref D
2
3
�nuc

�
H
2

�2
. Mref corresponds to the moment calculated from

an assumed linear stress distribution over height of the beam with peak values
of ˙�nuc at the free surfaces. The mean critical nucleation stress, �nuc , is taken
as 50 MPa in the discrete dislocation simulations. The micropolar finite element
meshes, consistent with the DDD simulations, employ a uniform grid of bilinear
quadrilaterals: 66 � 38 for ª30 and 155 � 30 for ª60.

The normalized moment-rotation plots for both slip system orientations and
thicknesses are plotted in Fig. 7, and they are in reasonably good agreement with
the discrete dislocation results with respect to both the orientation and scale-
dependence. Except for the 2 �m thick film for ª30, the results are in good
quantitative agreement with the initial yield strengths and nominal hardening rates
predicted by the discrete dislocation model. The DDD results show that the yield
strength for the 2 �m thick film for ª30 is lower than that of the 4 �m film in
contradiction to an expected “smaller is stronger” trend, which underscores the
stochastic nature of the initial flow stress obtained from DDD simulations. The
discrete simulations display an approximately linear hardening rate that increases
with decreasing film thickness, and the micropolar model shows similar trends
although the rate is somewhat underestimated for the 2 �m thick film with ª60.
There is a substantially higher hardening rate for ª30 as compared to ª60 as shown
in Fig. 7; this difference is primarily due to the way the boundary value problem
is constructed with distinct elastic and plastic zones and is not a consequence
of the local hardening behavior. Recall that the films are modeled as composite
elastic-plastic materials with plastic deformation restricted to the interior region
bounded by the solid lines parallel to the slip direction (see Fig. 6) for the sake
of convenience in the DDD simulations. Therefore, the plastic zone size for ª30 is
much smaller. The significantly higher apparent hardening rates for ª30 as compared
to ª60 are essentially due to an increased volume fraction of the elastic phase and
not dislocation hardening. In fact, a local crystal plasticity model with an elastic-
perfectly plastic slip system level response would yield an apparent hardening
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Fig. 7 Comparison of the
discrete dislocation (DD) and
micropolar crystal plasticity
(MP) normalized
moment-rotation response for
the single slip bending
configuration (a) ªD 30

ı

and (b) ªD 60
ı

. The discrete
dislocation results are from
Yefimov et al. (2004b)

a

b

rate comparable to, albeit lower than that shown in Fig. 7a. Of course, there is a
component of the apparent hardening rate differences for the two orientations due
to the relative misalignment of the slip and axial strain directions, and this is the
portion associated with variations in GND distributions between the two cases.

Dislocation density contour plots for both film thicknesses are shown in Figs.
8 and 9 for ª30 and ª60, respectively, with ‚ D 0.015. In the ª30 film, the
maximum dislocation densities are 39.8 �m�2 and 22.6 �m�2, respectively, for 2
and 4 �m thick films. Dislocation-free zones are clearly observed along the neutral
axis for both film thicknesses, where the thickness of the dislocation-free region
is approximately 3–4 times larger for the 4 �m thick film. As compared to the
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Fig. 8 Dislocation density distributions predicted by the micropolar crystal plasticity simulations
at ‚D 0.015 for ªD 30

ı

: (a) H D 4 �m (b) H D 2 �m
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Fig. 9 Dislocation density distributions predicted by the micropolar crystal plasticity simulations
at ‚D 0.015 for ªD 60

ı

: (a) H D 4 �m (b) H D 2 �m

ª30 film, the dislocation density distributions for ª60 are markedly different. The
morphology of the distribution can be characterized as having ellipsoidal-shaped
lobes originating at the free surface near the corner of the elastic-plastic interface
and extending perpendicular to elastic-plastic interface toward the neutral axis. The
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Fig. 10 Comparison of the
discrete dislocation (DD) and
micropolar crystal plasticity
(MP) dislocation density
evolution as a function of
average plastic curvature for
both orientations of the single
slip configuration. The dashed
curves are for ª60. The
discrete dislocation results are
from Yefimov et al. (2004b)

maximum local dislocation densities, 160 �m�2 (H D 2 �m) and 98.3 �m�2

(H D 4 �m), are significantly higher than in the v30 film. The contour plots exhibit
rather high dislocation density at the free surfaces that are generated in response
to the strong rotational gradients that arise due to the compliance mismatch at the
elastic-plastic interface. This is in contrast to the DDD simulations which exhibit
dislocation-free zones at the free surfaces that are thought to be the result of an
image force effect. It is possible that an image force effect might be imposed within
the micropolar framework through an appropriately specified higher-order traction
along the free surfaces; however, this avenue has yet to be pursued.

In Fig. 10, the total dislocation density computed over the entire volume is plotted
as a function of the imposed deformation for both orientations with H D 4 �m. It is
shown that the micropolar model accurately captures the evolution as predicted by
the DDD simulations. The dislocation density is computed by volume averaging the
centroidal element values over the FE mesh, and the average plastic curvature, Kp,
is calculated according to

Kp D
2‚

W
�
M

EI
: (113)

Here, EI is the in-plane bending stiffness defining the elastic curvature. The total
GND density required to accommodate an imposed bending angle, ‚, can be
calculated according to Ashby (1970) in terms of Kp as

O� D
Kp

b1
; (114)
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where b1 is the magnitude of the x1-component of the Burgers vector. The plot
shows that the dislocation density increases in an approximately linear fashion with
respect to the plastic curvature for both sets of simulations. Also, as expected from
Eq. (114), the dislocation density at a given level of plastic curvature is higher for the
ª60 film. Since the x1-component of the Burgers vector is smaller for this orientation,
more dislocations are needed to accommodate the imposed strain gradient.

Pure Bending of Thin Films: Double Slip

Next we study pure bending of thin films with a double slip system configuration
as shown in Fig. 11. The DDD simulation results presented were originally
reported by Yefimov and van der Giessen (2005a) and an analysis using micropolar
crystal plasticity was presented by Mayeur (2010). As in the single slip case, two
orientations are considered, ª30 and ª60 where the orientation angle is also defined
as the angle between the x1-axis and the slip direction for slip system 1. For each
orientation, the second slip system is symmetrically aligned with respect to the
x2-axis. The films are partitioned into elastic and plastic phases as before and
in accordance with the discrete dislocation simulations. The elastic zones are the
triangular regions located at the top, bottom, left, and right ends of the film as
shown in Fig. 11, and each slip system is only active in the slice of material parallel
to the slip direction. Thus, the plastic zone can be divided into five regions: four
single slip regions (two for each slip system) that are the outermost diagonal regions
and a diamond-shaped double slip region located at the center of the film and is
demarcated by the blue dotted lines in the schematic. The boundary conditions and
FE discretizations are the same as for the single slip configuration. Simulations are
carried out for film thicknesses of 4 �m and 8 �m with fixed aspect ratio W/H D 3.

The normalized moment-rotation responses for both film thicknesses and orien-
tations are plotted in Fig. 12 against the discrete dislocation results, and the results
compare favorably. The response is similar for both orientations unlike the single
slip configuration, where the hardening rate was much higher for the ª30 films due

W

x2

x1

s1

s2

n1 n2
H

M,Θ

ϑ

Fig. 11 Schematic of the geometry and slip system configuration for the double slip bending
initial-boundary value problem
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Fig. 12 Comparison of the
discrete dislocation (DD) and
micropolar crystal plasticity
(MP) normalized
moment-rotation response for
the double slip bending
configuration (a) ªD 30

ı

and (b) ªD 60
ı

. The discrete
dislocation results are from
Yefimov and van der Giessen
(2005a)

a

b

to larger effective film thickness resulting from the dominant influence of the elastic
regions. However, the behavior for the ª60 films has a stronger scale-dependence
as would be expected given that more GNDs are necessary to accommodate the
strain gradients for the ª60 film. In contrast to the single slip simulations, we found
that different elastic length scales and dislocation multiplication constants, K, are
required for each orientation to obtain a good match with the DDD results.

Figure 13 shows the total dislocation density contour plots for the ª30 films at
‚ D 0.02, and we note that the magnitude of the total dislocation density field is
approximately three orders of magnitude larger than that of the SSD density field
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Fig. 13 Dislocation density distributions predicted by the micropolar crystal plasticity simulations
at ‚D 0.02 for ªD 30

ı

: (a) H D 8 �m (b) H D 4 �m

(not shown), which is characteristic of confined micro-scale dislocation plasticity.
The maximum dislocation density is located at the free surfaces near the elastic-
plastic interfaces for both film thicknesses, with peak values of 57.7 �m�2 and
32.3 �m�2 for the 4 �m and 8 �m thick films, respectively. In the case of the
8 �m thick film, there is dislocation-limited region (not dislocation-free) adjacent
to the neutral axis separating the regions of higher dislocation density, whereas
the dislocation distributions are continuous across the neutral axis for the 4 �m
thick film. This is in contrast to the dislocation density fields for the single slip
configuration (see Fig. 8) which exhibit a clear dislocation starved zone adjacent to
the neutral axis. It is interesting that the maximum dislocation density values occur
in the single slip regions and that the double slip region has a significantly lower
density.

Figure 14 shows the total dislocation density contour plots for the ª60 films at
‚D 0.02. The geometrical configuration of the elastic and plastic phases for the ª60

oriented crystal is such that there is no centrally located elastic zone and the majority
of the plastic phase is a double slip region. Therefore, the dislocation density fields
are continuous and smooth, in contrast to the ª30 orientation where the dislocation
density field has a checkered type of pattern. The local maximum in the dislocation
density fields are comparable for both orientations, thus the total (over the entire
plastic region) dislocation density is much higher for the ª60 film.

The total film dislocation density is plotted for both slip orientations and
thicknesses versus the average plastic curvature in Fig. 15. In general, the micropolar
results compare favorably to the discrete dislocation results. The micropolar model
captures the change in slope of the dislocation density-plastic curvature plot with
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Fig. 14 Dislocation density distributions predicted by the micropolar crystal plasticity simulations
at ‚D 0.02 for ªD 60

ı

: (a) H D 8 �m (b) H D 4 �m

the change in thickness for the ª30 oriented films, but not for the ª60 oriented films.
An increase in the slope is predicted for the ª30 films but the micropolar results are
nearly identical for the ª60 films. The DDD results for the 8 �m thick film show an
increase in slope with increasing average plastic curvature, while the slope for the
4 �m remains essentially constant.

Simple Shear of a Metal Matrix Composite

In this application we study the size-dependent hardening of a metal matrix
composite subjected to simple shear. The idealized particle reinforced system shown
in Fig. 16 was previously analyzed using DDD simulations by Cleveringa et al.
(1997, 1999) and Yefimov et al. (2004a) and micropolar crystal plasticity by Mayeur
and McDowell (2015). The periodic unit cell consists of an elastic-viscoplastic
matrix phase (white) with a single slip system parallel to the x1 direction, reinforced

by elastic particles (gray). The size of the unit cell is 2W � 2H
�
W D H

p
3
�

and the particles have dimensions 2Wf � 2Hf . Two distinct cases, denoted Material
I and Material II, with different particle aspect ratios but the same area fraction,
Af D (Hf Wf )/(HW) D 0.2, are studied: the unit cell for Material I is reinforced
by square particles with Wf D Hf D 0.416H, while the unit cell for Material II is
reinforced by rectangular particles with Hf D 2Wf D 0.588H. The two cases are
differentiated such that Material I contains an unobstructed vein of matrix material
that spans the unit cell, whereas the particles overlap in Material II and block slip.
Since the area fraction of the elastic particles is the same for both morphologies,
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Fig. 15 Comparison of the
discrete dislocation (DD) and
micropolar crystal plasticity
(MP) dislocation density
evolution as a function of
average plastic curvature for
the double slip configuration
(a) H D 4 �m and (b)
H D 8 �m. The discrete
dislocation results are from
Yefimov and van der Giessen
(2005a)

a

b

any observed differences in material response are due to the dislocation-particle
interactions and not the phase volume fraction.

The composite is subjected to simple shear through displacement boundary
conditions applied to top and bottom surfaces and these surfaces are assumed
to be couple stress traction free. Periodic boundary conditions are enforced on
displacements and microrotation at the left and right surfaces. The deformation is
imposed at a shearing rate of P� D 10�3s�1 up to a unit cell shear strain of � D 0.01,
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Fig. 16 Schematic of the geometry and slip system configuration for the metal matrix composite
initial-boundary value problem

at which point the material is unloaded back to zero strain. The boundary conditions
are stated as:

u1 .x1;˙H; t/ D ˙�.t/H; u2 .x1;˙H; t/ D 0
u1 .�W; x2; t/ D u1 .W; x2; t/ ; u2 .�W; x2; t/ D u2 .W; x2; t/

	 .�W; x2; t/ D 	 .W; x2; t/ :

(115)

Further, microrotation is assumed to be coupled at the matrix-particle interface.
Simulations are performed for cell sizes of H D f0.5C, C, 2Cg where C D 4000b
with bD 0.25 nm. The FE mesh consists of 106� 61 bilinear quadrilateral elements.
The classical elastic properties of the particles are � D 192.3 GPa and � D 0.17,
and the matrix constitutive parameters are listed in Table 1. These parameters are
representative of silicon carbide particles embedded in an aluminum matrix. With
regard to specifying the nonclassical elastic constants for inclusion, �Ic and ˇI , we
assume that �cI D �cM and ˇI D ˇM where the superscripts I and M refer to the
inclusion and matrix, respectively. As discussed by Cordero et al. (2010), other
choices are possible and perhaps should be considered in future work.

As shown in Fig. 17a, the unit-cell average stress-strain response predicted by the
discrete dislocation model for Material I is nearly elastic-perfectly plastic, whereas
Material II displays an approximately linear hardening rate. Material I does not
harden because there are no obstacles to dislocation motion. In contrast, mobile
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Fig. 17 Average stress-strain
response for (a) Material I
and II for H D C and (b)
Material II with variable slip
threshold for different particle
spacings. Dashed lines are
discrete dislocation results
(Yefimov, 2004a) and solid
lines are micropolar results

a

b

dislocations in Material II are obstructed by the particles and form pileups and tilt
walls at the matrix-particle interface. The unloading curve suggests the material
strengthening in Material II is governed by the development of a strong back stress,
as evidenced by the pronounced Bauschinger effect, while unloading is essentially
elastic for Material I. The average stress-strain curves predicted by the micropolar
model (solid lines in Fig. 17) are in good agreement with the discrete dislocation
results during forward loading; however, the Bauschinger effect for Material II is
significantly underestimated. Figure 17b shows the stress-strain curves for Material
II for the three unit cell sizes. We found that it was necessary to use different r0

values to obtain good agreement with the discrete dislocation results. Interestingly,
the calibrated values, r0 D f13, 21, 30gMPa, show strong correlation with the Hall-

Petch relation r0 / ƒ
�1/2, where ƒ D

�
2
p
3 � 0:588

�
H is the mean free path for

Material II. The slope of the Hall-Petch relation is 40.51 MPa
p
�m. Note that the

Hall-Petch relation was not assumed a priori, but rather is consistent with the result
of parameter estimation.
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Fig. 18 Contours of cumulative slip at � D 0.006 for (a) Material I (b) Material II (H D C)

The cumulative plastic slip distributions for both cases with H D C and
� D 0.006 as predicted by the micropolar model are shown in Fig. 18. The slip
field morphology for Material I is characterized by intensely localized plasticity in
the unreinforced veins of matrix material, whereas the slip morphology for Material
II is characterized by highly localized bands that form along the top and bottom
faces of the particles, but do not extend across the full width of the unit cell due
the particle overlap. The cumulative slip distributions predicted by the micropolar
model are consistent with the discrete dislocation simulations and are noticeably
different than the predictions of local and low-order gradient theories, which show
much higher levels of slip accumulation along the vertical matrix-particle interfaces.

The total dislocation density fields are plotted for all three cases of Material II
in Fig. 19 at � D 0.006. There is a significant dislocation density accumulation
along the vertical faces of the matrix-particle interface and sparse dislocation density
distributed throughout the matrix. These GNDs are generated to accommodate the
rotational gradients that develop at the interface (Ashby 1970). The total matrix
dislocation density is plotted during loading as a function of applied shear strain for
both the micropolar and discrete dislocation models for the three unit cell sizes in
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a b
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(Avg: 100%)
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34.81
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Fig. 19 Evolution of total matrix dislocation density versus applied strain as predicted by the
micropolar model (solid lines) and discrete dislocation dynamics (dashed lines) (Yefimov et al.
2004a) (a) for various unit cell sizes during loading and (b) unloading for H D C. Contour of total
dislocation density for Material II at � D 0.006 for the micropolar model H D 0.5C

Fig. 19a and during loading/unloading for HD C in Fig. 19b. The micropolar results
are in good agreement with the discrete dislocation simulations for the two largest
unit cells during loading, but there is a modest departure in the model predictions
for the H D 0.5C case. Interestingly, the discrete dislocation model predicts much
higher rate of dislocation recovery upon unloading as compared to the micropolar
model.

Overall, the predictions of the micropolar simulations are in reasonably good
agreement with the discrete dislocation simulation results. The most significant
discrepancy in the simulated material response is the underprediction of the
Bauschinger effect and the rate of dislocation recovery upon unloading. We believe
these discrepancies are largely related to the higher-order boundary conditions
enforced at the matrix-particle interface. It is assumed that the lattice rotations at
the matrix-particle interface are equal in these simulations, i.e., the finite element
nodes along the matrix-particle interface are shared between the two materials. This
represents a different boundary condition than what is enforced at the matrix-particle
interface in the discrete dislocation simulation. The interface boundary condition
enforced in the DDD models is one of equal displacements and zero slip at the
vertical matrix-particle faces. Thus, the micropolar model enforces an additional
constraint at the matrix-particle interface, which may overconstrain the material
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response upon unloading. It may be possible to achieve an improved unloading
response by either modifying boundary conditions at the matrix-particle interface
or the nonclassical elastic constants of the inclusion, �Ic and ˇI , which will alter the
way higher-order tractions are transmitted between the two phases.

Conclusions

Micropolar crystal plasticity is a specialized subset of the more general micro-
morphic crystal plasticity theory, discussed in a subsequent chapter, that accounts
for size effects due to gradients of lattice rotation. The connection between the
micropolar lattice torsion-curvature and Nye’s GND tensor was established and
related to concepts from slip gradient-based crystal plasticity. The advantage of
the micropolar theory in comparison to the micromorphic and slip gradient-based
theories is the reduced complexity in that it requires only three additional continuum
degrees of freedom for the fully three-dimensional case.

A full treatment of the finite deformation kinematics and thermodynamic-based
constitutive equations have been developed and placed in context as an extension of
concepts of local crystal plasticity theory. A model employing linearized kinematics
is then presented with an explicit set of constitutive equations that were used in finite
element simulations of initial-boundary value problems previously solved using
discrete dislocation dynamics (DDD). The simulation results demonstrate the ability
of the micropolar theory to capture many of the salient features exhibited by the
DDD simulations for a wide range of boundary value problems, including both the
size-dependence of the stress-strain response and the evolution of the dislocation
density.

An extended comparison to Gurtin-type slip gradient-based theories of higher-
order single crystal plasticity was presented. The analysis highlights many striking
theoretical similarities, which suggests that they will also share many of the same
predictive capabilities. A few subtle, but key differences, with respect to the
construction of dissipative constitutive equations are also discussed. For example,
it is possible in the slip gradient-based theories to isolate gradient energetic and
dissipative length scale effects, whereas they are coupled in the micropolar theory,
i.e., one cannot have gradient dissipative effects in the absence of energetic gradient
effects since there will be no driving force for plastic torsion-curvature evolution.
However, it is noted that there is no principal restriction preventing one from
casting the micropolar theory in terms of energetic-dissipative decomposition of the
couple stress tensor rather than of the lattice torsion-curvature, which would then
accommodate a true separation of energetic and dissipative gradient effects.

There is still much exciting work to be done in further developing the micropolar
theory. Two areas of particular interest are the development of proper intermediate
higher-order boundary conditions between fully constrained (micro-hard) and trac-
tion free (micro-free) and the proper description of interface boundary conditions
and/or constitutive equations for grain and/or phase boundaries.
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