
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

C. R. Physique 11 (2010) 293–303

Contents lists available at ScienceDirect

Comptes Rendus Physique

www.sciencedirect.com

Computational metallurgy and changes of scale / Métallurgie numérique et changements d’échelle

Finite element simulations of coherent diffraction in elastoplastic
polycrystalline aggregates

Simulation par éléments finis de la diffraction cohérente dans des agrégats
polycristallins élastoplastiques

H. Proudhon a, N. Vaxelaire b, S. Labat b, S. Forest a,∗, O. Thomas b

a MINES ParisTech, centre des matériaux, CNRS UMR 7633, BP 87, 91003 Evry cedex, France
b Aix-Marseille University, CNRS, IM2NP, FST, avenue Escadrille-Normandie–Niemen, 13397 Marseille cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 16 August 2010

Keywords:
Coherent diffraction
Anisotropic elasticity
Crystal plasticity
Finite element modeling

Mots-clés :
Diffraction cohérente
Éasticité anisotrope
Plasticité cristalline
Modélisation par éléments finis

This work ties some crystal plasticity continuum mechanics computations with the
diffraction theory. This allows one to predict coherent X-ray diffraction (CXD) patterns
in reciprocal space in a polycrystalline specimen. When the sample deforms elastically,
the full displacement field can be used to simulate CXD patterns, but it is no longer
possible, as soon as plasticity develops within the considered grains. An approximate elastic
displacement field, based on a first order Taylor expansion of the elastic deformation field
near the center of the grain, is used to extend the predictions in the plastic regime. It
is shown that using such a field leads to more realistic CXD patterns and therefore this
approach could be useful to interpret coherent diffraction experiments in the future.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

La théorie continue de la plasticité cristalline est utilisée pour prédire les figures de
diffraction aux rayons X dans l’espace réciproque d’un polycristal métallique. Lorsque
l’échantillon se déforme de manière purement élastique, le champ de déplacement calculé
par éléments finis est utilisé pour simuler les figures de diffraction. Ce n’est plus possible
dès que la plasticité se développe dans les grains étudiés. C’est la distorsion élastique qui
intervient alors pour le calcul de diffraction. Un champ de déplacement approché, basé sur
un développement de Taylor au premier ordre autour du centre d’un grain, est utilisé pour
la prévision des figures de diffraction dans le régime plastique. On montre que l’usage de ce
champ approché à la place du déplacement total conduit à des prévisions significativement
différentes et plus réalistes des figures de diffraction. Cette approche peut donc être utile
pour l’interprétation des expériences de diffraction cohérente.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The deformation of metal polycrystals induces strong stress-strain heterogeneities at the grain level that are responsible
for subsequent strain localisation at the macroscopic scale, intergranular/transgranular crack initiation, or decohesion in
the case of thin films. Such heterogeneous strain fields can be estimated by means of continuum deformation models
and simulations explicitly taking the grain morphology into account [1]. They are due to strain incompatibilities at grain
boundaries resulting from elastic anisotropy, on the one hand, and from crystal plasticity on slip systems, on the other
hand. Today, large scale simulations of elastoplastic polycrystalline aggregates can be performed thanks to the Finite Element
method; more recently, the use of FFT based methods has been demonstrated [2].

The predicted mechanical fields can be compared to experimental full field measurements. Such comparisons are usually
done at the free surface of deformed polycrystalline samples based on EBSD lattice orientation field measurements and
grid deposition for measuring total strain fields [3]. The grain morphology below the surface then plays a significant role
on the fields observed at the free surface, and specific attention must be paid to the modelling and characterisation of 3D
grain shape, as shown in the case of elastic anisotropy in [4], and for crystal plasticity simulations in [5,6]. Experimental
techniques giving access to the 3D grain morphologies and orientations or strain fields are best suited for comparisons
between experiments and large scale computations of polycrystalline aggregates. Recent progress with X-ray diffraction
and imaging techniques are very promising from this point of view [7]. The X-ray diffraction techniques can be used to
determine lattice orientation fields and elastic strain fields and have already been successfully compared to simulations in
a few cases [8,9].

More recently X-ray coherent diffraction has been recognised as a promising tool to experimentally characterise complex
elastic strain fields in single crystals or grains in a polycrystal, up to very small length scales [10]. Such measurements can
be performed on thin films, especially in polycrystalline films with columnar grains. The grain morphology in thin films can
be efficiently handled by means of finite element simulations, taking elasticity and plasticity anisotropy effects into account
[11,12].

The objective of the present work is to show how the available continuum crystal plasticity constitutive equations can
be used to predict diffraction patterns and how large scale finite element simulations of polycrystalline films can help inter-
preting the evolution of experimental coherent diffraction patterns during straining. The case of anisotropic elastic behaviour
is first considered to show how grain shape and strain heterogeneities inside grains affect the structure of diffraction pat-
terns. When slip systems are activated in the grains, we propose to use available models of continuum crystal plasticity to
estimate the impact of the elastic strain field on diffraction patterns. The proposed approach relies on the assumption that
each material volume element contains enough dislocations for a continuum approach to hold. It would not apply to the
analysis of strain fields around individual dislocations for which discrete dislocation methods combined with finite element
simulations are better suited [13]. The proposed method is based on a clear distinction between elastic deformation (in-
cluding stretching and rotation) of the lattice and plastic deformation that essentially leaves the crystal lattice unaffected
within the continuum approximation.

The outline of the article is as follows. The coherent diffraction technique is first described in Section 2. The constitutive
equations of continuum crystal elastoplasticity are recalled in Section 3, insisting on the transport rules for material and
lattice directions. In the same section, we show how the information about total, elastic and plastic fields can be used to
predict diffraction patterns. In the purely anisotropic elastic case, the full displacement field in some grains of the aggregates
is used for post-processing diffraction patterns in Section 4 where the effect of grain shape and strain heterogeneities are
analysed. In the elastoplastic case, the previous procedure must be amended since only the elastic deformation contributes
to diffraction patterns. To illustrate this fact, we compare in Section 5 patterns obtained from the total displacement field
to ones based on the information on the elastic deformation field only.

In the following, scalars, vectors, tensors of second and fourth rank are denoted by a,a, ˜a,≈a, respectively.

2. Experimental X-ray coherent diffraction patterns

The goal of the experiment is to record the Bragg intensity from a single grain. Because of the low intensity of the
diffracted signal a highly brilliant source such as the one delivered by the third generation synchrotron light sources, i.e.
ESRF, Soleil, etc. is mandatory. The X-rays source is an undulator located at around 40 meters upstream the sample. The
beam is monochromatized by a double Si 〈111〉 crystal. The number of windows along the beam is reduced to 1 to avoid
coherence perturbations [14].

To measure the Bragg intensity from a single grain, a special design of the sample was made. A 10 × 10 μm2 polycrystal
was isolated in the center of a 150 × 150 μm2 region where the initial gold thin film was etched by Focused Ion Beam. To
be sure to find the region, the fluorescence signal of the gold was recorded thanks to a specific energy dispersive detector.
To collect this fluorescence it is necessary to bring the energy above the L3 gold absorption edge which is excited for an
energy up to 11.91 keV. The fluorescence map was very convenient to locate the region of interest.

The beam size on the sample is reduced using slits or Beryllium Lens which focus the X-ray beam on the sample. Thus
only few grains are illuminated and thanks to the distribution of grain orientation, the grains do not diffract in the same
direction. Then, it is easy to collect the scattered intensity from a single grain. The intensity measurements are achieved
with a direct illuminated CCD camera from Andor with 1024 × 1024 pixels of 13 × 13 μm2. The detector is positioned on a
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(a) (b)

Fig. 1. 3D measurement of the Bragg peak: (a) schematic drawing of the experimental setup, (b) example of CXD pattern recorded under thermal loading.

Fig. 1. Mesure tridimensionnelle du pic de Bragg : (a) schéma du dispositif expérimental, (b) exemple de figure de diffraction cohérente enregistrée lors
d’un chargement thermique.

2θ arm at around 1.2 meter from the sample to obtain a good angular resolution. A flight tube was used to limit absorption
by air. The experimental noise was reduced by cooling down the CCD and by working in a single photon mode thanks
to droplet algorithm [15]. This algorithm reduced the spreading of photon on the pixels and it is reasonable to neglect
convolution pixel effect. The resolution δq in these working conditions reached in the plane of the CCD camera:

δq = 1

λ

Spixel

L
= 1.1 × 10−4 nm−1

where λ is the X-ray wavelength, Spixel the pixel size of the camera and L the distance between the sample and the camera.
A rocking scan is performed to obtain the 3D measurement of the Bragg peak (Fig. 1). Once the coherent diffraction pat-

tern from a single grain inside the isolated polycrystal was recorded, a thermal cycle was performed. 〈111〉 Bragg reflection
in a coplanar symmetric geometry was recorded. Each 2D slice of the reciprocal space corresponds to 200 measurements of
2 s. Typically the 3D acquisition yields a total count of 108 photons on the CCD with a maximum of around 7000 photons
on one pixel. A uniform strain simply shifts the Bragg peak. On the other hand a distortion of the diffraction pattern is re-
lated to inhomogenous strains. In brief, the average strain in the grain is related to the global shift of the diffraction pattern
whereas the distortion of the pattern is related to the strain variation within the grain.

Within the framework of the kinematic theory of diffraction,1 the 3D intensity produced by a coherent beam diffracted
by a small crystal is expressed as the sum of the complex amplitude scattered by each atom:

I(q) ∝
∣∣∣∣
∑

n

fn(q)exp ıq.Xn

∣∣∣∣
2

(1)

with Xn being the atomic position of atom n and fn its scattering factor (constant for a pure metal like gold). The displace-
ment field u(X) can be easily introduced and Eq. (1) can be rewritten using a Fourier transform:

I(q) ∝ ∣∣T F
{
ρ(X).exp

(
ıG.u(X)

)}∣∣2
(2)

The diffracted intensity I(q) can therefore be evaluated using the displacement field computed by large scale finite element
analysis of a polycrystal sample.

3. Continuum crystal plasticity framework

3.1. Constitutive equations

Continuum crystal plasticity is a special class of anisotropic elastoviscoplastic behaviour of materials. It relies on the
precise knowledge of the kinematics of plastic slip according to crystallographic slip systems and of the driving force for
activation of plastic slip, namely the corresponding resolved shear stress. When the number of dislocations inside the
material volume element is high enough, a continuum description of plastic deformation and hardening can be formulated
as settled in [16–18] and [19]. It is based on the multiplicative decomposition of the deformation gradient, ˜F, into an elastic
part, ˜E, and a plastic part, ˜P:

˜F(X) = ˜1 + ∂u

∂X
, ˜F(X) = ˜E(X).˜P(X) (3)

1 This assumption is valid because of the small reflected intensity compared to incident beam (large rocking curve (� 0.3◦)).
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Fig. 2. Multiplicative decomposition of the deformation gradient into elastic and plastic parts.

Fig. 2. Décomposition multiplicative du gradient de la transformation en parties élastique et plastique.

The initial coordinates of the material point in the reference configuration are denoted by X. The current position of the
material point in the current configuration is x. The displacement vector is u = x − X. The multiplicative decomposition
(3) is associated with the definition of an intermediate configuration for which elastic strain is unloaded, see Fig. 2. The
intermediate released configuration is uniquely determined up to a rigid body rotation which is chosen such that the lattice
orientation in the intermediate configuration is the same as the initial one. Mandel calls it the isoclinic intermediate config-
uration. As a result, lattice rotation and distorsion during elastoplastic deformation are contained in the elastic deformation
part ˜E, as examined at the end of this section.

In the case of elastoplastic deformation, the mass density of stress power takes the form:

Je ˜σ : ˜Ḟ.˜F
−1 = ˜�

e : ˜Ė
e + ˜M : ˜Ṗ.˜P

−1 (4)

where Je = det ˜E is the volume change from the intermediate to the current configuration, ˜�
e is the second Piola–Kirchhoff

stress tensor with respect to the isoclinic intermediate configuration, ˜E
e is the Green–Lagrange elastic strain measure and

˜M is the Mandel stress tensor defined as:

˜�
e = Je ˜E

−1.˜σ .˜E
−T , ˜E

e = 1

2

(
˜E.˜E

T − ˜1
)
, ˜M = Je ˜E

T .˜σ .˜E
−T (5)

Plastic deformation is the result of slip processes according to N slip systems characterised by the slip direction, ms , and
the normal to the slip plane, ns , in the intermediate configuration:

˜Ṗ.˜P
−1 =

N∑
s=1

γ̇ sms ⊗ ns (6)

Constitutive equations for elastoviscoplastic materials are based on the definition of two potential functions, namely the free
energy density function and the dissipation potential. The specific energy density, Ψ (˜E

e, T ,α), is a function of elastic strain,
temperature and internal variables accounting for hardening properties. The corresponding state laws give the hyperelasticity
relation and the entropy density, η:

˜�
e = ρi

∂Ψ

∂ ˜E
e

= ≈C : ˜E
e, η = −∂Ψ

∂T
(7)

where a quadratic potential for elasticity has been proposed, thus introducing the fourth rank tensor of elasticity moduli, ≈C.
Such an assumption is realistic for metals since elastic strain usually remains small, as discussed in the next subsection.
The mass density of the material point with respect to the intermediate configuration is denoted by ρi . The dissipation rate
associated with slip processes takes the form, in the isothermal case,

˜M : ˜Ṗ.˜P
−1 + Xα̇ =

N∑
s=1

τ sγ̇ s + Xα̇ � 0 (8)

where X = −ρi∂Ψ/∂α are the thermodynamic forces associated with the internal variables α. The resolved shear stress
τ s = ms. ˜M.ns on slip system s is the driving force for activation of slip. The first term in the previous inequality is the
plastic power whereas the second term accounts for energy storage associated with hardening. Positivity of dissipation
rate is ensured if there exists a convex dissipation potential Ω( ˜M, X) from which the plastic flow and hardening rules are
derived:

˜Ṗ.˜P
−1 = ∂Ω

∂ ˜M
, α̇ = ∂Ω

∂ X
(9)
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The full continuum thermodynamics framework for the formulation of non-linear constitutive equations for crystalline solids
can be found in [20]. Specific hardening laws including evolution equations for dislocation densities can be found for ex-
ample in [21]. In the present contribution, examples will be given in the case of perfect placticity, i.e. without hardening so
that we will not consider α variables. The flow rule (9) used in the present work is specified for single crystals for which
the dissipation potential can be regarded as a function of the N resolved shear stresses τ s:

γ̇ s = ∂Ω

∂τ s
=

〈 |τ s| − τc

K

〉n

sign
(
τ s), Ω

(
τ s) =

N∑
s=1

K

n + 1

〈 |τ s| − τc

K

〉n+1

(10)

where τc is the critical resolved shear stress for the considered family of slip systems, for example the 12 octahedral slip
systems in fcc crystals. The brackets 〈x〉 denote the positive part of x. As a result, no plastic slip occurs as long as

∣∣τ s
∣∣ < τ s

c (11)

in accordance with Schmid’s law for single crystals. Viscosity parameters are K and n in (10). They can be chosen such that
plastic processes are almost rate-independent in a given range of applied strain rates.

3.2. Prediction of coherent diffraction patterns

The previous continuum mechanical approach makes it possible to distinguish between the transformation of material
and lattice directions. Material lines are made of material points that are subjected to the motion u(X). The tangent to a
material line at X is a material direction d in the reference configuration that transforms into the material direction d′ in
the current configuration by means of the deformation gradient:

d′(X) = ˜F(X).d(X) (12)

In contrast, lattice directions are not material insofar as they are not necessarily made of the same material points
(atoms) in the initial and current configurations due to the passing of dislocations, but keep the same crystallographic
meaning. According to the concept of isoclinic configuration, lattice directions are unchanged from the initial to the in-
termediate configuration of Fig. 2. Glide of dislocations through, and thus leaving, the material volume element does not
distort nor rotate the lattice, although material lines are sheared. According to the continuum theory of dislocations, sta-
tistically stored dislocations accumulating in the material volume element affect material hardening but do not change
the element shape. Accordingly, an initial lattice direction d� is transformed into d�′ by means of the elastic deforma-
tion:

d�′(X) = ˜E(X).d�(X) (13)

The previous transport rules have the following consequences for the prediction of diffraction patterns based on the contin-
uum elastoplasticity theory:

– No plastic deformation. In the absence of plastic deformation, we have ˜P = ˜1 and the deformation gradient coincides
with the elastic deformation, ˜F = ˜E. In that case, the intensity of diffracted beam is given by formula (2) where u is the
material displacement field from which the deformation gradient ˜F derives.

– Homogeneous elastoplastic deformation. In that case, the displacement field u(X) is not the relevant quantity any more
to compute the diffracted intensity. According to (13), only the elastic deformation affects lattice directions. For a
homogeneous transformation, meaning that ˜F, ˜E and ˜P do not depend on X, an elastic displacement field can be defined
as

ue(X) = (˜E − ˜1).(X − X0) (14)

up to an arbitrary translation embodied by the choice of the origin X0, which does not affect the diffraction pattern.
The diffraction intensity can then be computed as

I(q) ∝ ∣∣T F
{
ρ(X).exp

(
ıG.ue(X)

)}∣∣2
(15)

– Non-homogeneous elastoplastic deformation. In that case, the elastic deformation field ˜E(X) is generally not a compatible
field, meaning that there exists no vector field ue(X) of which ˜E(X) is the gradient. Different approximations can be
proposed to estimate the diffraction pattern resulting from non-homogeneous elastoplastic deformation. We can start
from a Taylor expansion for a given material point X0, for instance, the center of a grain as done in Section 5:

ue
approx(X) = (

˜E(X0) − ˜1
)
.(X − X0) + 1

2

∂ ˜E
∂X

(X0) : (X − X0) ⊗ (X − X0) + · · · (16)
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A truncated Taylor expansion can be inserted in Eq. (15). It requires the evaluation of elastic deformation field and its
higher order gradients. We propose here an alternative estimation obtained by replacing ˜E(X0) by ˜E(X) in the first term
of the previous Taylor expansion:

ue
approx(X) = (

˜E(X) − ˜1
)
.(X − X0) (17)

Such a heuristic approximation has proved to be an efficient estimate in a different context of multiscale asymptotic
expansion in [22]. It requires the post-processing of the elastic deformation field, which is readily available from the
results of Finite Element analyses. The formula (17) will be used in Section 5 in order to evidence the deviation of the
obtained diffraction patterns from the one computed from the total displacement field u(X).

The exploitation of diffraction patterns is confined to limited strain levels so that a real correlation can be found be-
tween the initial and final patterns. The kinematics of elastoplastic deformation recalled in Section 3.1 can be expanded
in the case of small strains and small rotations, based on the polar decompositions of total, elastic and plastic deforma-
tion:

˜E = ˜R
e. ˜U

e � (
˜1 + ˜ω

e).(˜1 + ˜ε
e) � ˜1 + ˜ε

e + ˜ω
e (18)

˜P = ˜R
p. ˜U

p � (
˜1 + ˜ω

p)
.
(
˜1 + ˜ε

p) � ˜1 + ˜ε
p + ˜ω

p (19)

where ˜R
e , ˜R

p and ˜U
e , ˜U

p are rotations and symmetric stretch tensors, respectively. Accordingly, ˜ε
e , ˜ω

e (resp. ˜ε
p , ˜ω

p) rep-
resent small elastic (resp. plastic) strain and rotation. The elastic rotation accounts for lattice rotation, as follows from the
proposed kinematics of plastic slip. Similarly, the following holds for the total deformation:

˜F = ˜R. ˜U = (˜1 + ˜ω).(˜1 + ˜ε) � ˜1 + ˜ε + ˜ω (20)

so that

˜ε = ˜ε
e + ˜ε

p, ˜ω = ˜ω
e + ˜ω

p (21)

where all strain tensors are symmetric whereas all ω tensors are skew-symmetric. As a result, in the context of small strains
and rotations, the formula (17) can be replaced by:

ue
approx(X) = (

˜ε
e(X) + ˜ω

e(X)
)
.(X − X0) (22)

4. Grain shape and strain heterogeneity effect on coherent diffraction patterns

In this part elastic computations have been carried out using the FE software package Z-Set/ZeBuLoN2 using a synthetic
polycrystalline microstructure created from a 2D Voronoi tessellation. The 2D grain morphology was extended in the third
direction to produce a 3D model with a size of 500 × 500 × 50 μm3 (cf. Fig. 3). This simplified procedure can well represent
the real microstructure of columnar grains in thin films and has been recently used to simulate the strain heterogeneities
within copper thin films [12]. Grain orientations have been set according to a fibre texture (〈111〉 axis normal to the film
surface) with random in-plane orientation. A single grain received a 〈100〉 orientation to study the effect of neighboring
grains with different orientations. The diffraction pattern is computed for two different grains (numbers #06 and #39)
respectively oriented 〈111〉 and 〈100〉 (see Fig. 3). Those grains are located close to the center to avoid any boundary effect.

More precisely, having carried out the mechanical calculation, the 3D diffraction pattern is computed from the displace-
ment field with a fast Fourier transform using Eq. (2). This involves a complex 3D FFT of the field u(X) which needs to be
transferred on a regular grid. To avoid any possible affect due to the field transfer, the regular mesh is finer than all the
meshes used in this work (see Section 4.1).

The present FE computations use a linear elastic behaviour with cubic anisotropy to represent the gold crystal. The
following elastic constants Cij have been used [23]: C11 = 192 340 MPa, C12 = 163 140 MPa and C44 = 41 950 MPa. For fcc
crystals, the Bragg vector is Ghkl = 2π

a [h,k, l] with a the atomic spacing taken to be a = 0.4078 nm. The effect of temperature
on these parameters is neglected.

4.1. Influence of mesh density

It is well known that convergence of stress and strain fields predicted by FE is reached only if sufficiently small element
size is used. To study the effect of mesh refinement on the shape of predicted CXD patterns, several meshes of the same
microstructure (m5, m3, m2, m1 from coarser to finer) have been created (see Table 1). The same regular grid of 100× 100×
10 elements is used to transfer the displacement field. The evolution of the 〈111〉 Bragg peak simulated for grain #39 with
an average strain of 1% can be seen in Fig. 4. Subtle modifications appear as the mesh is refined more and more but those
tend to rapidly decrease. Results using mesh m2 are considered to be satisfactory.

2 http://www.nwnumerics.com.



Author's personal copy

H. Proudhon et al. / C. R. Physique 11 (2010) 293–303 299

Fig. 3. Synthetic polycrystalline microstructure used to evaluate grain shape and strain heterogeneity effect on coherent diffraction patterns; two grains are
highlighted and the corresponding diffraction patterns before any deformation is applied are shown (the pattern is here a signature of the grain shape
since the crystals are undeformed).

Fig. 3. Microstructure polycristalline synthétique utilisée pour évaluer l’effet de forme de grain et d’hétérogénéité de déformation sur les figures de diffrac-
tion cohérente ; deux grains sont soulignés et les figures de diffraction correspondantes avant déformation sont illustrées.

Table 1
Details of the mesh refinement.

Tableau 1
Finesse des maillages par éléments finis utilisés.

Mesh m5 m3 m2 m1

Total number of elements 1172 5940 27 430 224 410
Elements in grain 06 32 93 460 3860
Elements in grain 39 12 45 160 1340

4.2. Effect of the strain level

The sample is loaded under tension applying a lateral displacement corresponding to a global axial strain of 1%. Calcula-
tion results are presented together with the evolution of the diffraction patterns in both grains in Fig. 5.

During straining, the Bragg peaks undergo at the same time a shift in the reciprocal space and a change of shape. The
shift can be related to the average gradient of the displacement field within the grain (a constant value of displacement
corresponding to a translation would not affect it) and shape distortions are directly related to the deformation field het-
erogeneities. One can note that the strain effect is more pronounced for the grain oriented 〈100〉 than for the grain oriented
〈111〉 (one can see a series of fringes disappear). This is a signature of the stronger strain heterogeneities in this grain due
to the higher crystalline misorientation with the neighboring grains. In addition, the shape evolution of the CXD pattern
seems to be in qualitative agreement with experimental measurements as seen for instance in [10].
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Fig. 4. CXD pattern computed for reflection 〈111〉 of grain #39 with an average elastic strain of 1%; the diffraction pattern changes slightly when the mesh
is refined (the picture uses a normalised log scale, contours highlight levels 0.3, 0.5, 0.7, 0.9).

Fig. 4. Figures de diffraction cohérente calculées pour la réflexion des plans 〈111〉 du grain #39 avec une déformation élastique moyenne de 1% ; la figure
de diffraction change légèrement lorsque le maillage est raffiné (une échelle log normalisée est utilisée pour la figure, les isovaleurs indiquent les niveaux
0,3, 0,5, 0,7, 0,9).

Fig. 5. (a) Field of axial strain component ε11 in the deformed polycrystal, both studied grain are highlighted, (b) evolution of the Bragg peak 〈111〉 during
the mechanical loading (normalised log scale, contours highlight levels 0.3, 0.5, 0.7, 0.9).

Fig. 5. (a) Champ de déformation axiale ε11 dans le polycristal déformé, (b) evolution du pic de Bragg 〈111〉 pendant la déformation mécanique (une échelle
log normalisée est utilisée pour la figure, les isovaleurs indiquent les niveaux 0,3, 0,5, 0,7, 0,9).
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Fig. 6. Polycrystalline sample with square grains using random grain orientations (〈111〉 pole figure is shown) used for elastoplastic computations.

Fig. 6. Echantillon polycristallin à grains carrés avec des orientations aléatoires (la figure de pôles 〈111〉 est indiquée) utilisé pour les calculs en élastoplas-
ticité.

Fig. 7. Results of elastoplastic computations viewed from the top surface of the sample after applying 0.2% uniaxial tension; (a) von Mises equivalent stress,
(b) plastic strain cumulated on all slip systems, (c) closeup on grain #64 (scale bar has been adjusted).

Fig. 7. Résultats des calculs en élastoplasticité à la surface de l’échantillon après 0,2% de traction moyenne : (a) contrainte équivalente de von Mises,
(b) déformation plastique cumulée sur tous les systèmes de glissement, (c) détail du grain #64.
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Fig. 8. Comparison of normalised CXD pattern predicted (corresponding to qz = 0) in a polycrystalline sample mechanically loaded under 0.2% of axial strain
using either the approximated field ue

approx(X) or the full displacement field u(X); contour values are [0.3, 0.5, 0.7, 0.9].

Fig. 8. Comparaison entre les figures de diffraction cohérentes calculées (correspondant à qz = 0) dans un échantillon polycristallin chargé à 0,2% de traction
uniaxiale moyenne, obtenues en utilisant le champ de déplacement approché ue

approx(X) ou le champ de déplacement total u(X) ; l’échelle des isovaleurs
est [0,3, 0,5, 0,7, 0,9].

5. Total vs. elastic distortion effects in plastically deformed polycrystals

To evaluate the predicted CXD patterns when plastic deformation occurred, it is proposed to use the approximate dis-
placement field defined in Eq. (22) instead of using the full displacement field. For that purpose, an ideal polycrystal has
been computed using the crystal plasticity framework described in Section 3.1. The sample of dimensions 10×10×0.2 μm3,
is composed by 100 square grains with a random orientation (see Fig. 6). The specimen is loaded under pure tension with
a level of 0.2% total axial strain, typical of what might be observed in the experiments and sufficient to develop some plas-
tic activity. The critical resolved shear stress for octahedral slip systems was taken as τc = 50 MPa and no hardening was
considered.

Elastoplastic computation results after mechanical loading are presented in Fig. 7. As expected, the mechanical straining
produces more heterogeneities than what was observed previously with thermal loading.

CXD patterns have been computed for selected grains using either the approximated field ue
approx(X) or the full displace-

ment field u(X). A comparison is made in Fig. 8. One can see that after the onset of plasticity, the diffraction patterns are
more distorted using u(X) than ue

approx(X). Indeed, at this point the displacement field is no longer representative of the
elastic stretch and rotation of the crystal lattice. In particular, the typical cross obtained from the square shape of the grains
remains visible when using ue

approx(X). From this point of view, the use of an approximate elastic field such as ue
approx(X)

proposed in the paper is needed to compare simulated CXD patterns to experimental ones.

6. Conclusion

This article presented a novel computational approach to help analyse coherent diffraction patterns. Currently a large
research effort is dedicated to develop inversion techniques to retrieve elastic strains field and grain shapes using the
patterns recorded from the illumination of a polycrystal sample (see Section 2). The present approach aims at a direct
comparison of experimental and simulated CXD patterns. It is complementary of the usual inversion technique in the sense
that it can be used to investigate the influence on diffraction patterns of parameters such as the grain shape, orientation,
global texture, strain level, etc. As long as the sample deforms elastically, the full displacement field is used to simulate
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CXD patterns but when plasticity starts to be activated, this is no longer true. We proposed to use an approximate elastic
displacement field capturing the elastic rotation and stretch as opposed to the full displacement field. It was supposed here
that each material volume element contains enough dislocations so that continuum mechanics can be applied.

Currently, coherent diffraction patterns have been obtained experimentally mainly for elastic cases. In the future, exper-
iments will be carried out in the elastoplastic regime. The present work compared two ways of predicting such patterns,
based either on the full strain field or only on the elastic deformation, the latter being probably more physically sound. This
kind of approach may therefore be needed to interpret experimental diffraction patterns when the specimen experiences
plastic strain. In the case of very low plastic activity, this simulation framework should be replaced by a discrete dislocation
model which could supply the elastic displacement field around dislocations within the selected grain.
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