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Abstract

Simple and complex loadings were performed on a IF-Ti steel in order to test different
hardening laws. The different loading paths included uniaxial tension, plane strain, cyclic
shear plane and plane strain tests followed by uniaxial tensile tests. Our aim was to determine
the hardening law from these tests. For this purpose a polycrystalline self-consistent model
was introduced. In this model an explicit concentration law and an intragranular behaviour
based on the evolutions of physical parameters were proposed. Local objective frames were
introduced to extend constitutive equations developed at small strains, to the finite strain frame-
work. The identification of the physical parameters was performed thanks to an inverse
method and led to values in good agreement with literature. For the different tests, macro-
scopic stresses and texture evolutions were computed and compared to experimental results.
Initial and prestrain yield stresses surfaces were calculated. These different simulations pointed
out for complex loading paths the necessity of an accurate description of the microplasticity
mechanisms,in terms of slip systems, hardening matrix and evolution of dislocations densities
on each slip system. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, particular attention has been paid to the anisotropic work-hardening
of polycrystalline metals submitted to changes of loading path at large strains. Most of
the previous studies were devoted to the modelling of a cold forming process and to the
understanding of the underlying physical mechanisms (e.g. microstructure evolution
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and texture evolution). In order to investigate the evolution of the anisotropic
behavior of materials during complex loading modes, involved in cold forming
operation, combinations of sequences of more simple loadings paths such as tension,
plane tension, rolling and simple shear were often considered (Ghosh and Backofen,
1973; Korbel and Martin, 1988; Rauch and G’sell, 1989). Such investigations were
performed to differentiate the effects of microstructural hardening and textural
hardening. On one hand, many authors assumed that plastic behavior of material
mainly depends on the microstructural evolution, the texture evolution during pre-
strain being negligible. For most of the proposed models, the microstructural evolu-
tion, was reduced to a single parameter (total dislocation density). This description
commonly accepted for monotonous deformation, was not sufficient to describe the
transient stage associated with the reorganisation of dislocation microstructures.
According to experimental evidence, different models, taking into account polarity
of persistent dislocation structures at a macroscopic scale (Hiwatashi et al., 1998;
Hu et al., 1992) or microscopic scale (Rauch and Thuillier, 1993), were elaborated in
order to predict a softening after a change of loading path.

On the other hand, the modelling of the mechanical behavior of metal polycrystals
with a micromechanical approach received a particular attention in the last 10 years
(Berveiller and Zaoui, 1998). The main difficulty raised from this type of approach is
the choice of the pertinent scale and of the critical mechanisms. In the specific case
of metallic polycrystalline models, the description of the hardening law or (and) of
the texture were generally simplified in order to reduce the time of computations.

The aim of the present paper is to test different hardening laws, in order to determine
their ability to describe homogeneous macroscopic behavior of the material under
various monotonous and sequential loading conditions. A micro-mechanical approach
is proposed in Section 2, based on the description of the single crystal kinematics, and
an explicit concentration law is adopted, allowing the overcoming of the difficulties of
self-consistent modelling in elastoviscoplasticity under complex loading path. More-
over, an intragranular behavior depending on the evolutions of physical parameters
like dislocation densities on each slip system is introduced. Section 3 is devoted to the
modelling of microstructure and texture evolutions during monotonic deformation and
strain path changes. It will be emphasized that particular attention should be paid to
the value of physical parameters such as latent hardening, dislocation density.

2. Plasticity of BCC metals

2.1. Polycrystalline approach at small strains

. —>
In the following, Y, Y, Y and Y correspond to a scalar, a vector, a second-rank
and a four-rank tensor, respectively.

2.1.1. Self-consistent scheme
The self-consistent approach is an efficient tool to derive the global mechanical
behavior of aggregates from the mechanical behavior of the phases. In the case of



T. Hoc, S. Forest | International Journal of Plasticity 17 (2001) 65-85 67

metal polycrystals, the phases (g) are built up with families of grains. The orienta-
tion of which lies between (g) and (g4 dg) and the volume fraction is (f). In this
approach, each family of grains is considered as an inclusion embedded in an infinite
matrix (homogeneous equivalent medium) submitted to homogeneous boundary condi-
tions. The self-consistent scheme allows the determination of the average homogeneous
stress and the strain fields g% and &2 in each phases (g), these fields representing the
average interaction between the phase (grain) and the homogeneous equivalent medium.
This self-consistent approach does not take into account the position of each grain in the
aggregate, the exact shape, the local effect of grain boundaries and of the grain size.
In the case of isotropic elasticity, we have:

v
B =) fie?: 5= fot =2u{ [+ 1011 (E-F) M
geG geG

where u is Coulomb’s modulus and v the Poisson ratio. The macroscopic plastic
strain E” is the average of the local plastic strain g% of all grains g and the macro-
scopic stress % can be deduced from Hooke’s law. It is worth noting that this for-
mulation is developed at small strains.

A rigorous treatment of this problem was proposed by Hill (1965), for time inde-
pendent plasticity but led to a complex implicit integral differential equation. In the
case of isotropic elastoplasticity and radial monotonous loading, Berveiller and Zaoui
(1979) developed for a spherical inclusion, an explicit concentration rule given by:

3
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modation factor. This factor, close to 1, at the beginning of the deformation, allows
to reduce intergranular stresses for further deformation. This formulation is similar
to Kroner’s formulation (Kroner, 1961) with o = 1.

The concentration rule proposed by Berveiller and Zaoui is suitable for mono-
tonous loading but does not allow the forecasting of mechanical behavior after
changes of loading path in anisotropic polycrystals. In this work, we choose the
concentration rule proposed by P. Pilvin (1994) suitable for complex cyclic loading
simulations within the framework elastoviscoplasticity.

This concentration rule is a priori given under an explicit form by:

2

In this formulation, 8 is close to e| = /5¢:e and «a is the plastic accom-

o =4u(B- ) with =Y p G)

geG

In this formulation, ¢ is a local non linear kinematic variable bound to phase (g),
which describes interaction between grains and matrix. Its effect is to reduce internal
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stresses and to give a suitable description of cyclic test in elastoviscoplastic frame-
work. B¢ evolution is given by:

B = gre — D(ﬁg _ 5§pg)

épg

4)

where D and § are two tuning parameters whose validity will be discussed in Section 3.4.

2.1.2. Viscoplastic flow rule
The condition of activation of a slip system (s) of phase (g) is given by Schmid’s law:

%] > 1 (5)

where 7)¢ is the critical shear stress, which depends on the structural variables and
temperature, while °¢ is the resolved shear stress on slip system (s) given by:

o= gt (@ ) ©

where 7% and 77%¢ are respectively the slip direction and normal of system (s). The
flow rule is related to the thermal dependence of the dislocation motion which is
described by the theory of thermally activated dislocation glide (Teodosiu and
Sidoroff, 1976). However, the relation between the applied resolved shear stress 7*%
and the shear strain rate p* can be approximated, for viscoplastic glide, by the
power law (Cailletaud, 1991):

s (1T =¥ ! s : N s
Ve =y, — sgn(t*) if |T°% > ¥
0

% =0 otherwise (7)

where y, is a reference strain rate, exponent # is close to 10 at room temperature for
metallic materials and , is the friction stress which depends on temperature.

2.1.3. Hardening laws

Hardening characteristics of the material depend on the microplasticity mechanisms
such as the interactions between the different slip systems (activated and latent slip
systems).

Hardening is ruled by the stacking fault energy of the metal, the density of disloca-
tions, the mean free path of the activated dislocations. In a given grain, the hardening
and its critical resolved stress evolution with increasing deformation is generally
introduced into the expression of the critical shear stress by:

8 =Y || ®

u
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where the component /“") of the hardening matrix corresponds to the nature of
interactions between the density of dislocations (s) and the dislocation (1) which
have produced a crystallographical shear amplitude rate b'/”g | The identification of
the hardening matrix, assumed homogeneous in a grain, is essential in the case of
sequential tests, where latent slip systems during the first loading become activated
slip systems during the second path.

The form of the hardening matrix chosen in this paper is similar to the one sug-
gested by Franciosi (1984, 1985) for B.C.C. single crystals and small strains. In this
model, the terms /™ increase with the strain amplitude and present a sharp variation at
the beginning of the deformation, then tends to a constant. A monotonic dependence
on internal variables, such as average density of dislocations is assumed. Our aim is
to determine the intragranular hardening matrix of the polycrystal from different
experimental stress—strain curves obtained during monotonous and sequential load-
ings. In the following identification, the hardening matrix corresponds to the case of a
single crystal embedded in a matrix and is deduced from different physicals laws given
below. The evolution of the total dislocation density, based on Orowan’s relation and
annihilation process of dislocation dipoles (Essman and Hughrabi, 1979), is given by
the evolution law:

1/1
= (= 0o ©)

where b is the magnitude of the Burgers vector, G, a parameter proportional to the
characteristic length associated with the annihilation process of dislocation dipoles,
and L*¢ the mean free path of system (s) which can be expressed by:

L = K(Zﬁ“) 2 (10)

u#s

where p" is total dislocation density on latent systems (u). In this formulation, K is a
material parameter and only the dislocation—dislocation interactions (forest inter-
action) are taken into account.

The critical shear stress on system (s) can be related to the dislocation densities
evolution by the relation:

o=

T8 =1, 4 ub (Za‘”’p“) (11)

where ¢ characterizes the interactions between two densities of dislocations (s) and
(u) and is constant.
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By differentiation of Eq. (11) with respect to time, the phenomenological law (8) is
obtained and the hardening matrix is now given by:

l—

— 1

, , , 1 ’

B — %asu (Zaﬂp/) % <Zpl> _chu (12)
/ I#u

The hardening matrix explicitly depends on the current values of the dislocation

densities and in this work, such formulation characterizes the interaction disloca-
tion—dislocation.

2.2. Kinematics of polycrystal at finite deformations

The previous constitutive framework for polycrystalline plasticity must be exten-
ded to large deformations. For this purpose, we have chosen to use the so-called local
objective space frames (Ladeveze, 1980). An example of such a local objective space
frame is the corotational frame associated with the skew-symmetric part of velocity
gradient L. This method can also be applied to polycrystals (Forest, 1996). As a
matter of fact, a local objective frame like the corotational one enables us to get rid of
rotations that do not intervene in the material response. Such a frame does not contain
any physical information, so that an additional treatment of lattice rotations is
necessary.

The description of polycrystal plasticity using the corotational frame proposed by
Forest (1996) is based on a scheme presenting two levels, a macroscopic one, corre-
sponding to the polycrystal and a more microscopic one corresponding to the grains.

Let C°, C and C¢ be respectively the initial space frame, the current space frame and
the corotational space frame, defined at the macroscopic level. For polycrystals, the
microscopic level is composed of n lattice space frames cf, cg, .-+, ¢, corresponding
to the n phases (grains). According to Forest and Pilvin (1999), the hereabove scheme
gives, for single crystal and small elastic strains, the same numerical result as the
classical decomposition of deformation in Mandel’s theory (1982). The configura-
tions C“ and C, cfé and C° (see Fig. 1) are related by rotations Q¢ and Q? respectively.

The corotational frame is defined by "Q

‘Qo"=w=} L { and Q) =1 13)
where the inverted brackets denote the skew-symmetric part of the expression and L

the velocity gradient. The decomposition into elastic and viscoplastic strain rates in
the corotational space frame is additive:

‘D="QM{LYQ="E'+ E (14)

where the brackets denote the symmetric part of the expression.
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MACROSCOPIC
LEVEL
GRAIN
LEVEL
Fig. 1. Configurations representation.
Elasticity is described according to a linear relation:
S=CFE with §= (detE) Q7L (15)

where 2 is the Cauchy stress tensor.

The use of a corotational frame for the expression of the constitutive equations
leads to a hypoelastic formulation for the reversible part of the deformation. The
drawbacks of the hypoelastic framework are well-known: the final stress state after a
closed strain path may differ from the initial one even for a purely hypoelastic solid and
the treatment of an anisothermal material responses may lead to difficulties. As a result,
an explicit potential like the free energy cannot be given. However, the advantages are
the numerical efficiency of this type of model and the simplicity of the extension of
classical constitutive equations to a large deformation framework. According to Rou-
gee (1997), the approach involving local objective frames represents a compromise
between the weaknesses of hypoelasticity and the arbitrary choice of specific strain
measures. An alternative framework for polycrystal plasticity can be found in
Mandel (1982). The macroscopic viscoplastic strain rate is given by:

cEp — Z'fz;épg (16)
geG

The local viscoplastic deformation “¢”# proceeds through collective glide of disloca-
tions on activated slip systems:

L’épg — ZJ-/S{('%)A},’ ®L‘ 73;{} (17)
S
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where “77%¢,¢ 7% are the slip direction and the normal to the slip plane of phase (g)
respectively, defined in the space frame C°.

The corotational space frame is such as the instantaneous rotation rate in this
frame vanishes:

‘W=0 (18)

Taylor-like relations for rotations are assumed:

‘of =W =0 (19)
this allows us to determine the lattice rotation rate:

€ — _ccypg with c@pg — Z)}S{cﬁ)s‘g ®° 7Sg} (20)

The rotation between #C¢ and °C is then given by:

#Qg #QgT =% and #Qg(lo) =] (21)

The resolved shear stress on slip system (s) in phase (g) is given by:
T8 =58 (CME Q) (22)
and localisation rule is written in the corotational frame:

sf=8+2u(l - B) (B - @g) with B = fp* 23)

geG

where the intergranular accommodation variables are given in Eq. (4). It is worth
noting that variables B and ¢ are defined with respect to the corotational frame and
thus are invariant with respect to changes of observers.

2.3. Identification procedure

The set of parameters A (material and concentration rule parameters) of the con-
stitutive equations is determined using a classical identification procedure through
an automatic software SiDoLo (Pilvin, 1988). This procedure consists on a quanti-
tative comparison L(A4) between experimental macroscopic tests Z®P, previously
performed on the material, and simulation tests Z*™, using the polycrystalline model
B. The role of concentration rule parameters D and § is to fulfill self-consistency
conditions (SCC). These conditions require the comparison of two results:
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e resolution of a boundary value problem corresponding to the self-consistent
scheme described in Section 2.1.1.

e direct prediction of the polycrystalline model 8 for the same loading paths
(Forest, 1996; Forest and Pilvin, 1995).

The best solution for resolution of the boundary value problem is given by a finite
element code where the local stress (gRFF) and strain (¢REF) are computed in each
phase. The SCC were given by:

oREF 6P =0 and REF—¢f =0 (24)

where g? (resp. £#) correspond to the stress (resp. strain) in each phase predicted by
the polycrystalline model 8. The optimization problem is then solved by using a cost
function L,(A4) defined by:

Ly(A) = L(A) + g — g(4)| +

E“—fmﬂ (25)

The hereabove identification with EF technique costs, for the studied aggregate,
large computation time on a SILICON origin 2000 computer. In order to reduce the
computation time, finite element computation are replaced by Berveiller—Zaoui
polycrystalline model computation using the concentration rule (2). Local stresses
(local strains) computations with polycrystalline 8 model and polycrystalline
Berveiller—Zaoui model are performed for monotonous loading (uniaxial test) by
using isotropic orientation distribution function made of 240 equivalent orienta-
tions. The different steps of the procedures are summarized in Fig. 2.

At room temperature, steel viscosity is weak and the elastoviscoplastic framework
of the polycrystalline model g is assumed close to the elastoplastic framework of the

TEST 1 TESTN
P> z Experience
Simulation
€ L] [ L ]

Parameters Time Parameters
step i step i+1
D3, D3,

K,n,..p0 ORIENTATION 1 ORIENTATION 10 K.,n,..p0

C,€ €

Simulation B standard triangle % Simulation B

SimulationB-Z o Simulation B-Z

Time /@ 0 0 1@ Time

Fig. 2. Identification procedure.
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polycrystalline model Berveiller—Zaoui. Nevertheless, in order to check the validity
of this hypothesis, the local stress and strain fields computations obtained by the
polycrystalline Berveiller—Zaoui model are compared to finite element results, for
two specific orientations of the inclusion (phase a: (001)//¢. and phase b: (111)//7¢.).
Finite element computation are performed with Abaqus code, using 8 nodes quad-
ratic axisymetric elements. The two inclusions are embedded in “‘infinite” HEM
matrix with homogeneous strain prescribed at the boundary (Fig. 3¢). In each case,
the matrix is defined by the polycrystalline model with Berveiller—Zaoui transition
rule. The ratio between the inclusion and matrix dimension is taken equal to 5.

The local stress-elongation curves are plotted on Fig. 3a and b. A good agreement is
obtained between the two computations, pointing out large intergranular hetero-
geneities of the aggregate. Intragranular heterogeneities are also observed in inclusion
of Fig. 3c but they are weak and then consistent with the homogeneous stress field
predicted by the Berveiller—Zaoui polycrystalline model.

3. Results
3.1. Experimental material and procedure

The material used in this study is an interstitial free steel, with an average grain
size of 20 pm, cold rolled then annealed. It is thinned down to a final thickness of 0.9
mm. To characterize the amplitude of the strain path changes, we use a scalar
parameter 6 introduced by Schmitt et al. (1994):

o= LB 26)

In this formula, £, and E, represent the prestrain and strain rate tensors respec-
tively, ‘El) =/ E; : E; and the symbol (:) corresponds to the double-contracted

tensor product. According to (26) a monotonic test corresponds to 1, a Bauschinger
test to —1 and a deformation sequence is called orthogonal when 6 = 0. All tests
performed in this paper are given in Table 1.

Table 1

Tests performed in the present investigation

% Sequence Test Denomination Temperature
1 Monotonic Uniaxial tension UT90 Room

1 Monotonic Uniaxial tension UT90T 353K

1 Monotonic Plane tension TP Room

-1 Bauschinger Cyclic planar shear CIS Room

—0.15 Quasi orthogonal TP + uniaxial tension at 90° TP90 353 K

0.8 Quasi monotonic TP + uniaxial tension at 0° TPO 353 K
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3.1.1. Monotonic loading

For uniaxial tension tests, samples had a 8 mm gage length and 3 mm gage width.
The applied rate of the macroscopic displacement was 0.8 pm s~!,and corresponded
to a macroscopic strain rate of about 10~* s—!. Tensile tests were performed at two
temperatures, 293 and 353 K, in the transversal direction.

For plane tension test, large samples (200x 50 mm?) were used and strained in the
rolling direction. The rate of macroscopic strain rate was about 1073 s~!. Grids were
laid on the samples in order to verify plane strain conditions, i.e. |&;| < 11—081. Effec-
tive strain &; was deduced from thickness measurements by SOLLAC.

3.1.2. Strain path changes

In the present investigation, cyclic planar simple shear tests were performed
(6 = —1). In this test, the rectangular (50x3x0.9 mm?®) specimens were fixed by two
sets of grips submitted to a parallel displacement (G’sell et al., 1983). Macroscopic
shear strain rate was close to 10~* s~! and the shear direction was perpendicular to
the rolling direction.

In order to obtain a quasi orthogonal strain path, uniaxial tension samples were
cut out in the homogeneous area of plane tension samples, at 90° of prestrain direc-
tion (Fig. 4). In this sequence of loading path, 6 was close to —0.15, due to anisotropic

(a) s00 ¢ (b) s00
400 400
g 300 g 300
% 200 g 200
E 100 'é 100
- L
0 0
-100 . J 100
0 0.05 0.1 0.15 0.2
elongation

(C) Szz (MPa]  value
+220.0

4261.0
43470
+134.0
4520.0
+657.0

Fig. 3. Comparison between FE and polycrystalline model Berveiller—Zaoui. (a) Phase a: (001) oreinta-
tion for inclusion; (b) phase b: orientation for inclusion; (c) finite calculation of inclusion embedded in
polycrystal matrix. S, stress for phase b (elongation=0.2).
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PLANE TENSION
y W

, 90 °
TPO

Fig. 4. Sample preparation.

behavior (Lankford coefficient was close to two). For comparison, some samples were
cut out in the same direction of prestrain (6 ~ 0.8). In the two cases, uniaxial tension
tests were performed for an equivalent prestrain of 18%. It is worth noting that plas-
tic instability occurred during the second path for small strains. In this paper, only the
stress-strain curves before instabilities (Hoc, 1999) are reported and analyzed.

3.2. Hardening matrix

For B.C.C. polycrystals, the predominant deformation mechanism are crystal-
lographic glides on the twelve systems {110} (111) and on the twelve systems {112}
(111). The polycrystalline model computation have been performed with an orienta-
tion distribution function, taken under a discrete form corresponding to 891 orienta-
tions and, in the hereafter computation, the 24 crystallographic glides systems have
been taken into account. It is worth noting that with only the first twelve systems,
the obtained results of the simulation do not agree with experiments.

For the sake of simplicity, we first introduce in our computation a simplified
hardening matrix composed of two terms, namely the self hardening (¢*) and the
latent hardening (a” with s # /) coefficients. For monotonous deformation, a good
agreement has been obtained between the experimental results and the numerical
curves (Fig. 5a). However, for the change of strain path (plane tension-uniaxial ten-
sion), the simplified hardening matrix leads to a large discrepancy between experi-
mental and numerical results (Fig. 5b).
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To solve this problem, a 24x24 hardening matrix composed of six different terms
has been considered. The interactions between slip systems have been classified in
different types as they belong to the same system, to colinear system or to no colin-
ear system. Moreover, interaction between planes {110} have been assumed smaller
than interactions between planes {112}. Table 2 gives all interaction coefficients.

The simulations have been performed with ki =1, ky =1.15, kp = 1.05,
kp> = 1.05, and kg = 1.3. A good agreement has been obtained between numerical
results and experimental curves for plane tension-uniaxial tension and cyclic shear tests
as shown in Fig. 6b and a, respectively. It is worth noting that only isotropic hardening
is taken into account. In order to obtain bests results on elasto-plastic transition during
cyclic shear test, intragranular kinematics hardening could be introduced.

(a) (b)
500 —
.’M
g 400 | . F
=] 7 : /
2 < g
14 2 300
= 8
g 2 | N
£ @ 2007 unlodding
z Lo+
100 model 100 resload
experiment H
0 0 ) ,
0 0.05 0.1 0.15 0.2 0 40 80 120 160
Strain Time (s)
(c) 500
w7 TPO0 exp
480 TPO model
TP90 exp .., FOmoae!
TPO model !
TP90 model 460
TPO exp
440 . . .+ * TP90 model
wexx X TPO ex|
420 | ox i
400 )
140 145 150 155 160

Fig. 5. Matrix interaction with two coefficients. (a) monotonous loading; (b) sequential loading path.
Stresses at reloading do not agree. (¢c) Zoom.

Table 2

Matrix interaction coefficients

Plane {110}N{110} {110}N{112} {112}n{112}
Same ay ksoao
Colinear kiag kp1ag ksokiao

No colinear k2k1a0 /szkpla() /(S(]kzkla()
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3.3. Texture evolution

The previous identifications have been carried out on the macroscopic stress—strain
curves, but other properties more local can be predicted like the texture evolution,
which is often one of the main objectives of polycrystal modelling at large strains
(Bacroix and Hu, 1995). Poles figures {200}, {220} and {211} have been measured by
X-ray diffraction techniques before and after each test in a reference frame, linked to
rolling direction. The orientation distribution function (ODF) has been computed
using vector method (Ruer and Buro, 1977) where the texture is described as a finite
sets of weighted orientations.

The pole figures corresponding to the initial texture are given in Fig. 7a and b for
two representation modes (equal intensity levels and points). These pole figures are
characteristic of a typical steel texture (Ceccaldi et al., 1994), i.e. mostly composed
of a {111} (uvw) fibre, called a-fiber.

(@ 150 - (b)
500 TP9O
100 | .
g 400 TPO
= 50 =
i g
4 X < 300
@ 0 model 3
z ' experiment -]
F] 50 2 200
& R
-100 | 100
-150 0 >
-0.04 -0.02 0 0.02 0.04 0 20 40 60 80 100 120 140 160
Strain Time (s)
(©)
500 TP90 model
) " TP90 exp
480
460 + TPO model
440
TPO
420 P

400 £
140 142 144 146 148 150 152 154

Fig. 6. Matrix interaction with six coefficients. (a) Cyclic plane shear test; (b) sequential loading path; (c)
zoom.

Table 3
Materials parameter
reco  E(GPa) v ao K 7 (MPa)  Gc(nm) n 7o 6™ po(m7?)
20 30 5
200 0.3 0.4 20 15 1.14 64.10°

80 20 10
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' O
<N
(a) LEVEL 1 2 3 4 (Ex- (b) LEVEL1 2 3 4 (Exper- (c) LEVEL 1 2 3 4 (Ex-
perimental) imental) perimental)

(d) initial texture (model) (e) TP texture (model) (f) UT90 texture (model)

Fig. 7. Comparison between polycrystal model and experimental results. Poles figures 110.

Good agreements have been also obtained between numerical and experimental
textures corresponding to the plane tension tests and to the uniaxial tension test
along the transversal direction. In the first case, a classical reinforcement of a-fiber
has been obtained, whereas in the second case, the final texture correspond to a 30°
rotation around the normal direction of the sheets steel.

Let us note that the form of the hardening matrix has a weak influence on texture.

3.4. Discussion

3.4.1. Concentration rule parameters and remaining material parameters

The tuning parameters of the concentration rule and the materials parameters
have been identified. The values of the two concentration rule parameters D (resp. §)
are close to 700 (resp. 0.02). These parameters allow to determine the evolution of
the B variable:

B = &7 — 1700 (@g - o.ozgpg) ge 27

The aim of this variable is to introduce intergranular heterogeneities observed
during experimental tests and to simulate complex loadings. Fig. 8a shows locals
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Fig. 8. Local deformation for 4 phases. (a) Comparison between Kroner and g model; (b) comparison
between BZ and g model.

deformations of four phases (O1, O3, O5, O7) which orientations are given in Fig. 2
for Kroner and B polycrystalline model. These curves are obtained during an uni-
axial test with initial isotropic texture.

The results show a very homogeneous behavior of different phases by using Kréner
model. By contrast, 8 polycrystalline modelgives heterogeneous behavior (~20%)
which corresponds to experimental observation. Moreover 8 and Berveiller—Zaoui
models are quite similar (see Fig. 8b) for monotonous loading.
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Concerning the other parameters given in Table 3, our results point out that T
(lattice friction) and G, (parameter associated with the annihilation process of dis-
location dipoles) depend on the temperature. Their evolution with temperature fits
with E. Rauch’s results (Rauch and Thuillier, 1993) obtained for simple shear tests
on mild steel. The computed initial main free path

K

L, =
/23 p9

=16.2um

is close to grain size. It is worth noting that the present investigation, which is based
on a phenomenological model taking into account a physical description of the
plasticity mechanisms and on an anisotropic work-hardening, leads to physical
values of all material parameters (Rauch, 1993).

3.4.2. Study of yield stress

The simulation of the second loading path agrees with the experiments. Let us now
examine the physical mechanisms leading to two different “conventional” (¢, = 0.2%)
yield stresses after reloading. The “‘conventional” yield stresses o> and 030 are defined in
Fig. 9 and correspond to the monotonic and orthogonal paths respectively. Our
experimental results point out that o.° is higher than ¢°. Such results agree with
Raphanel et al. (1987). According to these authors, the yield stress after reloading is
the highest, the closest to zero is 6.

The difference between the two conventional yield stresses can be explained by the
macroscopic evolution of the anisotropy of the polycrystal during the first load or
(and) by the anisotropy of the hardening matrix. Concerning the global anisotropy,
we have computed the yield surface for the initial material and after a 18% prestrain
in plane tension. The two surfaces are given in Fig. 10. They are obtained by com-
puting different strain paths (0-360° with respect to rolling direction by step of 10°).
The equivalent plastic strain offset used to define the numerical yield stress has been

1000
TPO —
TP90 —

800 |- %
600 -
F(N)

400 -

200 -

0 1 | 1 I
0 100 200 300 400
displacement (um)

Fig. 9. Experimental test TPO and TP90.
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taken equal to 0.01%. The weak value of offset allows us to define the beginning of
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microplasticity stage.

According to our computation, the numerical yield stress in the rolling direction
0! is slightly greater than 02 in the orthogonal direction, but the computed values
can not explain the experimental results. By contrast, with an offset of 0.2% corre-
sponding to the conventional yield stresses, numerical results fit to experimental

results: 00 = 493 MPa and 0" = 542 MPa.

—~
o
=

Dislocation density (x 10000 mm*(-2))

Fig. 11. Dislocation evolution for loading path change. (a) Prestrain and second loading at 0°; (b) new
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According to our experimental results, the conventional yield stresses are depen-
dent on the microplasticity stage. In the case of the orthogonal path, the transition
between linear elastic and microplasticity stages is smooth and the stress-strain curve
is parabolic. In the quasi monotonic stage, a sharp transition followed by a plateau
is observed (o¥ = 0?). The conventional yield stress o;° amplitude can be related to
the anisotropy of the identified hardening law which takes into account the different
evolutions of the densities of dislocations on the different slip systems. As a matter
of fact, it must be noticed that during the quasi monotonic strain path, no significant
increases of dislocation densities take place. On the contrary, for quasi orthogonal
strain path, new slip systems which were latent during the prestrain become active
(Fig. 11).

These results point out that the microplasticity stages strongly depend on the
“anisotropy’’ of the densities of dislocations built during the first loading.

4. Conclusion

The mechanical behavior of IF-Ti low carbon steel was studied under various load-
ing conditions. Viscoplatic behavior and hardening laws based on a physical description
of crystalline plasticity were first postulated. The identification of the physical para-
meters were performed thanks to a pragmatic polycrystalline approach. Whereas the
classical fully self-consistent scheme leads to an intricate integral equation which must
be solved at each step, the proposed approach is based on an explicit formulation of
the concentration rule, involving additional variable characteristics of each phase.
Such an approach, shortens the computation time and gives numerical results in
good agreement with experimental data such as stress—strain curves and crystalline
texture. A particular attention has been paid to physical parameters of the hard-
ening law. The comparisons between simulations and experiments point out the
necessity of an accurate description of the mechanisms of microplasticity. The most
important results of the identification can be summarized as follow.

1. Twenty four slip systems {110} (111) and {112} (111) must be introduced to
describe the experimental tests. This result fits with Jaoul’s theory of pencil glide.

2. The hardening matrix is composed of 6 different terms bound to different
interactions between slip systems {110}, {112}. The classical description of the
hardening matrix composed of two terms corresponding to the self hardening
and the latent hardening does not hold here.

3. An accurate description of the behavior of polycrystals after a prestrain needs
an accurate description of the evolutions of densities of dislocation on each slip
systems. The different evolutions of dislocations densities on each slip systems,
[see Eq. (9)] allow to explain reloading stress level after a prestrain in plane
tension. As a matter of fact, anisotropic hardening depends on the activated
slip systems and increases with the amplitude of the prestrain. The stress level
after reloading is bound to the density of obstacles on latent slip systems pre-
viously activated.
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The results of the simulation based on this simplified polycrystalline approach fit
with experimental observations, providing an accurate description of the mechan-
isms of plasticity and of hardening matrix.
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