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Abstract This paper deals with the reduced order mod-
eling of micromorphic continua. The reduced basis model
relies on the proper orthogonal decomposition and the hyper-
reduction. Two variants of creation of reduced bases using
the proper orthogonal decomposition are explored from the
perspective of additional micromorphic degrees of freedom.
In the first approach, one snapshot matrix including dis-
placement as well as micromorphic degrees of freedom is
assembled. In the second approach, snapshots matrices are
assembled separately for displacement and micromorphic
fields and the singular value decomposition is performed
on each system separately. Thereafter, the formulation is
extended to the hyper-reduction method. It is shown that
the formulation has the same structure as for the classi-
cal continua. The relation of higher order stresses intro-
duced in micromorphic balance equations to creation of
the reduced integration domain is examined. Finally, the
method is applied to examples of microdilatation extension
and clamped tension and to a size-dependent stress concen-
tration in Cosserat elasticity. It is shown that the proposed
approach leads to a good level of accuracy with significant
reduction of computational time.
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1 Introduction

The classical continuum theory fails to describe certain
mechanical phenomena such as dispersion of elastic waves,
size effects onmaterial properties, or strain softeningofmate-
rials. To capture these phenomena, the theory needs to be
enhanced. One possible remedy is based on the so-called
micromorphic formulation which introduces one or several
material length scale parameters, see [1–3] to cite but a few.
Within this approach, each macroscopic material point is
embedded with a microscopic system that has its own kine-
matic field, i.e., additional degrees of freedom, describing the
micro-deformation. A coupling between macro- and micro-
scale is provided via a balance of micromorphic stresses
which are energetically conjugated to the difference between
micro-deformation and macro-deformation and to the gradi-
ent of the micro-field. Note that the term micromorphic is
used here in a broad sense and incorporates the micropo-
lar, microstretch, second-gradient, or couple-stress theories
among others, as special cases, see [4].

The micromorphic approach introduces several new
degrees of freedom hence the formulation leads to a compu-
tationally demanding problem. Model reduction such as the
reduced basis method [5,6] and proper orthogonal decom-
position (POD) can be used to reduce computational costs
when parametric study is necessary to set-up convenient
material constants. However, these methods reduces only the
number of equations to be solved and has no effect on the
integration of the constitutive equations which may be very
time-consuming and can constitute more than half of total
computational time.Hyper-reduction introduced in [7] solves
this issue by adopting a reduced integration domain, namely a
small part of the original domain over which the constitutive
equations are integrated, and thus leads to a drastic reduction
of computational costs of the reduced solution. The hyper-
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reduction has been successfully used for several problems,
including models with internal variables [8] or large-strain
plasticity [9].Additionally, in [10], themethodwas applied to
amulti-scale problemwith the hyper-reduced RVE scale. For
these reasons, the present work focuses on the formulation
of a reduced-order model of generalized continua based on
the POD and hyper-reduction. The POD applied to dynam-
ics of rods and shells which can be considered as lower-order
Cosserat continua can be found for example in [11] or [12].
However, we present to our best knowledge for the first time
a general linear theory applicable to 3D problems and to
other types ofmicromorphic continua such asmicrodilatation
one or even to continua with gradient of internal parameters
[13]. In addition, the formulation is extended to the hyper-
reduction method.

The layout of the paper is as follows. In Sect. 2, we out-
line a general approach to micromorphic continua and its
finite element formulation is briefly presented. A simple
constitutive framework is considered, based on a general-
ized isotropic elasticity with two new material parameters.
The theory is presented within the small-strain framework.
In Sect. 3, reduced order modeling of micromorphic con-
tinua based on the proper orthogonal decomposition and
hyper-reduction is introduced. Finally, in Sect. 4, we explore
the proposed methodology using three numerical examples.
Although the proposed examples have an affine parameter
dependence suitable for the implementation of the reduced
basis method, we have consider them as a first stage before
application of the hyper-reduction to non-linear micromor-
phic problems that, in general, do not have affine parameter
dependence.

Notation

The zeroth, first, second, third, and fourth order tensors are
denoted by a, a , a∼, a∼, and a∼∼

, respectively. The dyadic product

is designated as ⊗, the simple, double, and triple contraction

are denoted as ·, :, ... and they are defined through the index
notationwith respect to anorthonormalCartesianbasiswhere
the Einstein summation rule applies:

(a ⊗ b )i j = aib j , a · b = aibi ,

a∼ : b∼ = ai j bi j , a∼
... b∼ = ai jkbi jk

Using an orthonormal basis, the gradient and the divergence
are expressed as:

(∇a∼)i jk = ∂ai j
∂xk

, (div a∼)i = ∂ai j
∂x j

, (div M∼ )i j = ∂Mi jk

∂xk

The tensorial notation is very practical for theoretical
developments; however, amatrix notation ismore convenient

for the numerical implementation. Therefore, the matrix
notation is used to describe finite element implementation.
Bold lower-case letters such as a are used for arrays, while
matrices are denoted by bold capital letters, e.g., A.

2 Micromorphic continua

The micromorphic continua, introduced in [1–3], is a class
of generalized continua that contains several well-known
continua such as the Cosserat continuum or continua with
gradient of some internal variables [13]. These continua
incorporate a feature of the microstructure by refining the
kinematics by additional degrees of freedom. Using the nota-
tion from [13], the new degrees of freedom χφ

∼
and their

gradient ∇χφ
∼
are introduced in the power of internal forces

together with their dual variables, namely the relative stress
tensor S∼ and double stress tensor M∼ .

2.1 Principle of virtual power

The method of virtual power provides a very powerful and
systematic way of deriving balance equations of micromor-
phic continua, see [14,15].

The power of internal virtual forces is enriched as

P(i)(u̇ �,χ φ̇
∼

�) = −
∫
D

p(i)(u̇ �,χ φ̇
∼

�) dV,

p(i)(u̇ �,χ φ̇
∼

�) = σ∼ : ∇u̇ � + S∼ : χ φ̇
∼

� + M∼
...∇χ φ̇

∼
� (1)

where u̇ �,χ φ̇
∼

� are virtual velocities andD is a subdomain of
the body �.

In general, the virtual power of external forces could
be enhanced by terms that correspond to generalized body
forces, but to keep the presentation simple we introduce only
generalized tractions t∼M

P(e)(u̇ �,χ φ̇
∼

�)

=
∫
D
b · u̇ � dV +

∫
∂D

t σ · u̇ � d� +
∫

∂D
t∼M :χ φ̇

∼
� d�

(2)

where b and t σ are the standard body forces and tractions,
∂D represents the boundary of the subdomain D.

The principle of virtual power states that:

P(i)(u̇ �,χ φ̇
∼

�) + P(e)(u̇ �,χ φ̇
∼

�) = 0, ∀D ⊂ �, ∀u̇ �,χ φ̇
∼

�

(3)

The principle of virtual power leads to the standard equilib-
riumequation and to a balance equation for themicromorphic
stresses:
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div σ∼ + b = 0 , ∀x ∈ � (4)

div M∼ − S∼ = 0∼, ∀x ∈ � (5)

Associated boundary conditions for the simple and general-
ized tractions read

σ∼ .n = t σ , ∀x ∈ ∂D (6)

M∼ .n = t∼M , ∀x ∈ ∂D (7)

2.2 Constitutive equations

For simplicity, the attention is restricted to linear isotropic
elasticity. The free energy density function ψ is chosen as a
function of a generalized relative strain variable e∼ defined as:

e∼ = φ
∼

−χφ
∼

(8)

where φ
∼
is a macroscopic variable to be selected. The free

energy can be decomposed into classical and micromorphic
parts ψ(1) and ψ(2) where

ψ(∇u ,χφ
∼
,∇χφ

∼
) = ψ(1)(∇u ) + ψ(2)(e∼,∇χφ

∼
) (9)

Moreover, the following concrete forms were used

ρψ(1) = 1

2
∇u : E≈ : ∇u = 1

2
λTr [∇ε∼]2 + μTr [(∇ε∼)2]

(10)

ρψ(2) = 1

2
Hχ (φ

∼
−χφ

∼
)2 + 1

2
Aχ∇χφ

∼
· ∇χφ

∼
(11)

where ε∼ is the small strain tensor, E≈ is the isotropic fourth-

order elasticity tensor which can be expressed using Lamé
parameters λ and μ, Hχ [MPa] is a modulus providing cou-
pling between the macroscopic and micromorphic problems,
and A [MPa mm2] is a modulus incorporating an internal
length scale.Amore general constitutive lawwith sixth-order
constitutive tensor could be used, see for example [16,17].

Assuming that the entropy principle in its classical form
applies

− ρψ̇ + p(i) ≥ 0 (12)

the state laws are derived as

σ∼ = ρ
∂ψ

∂∇u
= E≈ : ∇u + Hχ (φ

∼
−χφ

∼
) :

∂φ
∼

∂∇u
(13)

S∼ = ρ
∂ψ

∂χφ
∼

= Hχ (χφ
∼

− φ
∼
) (14)

M∼ = ρ
∂ψ

∂∇χφ
∼

= Aχ∇χφ
∼

(15)

It is worth mentioning that the stress tensors σ∼ and S∼ are gen-
erally non-symmetric. After inserting the state laws (14) and
(15) into the micromorphic balance equation (5) we obtain a
Helmholtz-like differential equation

χφ
∼

− l2χ�χφ
∼

= φ
∼

(16)

where � stands for the Laplace operator and an internal
length lχ is defined by

lχ =
√

Aχ

Hχ

(17)

The last step to complete the micromorphic formulation
is the selection of the state variable φ

∼
. In the following sec-

tions, it is shown how to choose this variable to obtain the
microdilatation and Cosserat continua.

2.3 Microdilation continuum

The microdilatation continuum [4,18] introduces one new
degree of freedom which is related to the change of volume.
The state variable is chosen as

φ
∼

= Tr [ε∼]1∼ (18)

thus the medium is endowed with a micro-deformation field
having a simple form

χφ
∼

= χ 1∼ (19)

and the fields to solve are a displacement vector u and a
scalar microdilatation χ

DOF = {u , χ} (20)

After exploiting the spherical form of the macroscopic
field φ

∼
and the micromorphic fieldχφ

∼
, Eq. (5) can be simpli-

fied using lower order tensors:

div M V − SV = 0, ∀x ∈ � (21)

where M V = M∼ : 1∼ and SV = S∼ : 1∼.
Finally, the constitutive equations can be expressed by

σ∼ = E≈ : ∇u + Hχ (Tr [ε∼] − χ)I≈ (22)

SV = Hχ (χ − Tr [ε∼]) (23)

M V = Aχ∇χ (24)
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Observe that the stress tensors are symmetric for this contin-
uum.

2.4 Cosserat continuum

In the Cosserat continuum theory [19], the macroscopic vari-
able φ

∼
is chosen as a rotation w∼ which is equal to the

skew-symmetric part of the displacement gradient. There-
fore, each material point is attached with a triad of rigid
directions, i.e., each material point can rotate with the micro-
rotation χw∼ which plays the role of the micro-variable χφ

∼
.

Degrees of freedom are extended as

DOF = {u , χw∼ } (25)

and the power of internal virtual forces is then expressed as:

p(i)(u̇ �,χ ẇ∼
�) = σ∼ : ∇u̇ � + S∼ : χ ẇ∼

� + M∼
...∇χ ẇ∼

� (26)

The principle of objectivity requires that the power of internal
virtual forces (26) is invariant with respect to any infinitesi-
mal virtual rigid body motions. Under the rigid body motion,
the gradient of velocity field and the rate of Cosserat rotation
are changed to:

∇u̇ ∗ ← ∇u̇ ∗ + v∼ (27)

χw∼
∗ ←χw∼

∗ + v∼ (28)

where v∼ is a skew-symmetric tensor describing rate of an
infinitesimal change of observer. Therefore, the Cauchy
stress tensor σ is non-symmetric and its skew-symmetric part
σ∼
a is related to the relative stress tensors as

σ∼
a = −S∼ (29)

The following relations between a skew–symmetric tensorw∼
and its axial vector ϕ hold:

w∼ = −ε∼ · ϕ ϕ = −1

2
w∼ : ε∼ (30)

where ε∼ is the permutation tensor. Substituting relations (30)
back to (26) we arrive at

p(i)(u̇ �,χ ω̇∼
�) = σ∼ : ∇u̇ � + 2s · χ ϕ̇ � + m∼ · ∇χ ϕ̇ � (31)

where s is the axial vector of the tensor S∼

s = −1

2
ε∼ : S∼ (32)

and the second-order tensor m∼ is defined as:

m∼ = −ε∼ : M∼ (33)

Therefore, the set of degrees of freedom can be written as

DOF = {u , χϕ } (34)

and the equilibrium equations (4)–(5) can be written as

div σ∼ + b = 0 , ∀x ∈ � (35)

div m∼ − 2s = 0 , ∀x ∈ � (36)

Finally, themicromorphic part of the free energy is expressed
as

ρψ(2) = Hχ (χϕ − ϕ ) · (χϕ − ϕ ) + 1

2
Aχ∇χϕ : ∇χϕ

(37)

Accordingly, following constitutive equations are obtained

σ∼ = E≈ : ∇u + Hχε∼ · (χϕ − ϕ ) (38)

s = Hχ (χϕ − ϕ ) (39)

m∼ = Aχ∇χϕ (40)

It is worth noting that the general form of isotropic Cosserat
elasticity can be expressed as

m∼ = αTr [∇χϕ ]1∼ + β
(
∇χϕ + (∇χϕ )T

)

+ γ
(
∇χϕ − (∇χϕ )T

)
(41)

State equation (40) can be obtained from (41) by special
choice of material parameters, namely α = 0 and β = γ =
Aχ/2. See [20] for more details.

2.5 Finite element formulation

In this section, the finite element implementation of the
micromorphic theory is briefly presented. The weak form
of Eqs. (4) and (5) is obtained from the principle of vir-
tual power (3) by restricting virtual fields u̇ �, ˙χφ

∼
�
to zero

on Dirichlet boundary �u and �χ , respectively. The problem
may be stated as: Find u andχφ

∼
such that, ∀u̇ �,χ φ̇

∼
�

∫
D

σ∼ : ∇u̇ � + S : ˙χφ
∼

� + M∼
...∇ ˙χφ

∼
� dV =

∫
D
b · u̇ � dV

+
∫

∂D
t · u̇ � d� +

∫
∂D

t∼M : ˙χφ
∼

� d� (42)
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Prior to the finite element approximation of the virtual work
statement, we assemble nodal degrees of freedom into two
arrays

du =
[
u11, . . . , u

1
nd , . . . , u

N̄u
1 , . . . , uN̄u

nd

]T
(43)

dχ =
[

χφ1
1, . . . ,

χφ1
nc , . . . ,

χφ
N̄χ

1 , . . . ,χφ
N̄χ
nc

]T
(44)

where the subscript refers to the component of the field,
and nd is a number of dimensions of the physical space.
The superscript refers to the node number, while N̄u and
N̄χ denote number of nodes with displacement and micro-
morphic degrees of freedom. Subscript nc is a number of
components of the micromorphic tensor χφ

∼
which depends

on the selected type of micromorphic continua as well as
on the dimension of the physical space. It is, for exam-
ple, equal to three for Cosserat continuum in 3D, one for
Cosserat continuum in 2D, and one for microdilatation con-
tinuum independently of the dimension of the physical space.
Moreover, the micromorphic tensor χφ

∼
is assembled into a

vector form which for the general case of full micromorphic
continuum in 3D reads

� = [
χφ11

χφ22
χφ33

χφ23
χφ13

χφ12
χφ32

χφ31
χφ21

]T
(45)

Moreover, number of displacement andmicromorphic degrees
of freedom Nu and Nχ can be expressed as

Nu = ndN̄u Nχ = ncN̄χ (46)

The finite element approximation of displacements u and
micromorphic vector � can be expressed as

ui (x) ≈ (u0)i +
N̄u∑
I=1

ηI (x)(du)i+(I−1)nd = (u0 + Nu(x)du)i

∀i = 1 . . . nd (47)

�i (x) ≈ (�0)i +
N̄χ∑
I=1

ξI (x)(dχ )i+(I−1)nc = (�0 + Nχ (x)dχ )i

∀i = 1 . . . nc (48)

where Nu and Nχ are matrices collecting displacement
and micromorphic shape functions, u0 and �0 are chosen
such that they fulfill appropriate non-homogeneous Dirich-
let boundary conditions on�u and�χ . Applying the gradient
operator to the finite element approximations gives

∇u(x) ≈ Bu(x)du (49)

∇�(x) ≈ Bχ (x)dχ (50)

where Bu and Bχ are matrices containing derivatives of the
shape functions and represent discrete gradient operators,

that is, multiplication of the matrix with vector of nodal
degrees of freedom of particular field gives an array of gra-
dient of the field.

Substituting the finite element approximation (47)–(50)
into the principle of virtual power, its discrete form is
obtained

(d∗
u)

T
[∫

V
BT
u σ − NT

u b dV −
∫

∂�σ

NT
u tσ d�

]

+ (d∗
χ )T

[∫
V
NT

χ S + BT
χM dV −

∫
∂�M

NT
χ tM d�

]

= 0 ∀d∗
u,d

∗
χ (51)

where the so-called Bubnov–Galerkin formulation was used,
i.e., the discretization of virtual fields and the corresponding
gradients of virtual fields has the same form as approximation
of the trial fields.

Equation (51) is satisfied for any virtual fields if and only
if

fint (du,dφ) = fext (52)

gint (du,dφ) = gext (53)

where

fint =
∫
V
BT
u σ dV, gint =

∫
V
BT

χM + NT
χS dV

fext =
∫
V
NT
u b dV +

∫
∂�σ

NT
u tσ d�, gext =

∫
∂�M

NT
χ tM d�

In the case of generalized linear elasticity, Eqs. (52) and (53)
can be rewritten in the standard form:

Kd = hext (54)

where hext is a vector containing classical as well as micro-
morphic external forces, d is a vector collecting displace-
ment and micromorphic nodal degrees of freedom, dT =
[dTu dTφ ], and stiffness matrix K can be written as

K =
[
Kuu Ku χ

Kχ u Kχ χ

]
(55)

where

Kuu =
∫
V
BT
u DuuBu dV, Ku χ =

∫
V
BT
u DuχNχ dV (56)

Kχ u =
∫
V
NT

χD
T
uχB dV,

Kχ χ =
∫
V

(
HχNT

χNχ + AχBT
χBχ

)
dV (57)
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To finish the formulation, the constitutive matrices need
to be specified. For microdilatation continuum they can be
expressed as

Duu = E + Hχ11T Duχ = −Hχ1 (58)

and for Cosserat continuum as:

Duu = E + Hχ Iskew Duχ = −Hχε (59)

where E is a matrix form of the stiffness matrix, 1 is a vector
form of the second order unit tensor, Iskew is a matrix form
of the fourth-order skew-symmetric projection tensor, and ε

is a matrix form of the permutation tensor.

3 Reduced order modeling

Micromorphic continua aim to model complex mechanical
phenomena by introducing additional degrees of freedom
for the sake of describing refined kinematics. Moreover,
the micromorphic framework leads to additional balance
equations with new material parameters which need to
be determined. Therefore, micromorphic continua result in
computationally expensive problems. Reduced-order mod-
els (ROM) are very useful to model complex mechanical
problems when parametric studies are needed to estimate
acceptable ranges of material constants. Typically, the quan-
tities of interest are certain particular fields such as dis-
placements, stresses, or micromorphic fields in our specific
situation, called outputs. These fields depend on some inputs,
i.e., variables such as material parameters, geometry of the
problem, or loading. The connection between the output and
the input is given by the partial differential equations (4) and
(5). Restricting to the material parameter dependence, these
equations can be rewritten in a parametrized form as

div σ∼(μ) + b = 0 (60)

div M∼ (μ) − S∼(μ) = 0∼ (61)

where μ is a vector of material parameters which may for
example contain Young modulus, Poisson ratio, or internal
length.

The Proper orthogonal decomposition has been widely
used to construct reduced-bases for parameter-dependent
partial differential equations. The key idea of the POD is to
reduce the number of independent variables by projecting a
finite element space into a reduced lower-dimensional space.
The method of snapshots is used to obtained the reduced
space, see [21].

However, the size of the basis of the reduced space has no
influence on the integration of constitutive equations which

can be computationally very demanding. For this reason,
hyper-reduction has been proposed in [7]. In this method,
a reduced integration domain (RID) is selected, so that the
integration of constitutive equations is performed over just
a few finite elements. On the one hand this technique saves
computational time but on the other hand it leads to a greater
error of the reduced model.

3.1 Proper orthogonal decomposition

The POD is a projection method that builds a basis of a sub-
space of a finite element space from snapshots related to an
evaluation of the problem with various sets of parameters
such as material coefficients or boundary conditions, that is,
with different parameters contained in μ.

The POD reduction method consists in using a set of m
previously computed solutions of the original problem to
build a snapshot matrix:

Q =
[[

d1u
lNd1χ

]
. . .

[
dN
u

lNdN
χ

]]
(62)

where [(diu)(lNdiχ )]T denotes a predicted solution computed
in i th sampling point in the parametric space and lN is a
parameter with dimension of length to scale the micromor-
phic degrees of freedom to the same units as displacements.
Its value could be chosen so that all variables have the same
order of magnitude to improve matrix conditioning. This
is not essential in the present linear context but would be
helpful when using iterative solvers. Nonetheless, setting of
this parameter is tricky. Therefore an approach with no spe-
cial treatment of micromorphic degrees of freedom, used for
example in [11], is preferred. It can be obtained from (62)
simply by letting lN = 1 mm. A different approach to han-
dle micromorphic degrees of freedom, based on the separate
basis, is described later. Note that the number of snapshots
is usually much smaller than the number of micromorphic
variables as well as classical degrees of freedom.

Applying singular value decomposition to the matrix Q,
left and right singular vectorsV andU and a diagonal matrix
containing singular values � are obtained:

Q = V�UT + R (63)

Matrix V can be decomposed into two parts, the first one
corresponding to the displacements and the second one to
the micrmorphic degrees of freedom:

V =
[
Vu

Vχ

]
(64)

where the modes associated with small singular values are
discarded, therefore, the number of columns of V, denoted

123



Comput Mech (2017) 59:753–778 759

by N is smaller or equal to the number of snapshots m. It is
the minimal integer such that

||R|| < εtol ||Q|| (65)

where

||Q||2 =
m∑
i=1

�2
i i ||R||2 =

m∑
i=N+1

�2
i i (66)

and εtol is a prescribed tolerance. Note that various norms
have been proposed in the literature for the computation
of POD modes, see for instance [22]. When considering a
quadratic free energy to setup the constitutive equations, con-
venient physically-based norms can be introduced for the
POD. However, in such situations, attention must be paid to
define a norm that is not parameter dependent. Here, for the
sake of simplicity, the Frobenius norm is used.

A few basis vectors ψ = [
ψu ψχ

]T spanning a space of
small dimension are extracted using the left eigenmodes V
and the finite element interpolations are used to approximate
the variables between the sampling points

ψu
k (x) = Nu(x)vuk , k = 1, . . . , N (67)

ψ
χ
k (x) = Nχ (x)vχ

k , k = 1, . . . , N (68)

where vuk and vχ
k are the kth columns of the matrix Vu and

Vχ respectively. These basis vectors are used to approximate
the displacement and micromorphic fields

uROM (x,μ) = u0 +
N∑
i=1

ψu
i (x)γi (μ)

= u0 + Nu(x)Vuγ (μ) (69)

�ROM (x,μ) = �0 +
N∑
i=1

ψ
χ
i (x)γi (μ)

= �0 + Nχ (x)Vχγ (μ) (70)

The dependence of ψ on x and γ on μ is for simplicity not
explicitly written in the following text.

Equations (69)–(70) can be rewritten in the form

aROM ≈ a0 +
N∑
i=1

ψ iγi = a0 + NVγ (71)

where aROM = [uROM �ROM ]T and N assembles dis-
placement and micromorphic shape functions.

Finally, using the reduced basis approximation, the equi-
librium equation (54) is transformed into

VT KV γ = VThext (72)

Another technique to create the reduced basis can be based
on the separate basis approach, see for example [23] or
[24]. In this formulation, the displacement and micromor-
phic degrees of freedom are collected separately into two
snapshot matrices Qu and Qχ . Accordingly, SVD is applied
separately to Qu and Qχ :

Qu = Vu�uUT
u + Ru Qχ = Vχ�χUT

χ + Rχ (73)

Like in the previous case, the number of columns of Vu and
Vχ are denoted as Nu and Nχ . They are the minimal integers
such that

||Ru || < εutol ||Qu || ||Rχ || < ε
χ
tol ||Qχ || (74)

where

||Qu ||2 =
m∑
i=1

(�u
ii )

2 ||Ru ||2 =
m∑

i=Nu+1

(�u
ii )

2 (75)

and

||Qχ ||2 =
m∑
i=1

(�
χ
i i )

2 ||Rχ ||2 =
m∑

i=Nχ+1

(�
χ
i i )

2 (76)

Moreover, εutol and ε
χ
tol are prescribed tolerances.

A few basis vectors ψu and ψχ spanning a space of small
dimension are extracted using the matrix of left singular vec-
tors V which is assembled as

V =
[
Vu 0
0 Vχ

]
(77)

3.2 Hyper-reduction

In order to improve computational efficiency of the POD-
reduced model, the hyper-reduction method is used. In this
method, the equilibrium equations are assembled only over
a subdomain, called reduced integration domain (RID) and
denoted by��. The construction of theRID follows a heuris-
tic reasoning: if the RID enables the interpolation of degrees
of freedom and the interpolation of stresses by using ded-
icated POD reduced bases, then it should be convenient to
set up the hyper-reduced equilibrium equations. Here, the
RID aggregates the elements containing interpolation points
generated by the Discrete Empirical Interpolation Method
(DEIM), see [25].

Given V, the DEIM selects N rows of V by introducing a
selection matrix P ∈ R

(Nu+Nχ )×N such that PTV is invert-
ible. Each column of P has a unique nonzero entry, equal
to one, that selects a value to interpolate. Since V is gen-
erated by finite element simulations, the values selected by
PTV are located at the nodes of the mesh. All the elements
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Fig. 1 Reduced integration domain ��. The blue nodes are the inter-
polation points selected by the DEIM. The red line represents the
interface �r between the original mesh and the RID. (Color figure
online)

connected to these nodes are incorporated in the RID. A sim-
ilar approach is applied separately on the Cauchy stress σ∼ as
well as the higher order stress M∼ . The related snapshots are
local average stresses evaluated at the nodes of the mesh. For
instance, the average nodal stresses at node number I read :

1∫
�
I (ηI ) dV

∫
�

I (ηI )σ∼ dV and

1∫
�
I (ηI ) dV

∫
�

I (ηI )M∼ dV (78)

where I (ηI ) is the indicator function of the shape functionηI .
Then the POD followed by the DEIM generate two selection
matrices Pσ and PM , where the selected interpolation entries
are also attached to the nodes of the mesh. All the elements
of the mesh connected to these entries are also added to the
RID. The user of themethod can also add a zone of interest to
the RID. By construction, the RID has an interface, denoted
by �r , without given boundary condition, see Fig. 1. This
interface reads:

�r = �� ∩ �\�� (79)

where �\�� includes the boundary of �\��. The hyper-
reduction method aims at imposing Dirichlet boundary
conditions on �r , such that:

uHR = u�r ∀x ∈ �r (80)

�HR = ��r ∀x ∈ �r (81)

where u�r and ��r are finite element fields that are set to
zero in��, except for the nodes on �r . These boundary con-
ditions are expressed as a linear combination of N modes
extracted from the reduced basis (ψk)

N
k=1. These modes are

denoted by ψδ
k . The first step to specify the boundary condi-

tions on �r is the splitting of each empirical mode ψk into
two parts denoted byψ�

k andψδ
k . The first partψ

�
k is related

to the finite element nodes inside the RID except the interface
nodes:

ψu�
k (x) = Nu(x)�uvuk (82)

ψ
χ�
k (x) = Nχ (x)�χvχ

k (83)

where �u and �χ are diagonal matrices such that:

�u
ii =1 if

∫
�\��

(Nu(x)T Nu(x))i i dx=0, else �u
ii = 0,

i = 1, . . .Nu (84)

�
χ
i i =1 if

∫
�\��

(Nχ (x)T Nχ (x))i i dx=0, else �
χ
i i =0,

i = 1, . . .Nχ (85)

The second partψδ is associated with the exterior of the RID
and the interface, namely the remainder of the original mode
ψk :

ψuδ
k = ψu

k − ψu�
k (86)

ψ
χδ
k = ψ

χ
k − ψ

χ�
k (87)

TheDirichlet boundary condition on�r is expressed by intro-
ducing additional reduced coordinates (γ̃k)

N
k=1 such that:

u�r =
N∑

k=1

ψuδ
k γ̃k (88)

��r =
N∑

k=1

ψ
χδ
k γ̃k (89)

This is not an usual boundary condition because γ̃ is not a
priori known. Finally, the hyper-reduced solution in the RID
can be expressed as

uHR = u0 + u�r +
N∑

k=1

ψu�
k γk (90)

�HR = �0 + ��r +
N∑

k=1

ψ
χ�
k γk (91)

This approachdefines convenient test functions for the setting
of the hyper-reduced equilibrium equations over the RID.
According to Eqs. (90) and (91), these test functions are
(ψ�

k )Nk=1 such that ψ�
k = [ψu�

k ψ
χ�
k ]T . The related matrix

form of these test functions is the following:

N∑
k=1

ψ�
k γ ∗

k =
[
Nu�

uVuγ ∗
Nχ�χVχγ ∗

]
=

[
Nu

Nχ

]
�Vγ ∗,

∀γ ∗ ∈ R
N (92)

where � is a block-diagonal matrix. It assembles �u and
�χ . Because of the added boundary conditions, uHR and
�HR are linear functions of the added reduced coordinates
(γ̃k)

N
k=1:

uHR = u0 + Nu
(
(Iu − �u) Vu γ̃ + �uVuγ

)
(93)

�HR = �0 + Nχ

(
(Iχ − �χ) Vχ γ̃ + �χ Vχγ

)
(94)
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The usual reduced basis approximation is recovered by
choosing the following closure equation γ̃ = γ . Hence, the
hyper-reduced solution reads

uHR = u0 + Nu Vuγ (95)

�HR = �0 + Nχ Vχγ (96)

Substituting back to the weak form, we arrive at

(γ ∗)T
[∫

��

VT
u �uBT

u σ

−VT
u �uNT

u b dV −
∫

∂�

VT
u �uNT

u tσ d�

]

+ (γ ∗)T
[∫

��

VT
χ �χNT

χS + VT
χ �χBT

χM dV

−
∫

∂�

VT
χ �χNT

χ tM d�

]
= 0 ∀γ ∗ ∈ R

N (97)

Thus, following equilibrium equation needs to be satisfied:

VT�KrV γ = VT�hr (98)

whereKr andhr are the classical stiffnessmatrix and external
forces; however, they are assembled only over the RID.

3.3 A posteriori error estimator

In this section, we propose an error estimator to guess a
validity domain of the hyper-reduced approximation. The
selection of positions of sampling points, i.e., values of mate-
rial parameters for which the snapshots are computed is
complicated. Therefore, introduction of the error estimator
is important to validate or adapt the choices of the sampling
points. The finite element solution satisfies equilibrium equa-
tion

Ka = hext (99)

As shown in [26], this equation is satisfied by the reduced
order model only approximately

KaHROM = hext + r (100)

where r is the residuum which can be expressed as

r = K (aHROM − a) (101)

The proposed error-estimators for displacements and
micromorphic degrees of freedom are based on the infinity
norm of the residuum and read

ηu = λu(μ)‖r‖∞, ηχ = λχ(μ)‖r‖∞ (102)

where λu(μ) and λχ(μ) are numerical parameters which
need to be also estimated. In [6], it was shown that 1/λ
is equal to the Babuška inf-sup constant of the given par-
tial differential equation, that is the minimum singular value
associated with it when considering a L2 norm. However,
computation of such a constant or its approximation is com-
plex. Therefore, we propose a heuristic approach where the
constants λu(μ) and λχ(μ) are decomposed as

λu(μ) = αu

β(μ)
, λχ (μ) = αχ

β(μ)
(103)

That is, the error estimators read

ηu = αu

β(μ)
‖r‖∞, ηχ = αχ

β(μ)
‖r‖∞ (104)

where the evaluation of infinity norm of the residual is
restricted to the RID. Furthermore, β is related to the internal
length parameter of the given problem and was heuristically
chosen as βi (μ) = √

li , see Eq. (113) in the next section for
an example of li ; αu and αχ are estimated numerically using
an approach similar to one presented in [27]. The constants
αu and αχ are obtained from the residuum and approximate
hyper-reduced solutions related to the snapshots as

αu = max
Ṽ∈V,i∈I

βi (μ) ||uFEM (μi ) − ũHROM(μi )||
||r̃(μi )||∞ (105)

and

αχ = max
Ṽ∈V,i∈I

βi (μ ||χFEM (μi ) − χ̃HROM(μi )||
||r̃(μi )||∞ (106)

where ũHROM and χ̃HROM denote hyper-reduced solutions
obtained using the reduced basis matrix Ṽ and r̃ is the
associated residuum. The reduced basis matrix Ṽ is set-up
by restricting the number of available modes, and a set of
reduced basismatricesV is generated ranging from a reduced
basismatrix containing only onemodeup to the reducedbasis
matrix consisting of all modes N . In addition, I denotes a
set of all snapshots.

4 Numerical examples

To investigate the performance of the hyper-reduction, three
numerical simulations have been carried out. The POD,
hyper-reduction, and micromorphic continua were imple-
mented into OOFEM [28,29], an object-oriented finite ele-
ment code. Note that the structure of the finite element
formulation of micromorphic continua fits into the frame-
work presented in [30].
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4.1 Simple extension test for the microdilatation
continua

First, a simple illustrative example of uni-axial extension of
a microdilatation elastic bar is assumed. Uni-axial extension
leads to a one-dimensional problem which keeps the anal-
ysis simple and can be solved analytically. We look for a
displacement field in the form

ux = u(x), uy = 0, uz = 0 (107)

The equilibrium equations (4) and (5) combined with consti-
tutive equations (22), (23), and (24) reduce to

(λ + 2μ + Hχ )u′′ − Hχχ ′ = 0 (108)

Aχχ ′′ − Hχ (χ ′ − u′) = 0 (109)

where the prime denotes differentiation with respect to the
spatial variable x . The problem is described by kinematic
boundary conditions

u(0) = 0 u(L) = ū (110)

χ(0) = 0 χ(L) = 0 (111)

where L is the length of the bar and ū is a prescribed dis-
placement at the right edge of the bar.

It is worth noting that the physical meaning of constrain-
ing micromorphic degrees of freedom is a difficult topic that
depends on the specific physical content of the model. The
boundary conditions for the micromorphic degrees of free-
dom are briefly discussed at the end of this section.

Substituting derivative of Eq. (109) with respect to x into
(108) and after some rearrangement we get

χ ′′′ − 1

l2e
χ ′ = 0 (112)

where le is the internal length parameter for the uni-axial
extension problem defined as

l2e = (λ + 2μ + Hχ )Aχ

(λ + 2μ)Hχ

= Aχ

Hχ

+ Aχ

λ + 2μ
(113)

The above differential equation has a general solution

χ = C1 sinh

(
x

le

)
+ C2 cosh

(
x

le

)
+ C3 (114)

where C1, C2, and C3 are integration constants which are
determined such that the solution satisfies the equilibrium

equation (108) and the boundary conditions (111):

C1 = − Hχ

(λ + 2μ + Hχ )L
ū,

C2 = sinh L
le

1 − cosh L
le

C1, C3 = −C2 (115)

Combining (114) with (108) provides the expression for the
displacement field

u = K1 cosh

(
x

le

)
+ K2 sinh

(
x

le

)
+ K3x + K4 (116)

The integration constants are obtained from the boundary
conditions

K1 = − Hχ le
λ + 2μ + Hχ

C1,

K2 = Hχ le
(λ + 2μ + Hχ )

C1 (117)

K3 = ū

L
+ 2Hχ le

(λ + 2μ + Hχ )L
C1,

K4 = − Hχ le
(λ + 2μ + Hχ )

C1 (118)

The obtained analytical solution can be used for the veri-
fication of the numerical implementation of microdilatation
elasticity. Whatever the boundary conditions are, the solu-
tion has hyperbolic form which significantly differs from the
classical homogeneous solution. Note that this type of solu-
tion is typical for all kinds of micromorphic continua and it
is not of the separable type assumed by POD.

In the finite element simulation, the length of the bar was
L = 2 mm and the height of the bar was h = 1 mm.
The Young modulus was chosen as 70,000 MPa, the Pois-
son coefficient was 0.4, Hχ = 106 MPa and we investigated

Fig. 2 Extension test: microdilatation contour plots, for le = 0.5 mm,
L = 2 mm, and ū = 0.1 mm
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Fig. 3 Extension test: full mesh in black, a priory chosen RID in red, automatically selected RID in blue. (Color figure online)
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Fig. 4 Error of the hyper-reduced computation of the extension test: a displacement field, 2 snapshots ls = [0.1, 1] mm, bmicrodilatation field, 2
snapshots ls = [0.1, 1] mm, c microdilatation field, 3 snapshots ls = [0.1, 0.01, 1] mm, d microdilatation field, 4 snapshots ls = [0.1, 0.01, 1, 2]
mm
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Fig. 5 Extension test: HROM1 error estimator efficiency

the difference between the finite element and hyper-reduced
solutions for different values of the internal length parameter
le varying between 0.01 and 2mm, i.e.,μ = [le]. The internal
length parameter is linked to the parameter Aχ through Eq.
(113). The example was discretized using bi-linear quadri-
lateral finite element shape functions for the displacement as
well as for the microdilatation degree of freedom. Example
of contour plots of the microdilatation field for le = 0.5 mm
can be seen in Fig. 2.

To set-up the POD basis, two sampling points were
arbitrary chosen as le = 0.1 mm and le = 1 mm. A
vector containing snapshot parameters was ls = [0.1, 1]
mm. Differences between full finite element simulations
and hyper-reduced calculations with two different RID were
explored. The RID for the first case is depicted in Fig. 3 in
red. It was selected a priori to validate our implementation

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
·10−2

x [mm]

χ

FEM
HROM

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
·10−2

x [mm]

χ
FEM

HROM

(b)(a)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

·10−2

x [mm]

χ

FEM
HROM

0 0.2 0.4 0.6 0.8 1
0

2

4

6

·10−2

x [mm]

χ

FEM
HROM

(d)(c)

Fig. 6 Extension test: comparison of finite element and hyper-reduced
solution of the distribution of themicrodilatation field along the barwith
L = 2mm, ū = 0.1mm: a le = 0.01mm, 2 snapshots ls = [0.1, 1]mm,
b le = 0.01 mm, 4 snapshots ls = [0.01, 0.1, 1, 2] mm, c le = 0.03

mm, 2 snapshots ls = [0.1, 1] mm, d le = 0.03 mm, 4 snapshots
ls = [0.01, 0.1, 1, 2] mm. Only half of the bar is shown due to the
symmetry
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Fig. 7 Extension test: comparison of finite element and hyper-reduced
solution of the distribution of themicrodilatation field along the barwith
L = 2 mm, ū = 0.1 mm: a le = 0.3 mm, 2 snapshots ls = [0.1, 1]
mm, b le = 0.3, 4 snapshots ls = [0.01, 0.1, 1, 2] mm, c le = 1.5

mm, 2 snapshots ls = [0.1, 1] mm, d le = 1.5 mm, 4 snapshots
ls = [0.01, 0.1, 1, 2] mm. Only half of the bar is shown due to the
symmetry

Fig. 8 Error of the hyper-reduced computation of the extension test with separate basis. Microdilatational field: a 2 snapshots ls = [0.1, 1] mm,
b 3 snapshots ls = [0.01, 0.1, 1] mm
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Fig. 9 Clamped tension test. Microdilatation contour plots with le =
0.3 mm, L = 2 mm, and ū = 0.1 mm

of the hyper-reduction. As the solution is one-dimensional,
the hyper-reduced solution with properly extracted boundary
conditions at the interface of the a priory selected RID should
lead to the same solution as the POD and this assumptionwas
satisfied. The RID for the second case was computed using

the DEIM approach as described in the previous section. The
RID is showed in Fig. 3 in blue. Note that a finer mesh was
used in the actual simulations, but the number of elements
in the RID for the second simulation remained the same.
Figure4a reproduces an error between FEM and two hyper-
reduced order models (HROM) for displacement field and
Fig. 4b for the microdilatation degree of freedom. The errors
for the displacements and micromorphic field are defined as

eu = ||dFEM − dHROM||
||dFEM || (119)

eχ = ||�FEM − �HROM||
||�FEM || (120)

The first as well as the second HROM solution obtained
using two snapshots led to a low error of the displacement
field; however, the highest error of themicrodilatation degree
of freedom is around 30%. Therefore, a new snapshot is
added to the reduced basis based on the error estimator in
order to improve the space where the solution is searched
for. The third snapshot was selected as le = 0.01 mm. The

(b)(a)

Fig. 10 Contour plots of clamped tension test with le = 0.3 mm, L = 2 mm, and ū = 0.1 mm: a displacement field u2, b stress field σ22
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Fig. 11 Error of the hyper-reduced computation of the clamped tension test with 2 snapshots with ls = [0.1, 1] mm: a displacement field, b
microdilatation field
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Fig. 12 Clamped tension test: error of the hyper-reduced solution of the microdilatation field with: a 3 snapshots, ls = [0.1, 1, 2] mm, b 4
snapshots, ls = [0.01, 0.1, 1, 2] mm

errors together with the error estimator for this case can be
seen in Fig. 4c. The procedure was repeated once more and
the new sampling point le = 2 mm was selected. These
simulations lead to errors below 7% in the whole domain,
see Fig. 4d. It is worth noting that this procedure can be
repeated until the error is everywhere below a certain pre-
scribed tolerance. This procedure is similar to the greedy
algorithms proposed in [5,26]. Moreover, Fig. 5 shows the
efficiency of the estimator for the micromorphic degrees of
freedom, i.e., the ratio between the error estimator and the
true error eχ for the first HROM simulation. It is important
to note that the dimension of the reduced basis coincide with
the number of snapshots, because all of them are relevant
in the present computations; therefore, no modes were dis-
carded.

Figures6 and 7 illustrate the distribution of the microdi-
latation field along the bar for different values of the internal
length parameter. Only results of the hyper-reduced model
with the a priory chosen RID are presented. The left col-
umn is related to simulations with two snapshots while the
results in the right column were obtained with four snap-
shots. Obviously, the field is varying along the bar for two
snapshots, while very good match can be observed for four
snapshots.

Next, the investigation of the reduced-order modeling of
microdilatation extension was repeated using the separate
basis approach for the first hyper-reduced order model, i.e.,
for the model with the a priory chosen RID. The reduced
order model was again set-up using the same two sampling
points, that is, le = 0.1 mm and le = 1 mm. Relatively high
error of the microdilatation field can be observed in Fig. 8a,
mainly for small values of the internal length. Therefore, a
third snapshot, le = 0.01mm,was added to the reduced basis
leading to relatively low error in the whole domain, see Fig.
8b.
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Fig. 13 Clamped tension test: error estimator efficiency

4.2 Clamped tension test of microdilatation continuum

The previous example led to accurate results; nevertheless,
it was only a 1D problem. To demonstrate the potential of
the hyper-reduction in a more general case, a clamped ten-
sion test was performed. The boundary conditionswere taken
from the extension case:

ux (0, y) = 0 ux (L , y) = ū uy(0, 0) = 0 (121)

χ(0, y) = 0 χ(L , y) = 0 (122)

However, uy is fixed just in one point and the solution is not
anymore one-dimensional, see Fig. 9 for the microdilatation
contour plots. To highlight the 2D character of the solution,
contour plots of horizontal displacement u2 and stress σ22
are shown in Fig. 10.

The geometry and material properties were adopted from
the previous case, L = 2 mm, h = 1 mm, E =70,000 MPa,
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(b)(a)

Fig. 14 Clamped tension test: reduced integration domain generated by DEIM, a 2 snapshots, b 4 snapshots
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Fig. 15 Clamped tension test: comparison of finite element and hyper-
reduced solution of the distribution of themicrodilatation field along the
x-direction in themiddle of the height of the barwithL = 2mm, ū = 0.1
mm: a le = 0.01 mm, 2 snapshots, ls = [0.1, 1] mm, b le = 0.01 mm,

4 snapshots, ls = [0.01, 0.1, 1, 2] mm, c le = 0.03 mm, 2 snapshots,
ls = [0.1, 1] mm, d le = 0.03 mm, 4 snapshots, ls = [0.01, 0.1, 1, 2]
mm. Only half of the bar is shown due to the symmetry
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Fig. 16 Clamped tension test: comparison of finite element and hyper-
reduced solution of the distribution of the microdilatation field along
the bar with L = 2 mm, ū = 0.1 mm: a le = 0.3 mm, 2 snapshots,
ls = [0.1, 1] mm, b le = 0.3 mm, 4 snapshots, ls = [0.01, 0.1, 1, 2]

mm, c le = 1.5 mm, 2 snapshots, ls = [0.1, 1] mm, d le = 1.5 mm, 4
snapshots, ls = [0.01, 0.1, 1, 2] mm. Only half of the bar is shown due
to the symmetry

ν = 0.4, Hχ = 106 MPa, and ū = 0.1 mm. The same
approximation using bi-linear quadrilateral finite element
shape functions for displacement as well as for microdilata-
tion degree of freedom was used. The difference between
the finite element and hyper-reduced solution along the x-
direction in the middle of the height of the bar for different
values of the internal length parameter le was investigated,
that is, μ = [le]. This material parameter was ranging
from 0.01 mm to 2 mm. The relation (113) between the
parameter Aχ and the material length is exploited since def-
inition of the internal length is not known for the clamped
tension. The initial snapshots were also taken from the pre-
vious example, the vector of snapshot state is ls = [0.1, 1]
mm.

The HROM solution obtained with two snapshots led to
a low error of the displacement field, see Fig. 11a. Never-
theless, the topmost error of the microdilatation degree of
freedom exceeded 100%, the error is depicted in Fig. 11b.

Accordingly, error estimator was used to select a new
snapshot. The third snapshot was selected as le = 2 mm.
The error together with the error estimator are plotted in
Fig. 12a. Obviously, the error was reduced for large values of
parameter le and remained around the same value for small
le. For that reason, the procedure was repeated another time.
The fourth snapshot was computed for le = 0.01mm leading
to a small error almost in the whole domain, as is apparent
from Figure 12b. The error estimator efficiency is depicted in
Fig. 13. Again, the dimension of the reduced basis coincides
with the number of snapshots.

Figures11 and 12 also illustrate differences between POD
andhyper-reduced solutionswhich are related to the selection
of the RID illustrated in Fig. 14a for the hyper-reduction with
two snapshots and in Fig. 14b for four snapshots. The RID
was selected automatically performingDEIM on the reduced
basis for DOFs and stresses. Good accuracy were obtained
when compared to the full POD even though very small RID
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Fig. 17 Error of the hyper-reduced computation of the clamped ten-
sion test with separate basis POD: a displacement field, 2 snapshots,
ls = [0.1, 1]mm,bmicrodilatation field, 2 snapshots, ls = [0.1, 1]mm,

cmicrodilatation field, 3 snapshots, ls = [0.1, 1, 2] mm, dmicrodilata-
tion field, 4 snapshots, ls = [0.01, 0.1, 1, 2] mm

containing only few elements was selected. Moreover, low
computational cost can be expected and will be examined
later.

The distribution of the microdilatation field is shown for
various cases of internal length in Figs. 15 and 16. The results
are again very similar to the example of extension test, i.e.
variations of the field can be observed for solutions obtained
with two snapshots and the differences between the finite
elements and hyper-reduction are nearly identical for four
snapshots. The biggest difference can be observed for le =
0.03 mm which is in accordance with the true and estimated
errors.

The influence of the performance of the POD separately
for displacements and microdilatations was briefly explored.
The same starting points for POD were used. The reduced
basis was extracted from two snapshots, ls = [0.1, 1] mm.
The relative errors for displacements and microdilatation

0 0.2 0.4 0.6 0.8 1
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1

2

3

4

5
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x [mm]

χ

FEM
HROM
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Fig. 18 Clamped tension test. Distribution of the microdilatation field
along the bar computed with FEM, POD, and HROM, le = 2 mm
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Fig. 19 Clamped tension: microdilatation POD modes. a Mixed basis, b separated basis

Table 1 Clamped tension: CPU ratio comparison

Number of snapshots Mixed basis Separate basis

POD HROM POD HROM

2 0.432 0.049 0.442 0.051

3 0.455 0.051 0.476 0.053

4 0.491 0.054 0.521 0.067

R
x

y

θ
σ∞σ∞

Fig. 20 Stress concentration: problem setting

field are illustrated in Fig. 17a–d. The error of the microdi-
latation field exceeded 50%. Surprisingly, lower error was
obtained with the hyper-reduction than POD. Thus, the pro-
file of the microdilatation field along the bar is plotted for
le = 2 mm in Fig. 18. It can be seen that the hyper-reduced
solution leads to a strange behavior close to the boundary
resulting in a better match in the middle of the bar and in
this manner a lower error. Further, the error was lower just
for few hyper-reduced predictions and the norm used for the
error does not have strong physical sense.

To improve the solution, new snapshots were added to
enhance the reduced space. The third snapshot, le = 2 mm,
and fourth snapshots, le = 0.01 mm, were gradually added
to the basis to obtain relatively low error in the whole domain
with results comparable to the mixed basis approach.

Comparison of four PODmodes for clamped tension with
mixed basis and clamped tension with separated basis can be
seen inFig. 19. Seemingly, only thefirstmode is similarwhile
other modes are significantly different.

An important aspect of the reduced order model is the
computational time of simulations. CPU time between full
simulation, POD, and hyper-reduction is compared using

Fig. 21 Stress concentration contour plots around the hole: a classical solution, b Cosserat elasticity with lc = 0, 1 mm, R = 1 mm and N = 0.9
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(b)(a)

(d)(c)

Fig. 22 Stress concentration computed with 4 snapshots: a hyper-reduced solutions, b analytical solutions, c true error, d error estimator η

(b)(a)

(d)(c)

Fig. 23 Stress concentration computed with 6 snapshots: a hyper-reduced solutions, b analytical solutions, c true error, d error estimator η

123



Comput Mech (2017) 59:753–778 773

Parametric space

r

Nc

0

0.2

0.5

0.7

0.9

0.01 5 10 15 20 25
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

1

2

3
·10−2

θ

u
1

FEM
HROM 4 snapshots
HROM 6 snapshots

(b)(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−1

−0.5

0

0.5

·10−3

θ

u
2

FEM
HROM 4 snapshots
HROM 6 snapshots

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3
·10−5

θ

ϕ
3

FEM
HROM 4 snapshots
HROM 6 snapshots

(d)(c)

Fig. 24 Stress concentration: a parametric space with the selected
snapshot points, 4 snapshots case designed with the red star and 6
snapshots with the blue circle. Distribution along the hole computed

with r = 0.01, N = 0.8: b displacement field u1, c displacement field
u2, d Cosserat rotation ϕ3. (Color figure online)

CPU time ratio as used for example in [31]. The CPU time
ratio is defined as the ratio of computational time between
reduced-order and full simulation. The results are shown it
Table1.

Clearly, CPU time ratio relies upon the size of the reduced
order basis which is directly related to the size of the reduced
integration domain. The computational time of the POD
method was reduced approximately twice. Much better time
saving was obtained with the hyper-reduction method which
reduces the POD time roughly by a factor of 10. Thus the
speed-up of the hyper-reduced calculations is around 20 with
almost the same accuracy of results as the POD.

4.3 Stress concentration in Cosserat elasticity

In the last example the size-dependent concentration factor
around a circular hole is studied, viz. Figure20 for problem
setting. Note that the couple tractions are homogeneous. It
is well-known that the stress concentration factor around a

circular hole is lower for Cosserat continuum than for the
classical theory of elasticity [32].

The contour plots of stress concentration for classical and
Cosserat elasticity are presented in Fig. 21 to illustrate the dif-
ference in the field distributions. Only a part of the domain
focusing on the zone with stress concentration is depicted.
The field distributions clearly lead tomore homogeneous dis-
tribution forCosserat elasticity, see [33] for study of the stress
concentration around holes in nickel foams simulated with a
micromorphicmodel. The stress concentration is given as the
ratio σ11/σ∞ where σ∞ is the stress component σ11 far from
the hole. The analytical solution for the stress concentration
around a circular hole for the couple-stress theory has been
derived in [34] and then extended to the Cosserat elasticity
in [32], see also [17,35]. The stress concentration factor at
the pole is equal to

Kc = 3 + F

1 + F
(123)
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Fig. 25 Stress concentration: a parametric space with the selected
snapshot points, 4 snapshots case designed with the red star and 6
snapshots with the blue circle. Distribution along the hole computed

with r = 7, N = 0.8: b Displacement field u1, c Displacement field
u2, d Cosserat rotation ϕ3. (Color figure online)

where

F = 8(1 − νN 2
c )

4 + (r Nc)2 + 2r Nc [K0(r Nc)/K1(r Nc)]
(124)

and K0 and K1 are the modified Bessel functions of the sec-
ond kind of order zero and one, respectively, r is a ratio of
the radius of the hole R to an internal length scale parameter
lc defined as

r = R

lc
, lc =

√
Aχ

4μ
(125)

Additionally

Nc =
√

Hχ

μ + Hχ

0 ≤ Nc ≤ 1 (126)

represents a coupling parameter between the macro problem
and Cosserat problem. Note that the couple-stress theory is
restored for Nc = 1, that is, for Hχ → ∞. The second limit
case, Nc = 0, leads to two uncoupled problems, thus the
stress concentration for classical elasticity is recovered.

Therefore, for the elastic Cosserat continuum, the stress
concentration factor depends on the Poisson ratio ν, coupling
parameter Nc, and on the ratio r of the radius of the hole to
the material length.

The hole problem was simulated using bi-quadratic
quadrilateral finite element shape functions for displace-
ments as well as Cosserat degrees of freedom. Owing to the
symmetry of the loading and geometry only a quarter of the
domain is modeled. Appropriate symmetric boundary condi-
tion were applied: u2 = 0 and ϕ3 = 0 on the horizontal axis
of symmetry and u1 = 0 and ϕ3 = 0 on the vertical axis of
symmetry.

To show the capability of the hyper-reduction, the stress
concentration at the pole was explored in a two dimensional
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Fig. 26 Stress concentration: a Parametric space with the selected
snapshot points, 4 snapshots case designed with the red star and 6
snapshots with the blue circle. Distribution along the hole computed

with r = 25, N = 0.8: b displacement field u1, c displacement field
u2, d Cosserat rotation ϕ3. (Color figure online)

Fig. 27 Stress concentration:
reduced integration domain
generated by DEIM for four
snapshots

parametric space for a wide range of parameters lc and Nc,
namelyμ = [lc, Nc]. The classical material parameters were
chosen as E = 70,000MPa, ν = 0.4while Cosseratmaterial
parameterswere varied, Nc from0 to 0.9 and lc from0.04mm

to 200 mmwhich for fixed radius of the hole R = 1 mm cor-
responds to the variation of parameter r between 0.005 and
25. First, the capability of the hyper-reduction with mixed
basis POD to predict the concentration factor was evaluated
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Fig. 28 Stress concentration:
reduced integration domain
generated by DEIM for six
snapshots

using 4 snapshots. The snapshots were chosen as permuta-
tions of components of parameter vectors ls = [0.1, 100]mm
and Ns = [0.5, 0.9]. Figure22a shows the stress concentra-
tion obtained by the hyper-reduced simulations. The results
are in a good agreement with the analytical results in a big
part of the parametric space, see Fig. 22b, c. However, the
error exceeded 25% in a right upper part of the parametric
domain which was also correctly predicted by the error esti-
mator plotted in Fig. 22d. Note that to estimate the error of
the stress concentration, the maximum of values defined in
(105) and (106) is used, i.e., η = max(ηu, ηχ ). Correspond-
ingly, based on the error estimator, the parametric vector ls
was enhanced by lc = 0.04 mm, thus six snapshots were
collected. Besides that the dimension of the reduced bases
again coincide with the number of snapshots in both cases.

The six snapshots hyper-reduced solutions are depicted in
Fig. 23a. The accuracy of the hyper-reduction is assessed in
Fig. 23c where the difference between the hyper-reduced and
analytical solutions are compared. Note that this error con-
tains also the finite element error related to the discretization.
The estimated error is illustrated in Fig. 23d. It is apparent
that the hyper-reduced simulations give accurate estimations
of the stress concentration factor; moreover, the error estima-
tor provides a good approximation of the validity domain.

To explore the results deeper, distributions of the dis-
placements and Cosserat rotation along the hole for different
values of the internal length and its comparison with finite
element solutions is depicted in Figs. 24, 25 and 26. The
position is specified by θ which is an angle measured from
the vertical axis in the clockwise direction, see Fig. 20.
Seemingly, the solutions obtained with four snapshots are

Table 2 Stress concentration: CPU ratio comparison

Number of snapshots POD Hyper-reduction

4 0.432 0.124

6 0.491 0.171

comparable with the finite element simulation for Nc = 0.8
and r = 0.01, still, considerably different for r = 7 and
r = 25. A good agreement was achieved with six snapshots
for all cases as was predicted by the error estimator. Com-
parison of the reduced integration domains for the first and
second case can be seen in Figs. 27 and 28. The reduced inte-
gration domain was assembled automatically applying the
DEIM technique on the reduced basis for degrees of free-
dom and stresses, as a result, the reduced integration domain
is larger for the second case which reduced basis has a big-
ger dimension. Finally, comparison of the CPU ratio between
the POD and hyper-reduction was evaluated. The results are
summarized in Table2. The speed-up of the simulation is
around 6 for the hyper-reduction method and approximately
2 for POD.

Finally, the size-dependent concentration factor is explored
using the separated basis PODwith the hyper-reduction. The
same simulations as in the previous section are repeated
and the results for the case with 4 snapshots can be seen
in Fig. 29a–d. In comparison with Fig. 22a–d the separate
basis approach leads to more accurate results with maximal
estimated error around 14%.

As was already stated the physical meaning of constrain-
ing micromorphic degrees of freedom is a difficult topic that
depends on the specific physical content of the model. For
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Fig. 29 Stress concentration: a hyper-reduced solutions, b analytical solutions, c true error, d error estimator η

instance, in the context of metal plasticity, it amounts to pre-
venting dislocations to occur at this surface due to passivation
effect. In the examples of Sects. 4.1 and 4.2, the micromor-
phic variable is constrained at the boundary in order to trigger
a non-homogeneous boundary layer effect. In these exam-
ples, Neumann boundary conditions with vanishing higher
order traction would lead to the classical homogeneous solu-
tion. In Cosserat example Sect. 4.3, the boundary layer effect
is induced by the stress concentration so that Neumann
conditions for higher order tractions are used around the
hole because this is a free surface. Far from the hole the
boundary conditions are such that the fields remain homoge-
neous.

5 Conclusions

In the present paper, to our best knowledge the first reduced
order modeling of general linear micromorphic continua has
been introduced. The approach is general in the sense that
it can be applied to a large class of generalized continua,
namely to micromorphic continua with different number of
additional degrees of freedom ranging form 1 to 9, includ-
ing the microdilatational and Cosserat cases treated in the
paper. The POD together with the hyper-reduction method
were introduced and applied to three examples. The POD
method was used to create the reduced basis. Moreover,

two approaches were explored in the context of creation of
reduced bases from two set of degrees of freedom with dif-
ferent physical meaning. Both of them leading to similar
results. It was shown that the structure of the hyper-reduced
approximation and assemblage of the reduced domain pre-
serves the structure of classical continuum, the equations are
just enhanced by micromrophic fields. The hyper-reduction
was applied to parametric study of the internal length param-
eter in microdilatation extension and clamped tension. The
error estimator was introduced which enables to adaptively
increase the dimension of the reduced space by adding
new snapshots in case of large error. Accurate results were
obtained with substantial reduction of computational time.
The final example explores size-dependent stress concen-
tration in Cosserat elasticity. Two parameter study was
performed and accurate values of stress concentration were
achieved with four snapshots within a part of the parametric
space. To extend the validity domain, the reduced space was
enhanced by two snapshots which selection was based on
the error estimator. Finally, a good agreement between the
analytical and hyper-reduced solution were obtained and the
computational time was accelerated by a factor of 6. In all
presented examples, the RID is focused on regions with sig-
nificant gradient of micromorphic variables. This concerns
only very few elements of the original mesh.

Application of the hyper-reduction tomicromorphic mod-
els with gradient of internal variables which serves as
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localization limiters will be addressed in a separate paper.
The method of separate basis would be probably preferable.
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