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a b s t r a c t

The present paper aims at investigating the homogenisation of cellular materials in view of the
modelling of large but finite cellular structures. Indeed, computation costs associated with the complete
modelling of such structures can be rapidly prohibitive if industrial applications are considered. The use
of a homogeneous equivalent medium (HEM) for these cellular materials can be an efficient approach to
address this issue, but it requires the calibration of relevant homogeneous equivalent laws (HELs). Here,
the considered cellular materials are tube stackings. Various uni-axial and multi-axial loading cases have
been simulated, through the finite element method, on representative volume elements of such periodic
stackings. From these simulations, anisotropic compressible elasto-plastic constitutive equations have
been identified for the HEL. The anisotropy of the yield surfaces is discussed depending on the pattern of
the tube stacking (e.g. square or hexagonal). A validation of the identified laws is proposed by simulating
uni-axial compression and simple shear tests on sandwich structures made of tube stackings for their
cores. A systematic comparison, between the results obtained from the fully meshed structures and
those obtained from the structures whose core has been replaced with its HEM, allows us to address the
limitations of the HEM-based approach and the boundary layer effects observed on finite structures.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cellular materials have been widely studied for their various
functionalities [1] which make them attractive for numerous
applications, for instance in which impact resistance or acoustic
absorption is required. From a mechanical point of view, high
specific properties relative to the bulk are expected which could be
very useful in the development of lightweight aeronautical frames.
However, the modelling of such cellular materials presents some
difficulties because of the issue of the separation of their different
characteristic scales; the size of the constitutive cells is often in the
same order of magnitude as the one of the structure. A refined
modelling of the mechanical behaviour of these materials is thus
necessary to simulate large structures (with many constitutive
cells but without increasing the computation costs), but keeping
information on the local mechanisms which govern their mechan-
ical behaviour (such as localised plasticity in the cells). To address
this issue, a modelling approach based on the identification and
the use of a homogeneous equivalent medium is investigated here.

By using a multi-scale description of cellular materials, many
authors were interested in the influence of the intrinsic morphological

and material parameters of these materials on their effective mechan-
ical properties. For instance, one can cite the works of Silva et al. [2,3],
Fazekas et al. [4], Sanders and Gibson [5,6] and Marcadon and Kruch
[7] concerning the effect of the architecture or those of Amsterdam
et al. [8,9] Mangipudi et al. [10] and Marcadon et al. [11,12] addressing
the effect of the constitutive material. Numerous studies investigated
also the characterisation of the damage mechanisms which govern the
failure of cellular structures, especially the collapse of their constitutive
cells [13–16]. The scale transition between both the microscopic and
the macroscopic scales allowed authors to study the initial macro-
scopic plastic yield stress from the first plastic hinge at the microscopic
scale, such as proposed by Gasser et al. [17]. Alkhader and Vural [18]
studied the beginning of plasticity in foams depending on the topology
and the resulting dominant deformation modes. The macroscopic
yield and the behaviour of cellular structures in their inelastic domain
have been studied too. Experimental campaigns of characterisation
have been carried out on various geometries under both quasi-static
[19–21] and dynamic [22,23] loads, but also computational character-
isations. Full scale models have been developed for various architec-
tures of cellular materials. Depending on the geometry of the cells,
authors proposed different models such as beam models at finite
strains for Papka and Kyriakides [24], shell models of real geometries
coming from tomography analyses for Caty et al. [25], or solid models
in 2D or 3D for Marcadon et al. [11,21]. In order to get macroscopic
mechanical responses, authors used homogenisation techniques too

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

http://dx.doi.org/10.1016/j.ijmecsci.2015.02.007
0020-7403/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ33 146734524; fax: þ33 146734891.
E-mail address: Vincent.Marcadon@onera.fr (V. Marcadon).

International Journal of Mechanical Sciences 93 (2015) 240–255

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2015.02.007
http://dx.doi.org/10.1016/j.ijmecsci.2015.02.007
http://dx.doi.org/10.1016/j.ijmecsci.2015.02.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2015.02.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2015.02.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2015.02.007&domain=pdf
mailto:Vincent.Marcadon@onera.fr
http://dx.doi.org/10.1016/j.ijmecsci.2015.02.007


for non-periodic media, see for instance the work of Ostoja-Starzewski
[26].Beam models were used to study the influence of the morphol-
ogy, i.e. variations of the cell size or geometrical defects and their
dispersion, on the elastic properties and the onset of plasticity [27–29].
More complex beam elements were also considered in advanced
models in order to better capture the architecture and the local
collapse mechanisms [10,30,31].

Cellular materials are increasingly used in large structures. Thus
their behaviour under arbitrary load depending on the application has
to be known in order to predict the behaviour of whole structures.
One can either consider a full-scale model describing all the char-
acteristic scales of the material, but the computation costs become
rapidly too expensive. On the contrary, the heterogeneous architecture
can be replaced favourably by a homogeneous equivalent medium
(HEM) into the modelling [32,33]. However, this technique requires
the accurate characterisation of the relation between the macroscopic
stresses and strains. It can either be the result of nested finite element
simulations and be used in a structural model, or it can be an effective
material law. The FE2 (nested finite element) scheme [34–36] has the
advantage to need no assumption on the macroscopic mechanical
response, but it remains costly when applied to large 3D structures. On
the contrary, the HEM-based modelling is very efficient in terms of
computation costs, but it results in a loss of information concerning
the architecture of the cellular material and it must be rigorously
identified to be relevant. Various macroscopic material models that fit
the macroscopic behaviour of cellular materials have been proposed to
take into account their compressibility and their anisotropy. They can
be identified either from experimental results [37–39] or from periodic
simulations as proposed by Tsuda et al. [40]. Depending on their base
material properties and their architecture, the homogenised behaviour
can be isotropic (mainly for random architectures) or can exhibit an
anisotropy if a certain regularity in the organisation or a particular
shape of the cells exist. For instance, a quadratic yield criterion has
been proposed by Hill [41]. Similarly, several yield criteria were
proposed by Karafillis and Boyce [42], Barlat et al. [43] or Bron and
Besson [44] to model multi-axial non-quadradic yield flows. Moreover,
in the particular case of cellular materials, the void inside or within the
constitutive cells leads to the compressibility of the effective beha-
viour. A combination of both a shear criterion and a trace dependent
criterion governing the compressibility was originally proposed by
Green [45]. An isotropic compressible criterion was also proposed for
metallic foams by Deshpande and Fleck [39], whereas generalisations
of Green's quadratic model [45] were introduced by Badiche et al. [46]
and Xue and Hutchinson [32] for anisotropic compressible behaviours.
As an illustration of HEM-based approaches, Tsuda et al. [40] char-
acterised a plate-fin structure. The multi-axial inelastic behaviour was
characterised by simulating mechanical loads controlled in macro-
scopic strain up to 0.5%. The anisotropy, the compressibility and the
strain rate dependence of the structure effective behaviour were
studied and then a quadratic homogenised model was identified in
both the elastic and the inelastic domains.

The present work aims at investigating the homogenisation of
cellular materials too. Compared with the works of the literature
aforementioned, higher strain levels are investigated to discuss the
quadratic shape or not of the yield surfaces, depending on cellular
architecture and stress concentration, and their evolution accord-
ing to the level of cumulated plastic strain. Focus is also on the use
of such HEM in structural modelling and on boundary layer effects.
Reference is made to sandwich structures with a cellular core
made of stacked tubes as ‘model cellular structures’. The tubes are
stacked following either a square pattern or a hexagonal one. First,
in Section 2 the multi-axial behaviour of the cellular core is
characterised through periodic homogenisation and by simula-
ting various multi-axial loading cases on the unit cells of the
two different arrangements of tubes considered. The simulations
are performed up to 5% of macroscopic strain and a multi-axial

representation of the plastic flow surfaces is proposed in the
eigen-stress space from large number of finite element simula-
tions. Then, Section 3 is dedicated to the identification of a HEM
for each stacking type considered, square or hexagonal. To finish,
in Section 4 the HEM identified previously is used for the
modelling of finite sandwich structures made of a tube stacking
core. A systematic comparison, between the results obtained form
the reference calculations on the fully meshed structures (full-
scale modelling) and those predicted by replacing the cores of the
sandwich structures with their HEM, is proposed with the purpose of
evaluating the relevance of the homogenised constitutive equations
identified. A parametric study on finite sandwich structures with
various core sizes gives an understanding of the influence of the
boundary layer effects depending on both the architecture and the size
of the core. For this validation step, normal compression and simple
shear in the transverse plane of the tubes were considered as
loading cases.

2. Periodic homogenisation analysis of cellular structures

In order to study the macroscopic mechanical behaviour of
heterogeneous solids with specific architectures such as those of
the tube stackings considered here, a characterisation procedure is
proposed involving both the finite element (FE) modelling of
virtual multi-axial loading tests and periodic homogenisation
techniques.

2.1. Homogenisation method

This kind of cellular structure can be analysed by following a
standard homogenisation method. Therefore, the macroscopic
strain E

�
and the macroscopic stress Σ

�
are introduced, according

to the definition of Hill [47] and Suquet [48] for periodic homo-
genisation. They derive from the microscopic strain ε

�
and the

microscopic stress σ
�

obeying Eqs. (1) and (2):

Σ
�
¼ 〈σ

�
〉¼ 1

VΩ

Z
VΩ

σ
�
dVΩ ð1Þ

E
�
¼ 〈 ε

�
〉¼ 1

VΩ

Z
VΩ

ε
�
dVΩ ð2Þ

with VΩ denoting the volume of Ω, the domain occupied by the
considered unit cell. Note that, if Eqs. (1) and (2) are still valid here
because VΩ contains the porous part of the unit cell, their
computation is not so obvious for cellular materials from the
finite-element method [49,50]. In fact, whereas the stress in the
voids is known (it equals to 0), so that the macroscopic stress can
still be computed from Eq. (1), the strain in the voids is unknown.
In that case, the macroscopic strain can be computed from the
displacements on the corners of the unit cell with suitable multi-
point constraints on the remaining parts of the boundaries.

The multi-scale character of the studied cellular structures is
used to carry out the averaging procedure; one periodic unit cell is
isolated for each stacking pattern as illustrated in solid lines in
Fig. 1. Since focus is only on both elastic and plastic mechanical
properties here, the periodic unit cells are valid representative
volume elements (RVEs) of the considered regular tube stackings
[26]. FE simulations were conducted on the RVE of each stacking
pattern to characterise their homogenised mechanical behaviour
under multi-axial loads. The RVEs were meshed with triangular
quadratic elements and the FE code Z-set (http://www.zset-soft
ware.com/) was used for the simulations. The different modelling
assumptions formulated in the present work are listed hereafter.

Owing to the extruded character of the tube stackings only
two-dimensional cross sections of the RVEs have been considered
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by using generalised plane-strain conditions. Hence it enabled us
to simulate both in-plane and out-of-plane mixed loading cases
without considering three-dimensional meshes [51]. To apply the
periodic boundary conditions, linear multi-point constraints were
imposed on the periodic components of the total displacement
field on the pairs of opposite nodes on the boundary of the RVEs.
The periodic components of the displacements were also set to
zero on the unit cell vertices to fix rigid body motions. A small
deformation formulation was adopted too for the range of macro-
scopic strain studied (up to 5%). The periodic homogenisation
formulation implemented in Z-set allows us to prescribe either
macroscopic strains or macroscopic stresses [34].

To illustrate the homogenisation approach described in the
present paper, the constitutive material has been assumed to be
homogeneous in the tubes and in the braze joints on the basis of
our previous works on brazed tube stackings made of nickel-based
superalloys [12,21]. Its mechanical properties were identified by
performing tensile tests on single tubes after the brazing heat
treatment (see [12,21] for more details concerning the processing
of such tube stackings and the mechanical characterisation of their
constitutive material). The constitutive material is assumed to
exhibit an isotropic linear elasticity (Hooke's law) and an isotropic
non-linear plasticity governed by the von Mises yield criterion.
The classic additive decomposition of the total strain ε

�
into an

elastic part ε
� e

and a plastic one ε
� p

, i.e. ε
�
¼ ε

� e
þ ε

� p
, is assumed.

The constitutive equations of the bulk metal model are the
following:

ε
� e

¼ 1þν
E

σ
�
�ν
E
trðσ

�
Þ I
�

ð3Þ

and

_ε
� p

¼ _λ
∂F
∂σ
�

ð4Þ

where _λ is the scalar plastic multiplier and I
�

is the second-order
identity tensor. E and ν denote Young's modulus and Poisson's
ratio of the constitutive material, respectively. The yield function is

F ðσ
�
; pmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
σ
� D

: σ
� D

r
�rðpmÞ ð5Þ

with σ
� D

being the deviatoric part of σ
�
, σ

� D
¼ σ

�
�ð1=3Þ trðσ

�
Þ I
�
,

and pm the cumulated plastic strain,

pm ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þ _ε

� p
: _ε

� p

r
dt ð6Þ

The instantaneous yield stress rðpmÞ varies according to the

following relation:

rðpmÞ ¼ σyþhpmþqð1�expð�bpmÞÞ ð7Þ
with σy and h denoting the initial yield stress and the hardening
modulus of the constitutive material, respectively. q and b are the
material parameters of the non-linear hardening term. The differ-
ent material parameters used are listed in Table 1.

In the present paper a fixed geometry has been considered for
both stackings. The external diameter of the tubes and their
thickness are equal to 5 mm and 500 μm, respectively, whereas
the length of the braze joints is 1 mm. For this set of geometrical
parameters, the ratio of matter is about 29% for the square stacking
and 32% for the hexagonal one.

2.2. Homogenised uni-axial mechanical responses

The first step for the numerical mechanical characterisation
consisted in the FE simulation of uni-axial tests on the RVEs of the
tube stackings. Uni-axial tensions in both the X- and Y-directions
(axes are defined in Fig. 1) have been performed as well as XY-
plane shear up to 5% of total strain (as illustrated in Fig. 2 for the
square stacking and in Fig. 3 for the hexagonal stacking). Uni-axial
tensile tests along the out-of-plane Z-direction have been per-
formed too for the same level of strain.

From the different uni-axial tensile and simple shear tests
simulated, the elastic moduli have been identified first from purely
elastic simulations, in order to avoid a plastic contribution that can
occur even for very low strain levels due to stress concentration
observed for cellular structures. The effective elastic behaviour of
the stackings is defined by Hooke's law for linear anisotropic
elasticity:

Σ
�
¼ C

�
: E

� e
ð8Þ

where C
�

and E
� e

denotes the effective stiffness tensor and the
elastic part of the macroscopic strain tensor, respectively. The
different components identified for C

�
are given in Table 2 for both

stacking patterns.

Y

X
Z

Fig. 1. Unit cells of the periodic tube stackings studied: (a) the square pattern, (b) the hexagonal pattern.

Table 1
Mechanical properties used for the constitutive material (coming from [12]).

Young's modulus, E (MPa) 171,900
Poisson's ratio, ν 0.3
Initial yield stress, σy (MPa) 160.8
Hardening modulus, h (MPa) 1974
Non-linear hardening parameters, q (MPa), b 46.5, 76.2
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The results of the homogenisation procedure exhibit a non-linear
and a strongly anisotropic behaviour in the case of the elasto-plastic
simulations (see Fig. 4), whatever the loading case is. The main
anisotropy comes from the extruded character of the tube stackings;
the whole cross-section is homogeneously deformed in the Z-direction
and the tube stacking behaves similar to its constitutive material to
within a factor that equals approximately the fraction of matter
present in the cross-section. The in-plane directions, X- and Y-
directions show non-linear behaviours for both types of stacking. It
is the result not only of the non-linear behaviour of the base material,
but also of the microscopic stress concentration in the tube walls and
around the braze joints. The X- and Y-directions are equivalent in the
case of the square stacking, leading to the same mechanical responses
in both directions as illustrated in Fig. 4(a). On the contrary, the
hexagonal stacking shows an additional in-plane plastic anisotropy
(see Fig. 4(b)). The orientation of the braze joints relative to the load
direction in this particular stacking is different for each in-plane
direction, hence different concentrations of the microscopic stress
induce an earlier plastic yield in the neighbourhood of the braze joints
for a tensile test along the X-direction than along the Y-direction. The
macroscopic mechanical response of the hexagonal stacking along the

Y-direction for uni-axial tension is therefore stronger than that along
the X-direction. However, the hexagonal stacking remains isotropic in
terms of in-plane elasticity.

The square and hexagonal stackings show a rather similar
strength along the out-of-plane direction (the fractions of matter
in the cross-sections of the RVEs equal to about 29 and 32% for the
square and the hexagonal stackings, respectively). On the contrary,
the strength of the square stacking along the in-plane directions is
considerably lower than that of the hexagonal stacking. The

Fig. 2. Von Mises stress maps obtained for the square stacking for a macroscopic strain of 5%: (a) uni-axial tension along the X-direction (a similar map is obtained for the
tension along the Y-direction but rotated with an angle of 901), (b) simple shear in the XY-plane. The maps are plotted in terms of integration node values.

Fig. 3. Von Mises stress maps obtained for the hexagonal stacking for a macroscopic strain of 5%: (a) uni-axial tension along the X-direction, (b) uni-axial tension along the Y-
direction, (c) simple shear in the XY-plane. The maps are plotted in terms of integration node values.

Table 2
Elasticity moduli identified by periodic homogenisation (MPa). The lower indexes 1,
2 and 3 refer to the X-, Y- and Z-directions of Fig. 1, respectively. The components
C2323 and C3131 are not available because of the generalised plane-strain formula-
tion used for the simulations.

C
�

component (MPa) Square stacking Hexagonal stacking

C1111 ¼ C2222 7555 25,462
C3333 51,688 63,329
C1122 ¼ C2211 6744 9476
C2233 ¼ C3311 4292 10,490
C1212 2200 8010
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in-plane/out-of-plane anisotropy is considerably higher for the
square stacking. Braze joints have a stiffening effect on tube walls;
they are more numerous for the hexagonal stacking, thus they are
closer from ones to each others on a tube wall. Hence, the specific
density is not necessary the most relevant geometrical parameter
to explain the evolution of the mechanical properties of cellular
structures [7,11]. It can be also noticed that, the in-plane shear
strength of the square stacking is higher than its in-plane tensile
strength, which is not the case for the hexagonal stacking.

2.3. Planar bi-axial yield surfaces

The anisotropy of the plastic responses and their evolutions as
a function of the loading path have then been characterised for
each stacking pattern by a large number of FE simulations of bi-
axial tensions. The yield surfaces have been built by simulating
proportional loading paths in the space of the principal macro-
scopic stresses. Indeed, in a chosen ΣaΣb�plane, where Σa and Σb

are the principal components of the bi-axial loading, proportional
loading paths can be set for a discrete number of θ ranging in
½0;2π�:
Σa ¼Σ0 cos θ
Σb ¼Σ0 sin θ

(
ð9Þ

with Σ0 denoting the amplitude of the bi-axial load. According to
the additive decomposition of the total macroscopic strain E

�
into

an elastic part and a plastic one, the macroscopic plastic strain E
� pcan be computed from relation:

E
� p

¼ E
�
� C

�
�1 : Σ

�
ð10Þ

As already mentioned, the macroscopic plasticity results from both
the constitutive material (through its plastic properties) and the
architecture of the cellular structure (due to stress concentration)
[10,21]. Thus a measure of the macroscopic cumulated plastic
strain p has been chosen to parametrise the evolution of the
hardening behaviour:

p¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_E
� p

: _E
� p

s
dt ð11Þ

The macroscopic stress controlled proportional loading paths
provide the minimal macroscopic cumulated plastic strain for a
given macroscopic stress state. It is the shortest path to reach a
point on the actual yield surface.

Various threshold values of p¼ p1; p2…pn have been set and for
each one the corresponding macroscopic stress state was retur-
ned (see Fig. 5). An iterative routine was applied for a finer

convergence toward the imposed thresholds. Both in-plane and
combinations of in-plane and out-of-plane bi-axial loading cases
have been simulated first on the RVEs. Iso-value surfaces of the
macroscopic cumulated plastic strain have thus been drawn by
assembling the results of the simulated multi-axial tests obtained
by varying the value of θ in the range of ½0;2π�. The surfaces
obtained in this way for each pn have then been considered as
macroscopic yield surfaces. The steps of θ depend on the local
curvature of the yield surface; it varies from 0.51 where the
curvature is high to 101 for a low curvature. The yield surfaces
obtained for both stacking patterns are illustrated in Figs. 6 and 7
for threshold values for p¼0.002, 0.02 and 0.05.

The analysis of the yield surfaces is in accordance with the results
coming from the uni-axial characterisation, see Figs. 4(a) and 6(a) for
the square stacking or Figs. 4(b) and 7(a) for the hexagonal one. They
provide the same information for these particular loading cases. Figs. 6
and 7 highlight the anisotropy of the in-plane and out-of-plane
behaviours for both stackings. Especially, the strong out-of-plane
anisotropy observed results from the extruded character of the tube
stackings and their higher strength along the Z-direction. Similar
anisotropic behaviours have been already observed by Sanders and
Gibson [5,6] on regular hollow-sphere stackings. However, some
differences exist between the square stacking behaviour and that of
the hexagonal stacking. Indeed, because of the equivalent roles of the
X- and Y-directions for the square stacking, the yield surfaces exhibit a
symmetric shape close to be elliptic but elongated along the axis for
which Σ1 ¼Σ2. This is never the case for the hexagonal stacking in
which the yield surfaces have non-quadratic shapes. However, the
quadratic description or not of the yield surfaces remains a rather
complex issue. As described below (see Section 3), even though the
shape of the yield surfaces remains non-quadratic in all cases for the
hexagonal stacking, if the yield surfaces are plotted in 2D in terms of
plastic work density rather than cumulated plastic strain, those of the
square stacking exhibit a quadratic shape. Thus, we suppose that the
non-quadratic shape of the yield surfaces is intrinsic to the hexagonal
stacking. It can be explained by the architecture; the localisation of the
plasticity in the neighbourhood of the braze joints first and then in the
tubewalls govern the direction of the plastic flow and its evolution. On
the contrary, the pointed shape of the yield surfaces observed for the
square stacking in 3D may result from out-of-plane plastic Poisson's
ratio effects. For both stackings, a non-homothetic evolution of the
yield surfaces according to the cumulated plastic strain is observed.
Such an evolution is a sign of the compressibility of the materials
enhanced by their anisotropy. It implies that in the yield criterion
chosen the equivalent stress must be a non-linear function of not only
the deviatoric part of the stress tensor, but also of its hydrostatic part
to account for this compressibility.
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Fig. 4. Mechanical responses for the uni-axial tensile tests along the X-, Y- and Z-directions, and the simple shear in the XY-plane, (a) for the square stacking, (b) for the
hexagonal stacking.
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2.4. General multi-axial loading cases

This section aims at generalising the method used previously
for the characterisation of the planar bi-axial yield surfaces to 3D
multi-axial ones. Only the initial yield surface p¼0.002 has been
represented for that purpose. This new representation of the yield
surface provides additional information regarding the compressi-
bility of the tube stackings under tri-axial loading, and its
anisotropy. The loading paths simulated were no longer propor-
tional but, instead, a pre-load up to a macroscopic hydrostatic
stress state then followed by a multi-axial loading path along the
radii of the deviatoric planes have been applied to the RVEs. The
deviatoric planes are those having the hydrostatic Σh-axis as
normal, i.e. the planes in which Σ1 ¼Σ2 ¼Σ3. Assuming that the
macroscopic behaviour is purely elastic up to the yield stress
allows the use of non-proportional loading paths. To characterise
the evolution of the three-dimensional yield surfaces, we could
have considered a projection of the loading paths onto a system of
spherical coordinates, similar to the method used before to obtain
the planar bi-axial yield surfaces. But it would have required too
many simulations.

Fig. 8 shows that the obtained 3D yield surfaces are closed
along the spherical part of the macroscopic stress. The tips of the
yield surfaces showing the compressible plastic behaviour are not
centred around the hydrostatic Σh-axis because of the higher
strength along the Z-direction characterising both the square and
the hexagonal stackings. It can be also noticed that the surfaces are
rather flat in the ΣhΣ3�plane, especially for the square stacking.
Moreover, the near-vertical edge of the yield surfaces under
macroscopic hydrostatic loading illustrates the very high yield
stress along the out-of-plane direction.

3. Identification of homogeneous equivalent laws

After having characterised the anisotropic elasto-plastic beha-
viour of both the square and the hexagonal stackings, focus is now
on the construction of homogeneous equivalent laws (HELs) of

these cellular architectures. They have to gather the distinctive
features observed previously from the simulations on the RVE,
such as their anisotropic elasticity and anisotropic compressible
plasticity. We first start with the identification of a yield criterion
for the square stacking and then address the case of the hexagonal
stacking. Both stackings have some features in common but they
differ regarding the equivalent stress measure involved in the yield
function.

3.1. Square stacking

3.1.1. Formulation of the yield criterion
The total macroscopic strain E

�
is additively decomposed in the

same manner as before (Eq. (10)), i.e. with an elastic part E
� eobeying Eq. (8) and a plastic part E

� p
obeying an associated plastic

flow rule:

_E
� p

¼ _λ
∂G
∂Σ
�

ð12Þ

with _λ being the scalar plastic multiplier and G being the plastic
potential written as GðΣ

�
; pÞ ¼Σeq�RðpÞ. An elliptic anisotropic

criterion, based on Green's one [45] and proposed by Badiche
et al. [46], is chosen as yield criterion:

Σ2
eq ¼ 3CΣ2

e þFΣ2
m ð13Þ

where C and F are scalar material coefficients and where Σm

denotes the modified trace of Σ
�
.

Σm ¼ c1Σ11þc2Σ22þc3Σ33 ð14Þ
with c1, c2 and c3 three scalar material coefficients expressing the
anisotropy of the compressibility. It is worth noting that a general
form of such an anisotropic compressible yield criterion has been
proposed by von Mises [52] by considering an equivalent stress
depending on the stress tensor as a whole, including the hydro-
static part, and not on its deviatoric part on one side and on its
trace on the other side.

The criterion is written in a general way from the literature and
the F parameter of Eq. (13) sets the sensitivity to a hydrostatic
stress state. In the anisotropic formulation, F becomes redundant
with the coefficients on the components of the trace of the
macroscopic stress tensor, hence F is set to 1. Eq. (13) is also
function of an equivalent shear stress Σe. Since in the case of the
square stacking a close to quadratic plastic behaviour has been
observed, an equivalent stress of Hill [41] has been chosen:

Σe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðΣ
� D

: H
�

: Σ
� D

Þ
r

ð15Þ

where Σ
� D

denotes the macroscopic deviatoric stress tensor,
Σ
� D

¼ Σ
�
�ð1=3Þ trðΣ

�
Þ I
�
, and H

�
is Hill's fourth-order diagonal

tensor governing the anisotropy. An equivalent macroscopic
cumulated plastic strain p has been defined from Eq. (12) as
_p ¼ _λ assuming an associated plastic flow and the equality of theFig. 5. Construction method of the yield surfaces.

Fig. 6. Planar yield surfaces for the square stacking: (a) Σ1Σ2�plane, (b) Σ1Σ3�plane (or Σ2Σ3).
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macroscopic plastic dissipation [46]:

Σ
�

: _E
� p

¼Σeq _p ð16Þ

The effective hardening RðpÞ of the cellular structure is non-
linear isotropic with the form:

RðpÞ ¼ΣyþHpþQ1ð1�expð�B1pÞÞþQ2ð1�expð�B2pÞÞ ð17Þ
where Σy and H denotes the initial effective yield stress and the
effective hardening modulus. The Qi and Bi are the parameters of
the effective non-linear hardening terms. An additional non-linear
exponential term has been added compared to the constitutive
material in order to account for the non-linearities induced by the
architecture.

3.1.2. Effective mechanical properties
After having defined the formalism of the homogeneous

equivalent law, the different effective parameters have been
identified from the simulated uni-axial tensile tests, the shear test
and the in-plane bi-axial yield surface. The elastic moduli have
been identified first from the extension and shear tests, as
mentioned previously. They are given in Table 2. However, the
identification of the effective plastic properties is more complex
and, because of the number of parameters, a numerical fitting
procedure has been carried out.

The shear coefficient of Hill's tensor H
�

is multiplied by the
scalar C. Since C is in relation with Σe in Eq. (13), it gives the ratio
of sensitivity to the spherical and deviatoric parts of the macro-
scopic stress respectively onto the plastic behaviour. Hence H1212

has also been assumed to equal to 1. The c3 parameter, controlling
the out-of-plane compressibility for a hydrostatic stress state has
been set to 0 due to the negligible yielding observed along the Z-
direction under a spherical load (see Fig. 8). In-plane pure shear,
uni-axial and in-plane equi-bi-axial tensions have then been used
to determine the unknown material parameters that remained.
The in-plane shear stress–strain curve has been used in order to
determine the C parameter. The H

�
components governing the

anisotropy, the c1 and c2 parameters of the anisotropic compres-
sibility and the hardening parameters have been determined by

fitting the stress–strain responses of the uni-axial and equi-bi-
axial tensions. In addition, the in-plane transverse macroscopic
strain of the uni-axial tension has been used to fit the local plastic
flow direction. A numerical optimisation has been carried out with
the Z-opt module of Z-set by using a Levenberg–Marquardt
algorithm. The constitutive model parameters identified are given
in Table 3.

The identified HEL has been validated by applying it on a
single integration point in the Z-sim behaviour simulation mod-
ule of Z-set and by simulating the different uni-axial and bi-axial
loading cases considered previously for the characterisation of
the behaviour of the square stacking RVE. Since they have been
used as reference loading cases in the fitting procedure, the uni-
axial tensions and in-plane shear show a very good agreement
between the mechanical responses of the RVE and those of its
HEM (see Fig. 9). The anisotropy as well as the non-linearity of
the in-plane behaviour of the RVE of the square stacking are well
described by its HEL. The out-of-plane non-linear behaviour
predicted by the HEL shows the right trend too, but the fit is
not as good as the in-plane ones due to the different origins of
the effective non-linear behaviour. Indeed, the non-linearity
resulting from the architecture can be neglected in the case of
the out-of-plane behaviour of the stacking which is governed by
that of its constitutive material only. Thus, the supplementary
non-linear isotropic hardening term (Q2, B2) added to correctly
capture the in-plane behaviour is detrimental to fit the out-of-
plane behaviour. The bi-axial yield surfaces in the Σ1Σ2�plane
are presented in terms of iso-surfaces of density of plastic work,
Wp ¼

R t
0 Σ� : _E

� p
dt, in Fig. 9 too. This measure has been chosen in

order to present the results independently from the form of the
HEL yield criterion. The yield surfaces show a very good agree-
ment between the mechanical responses of both the RVE and the
HEM. The uni-axial extension stress–strain responses are equal in
both the X- and Y-directions and the quadratic form of the yield
surfaces under a bi-axial stress state is well captured. The
hardening is also well modelled owing to the two non-linear
exponential hardening terms. In the case of coupled in-plane/
out-of-plane stress states the HEL identified fits quite well the
behaviour too, in terms of stress state and plastic flow direction.

Fig. 7. Planar yield surfaces for the hexagonal stacking: (a) Σ1Σ2�plane, (b) Σ1Σ3�plane, (c) Σ2Σ3�plane.
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However, Fig. 10(a) shows that according to the uni-axial tensile
simulations the evolution of the hardening along the Z-direction
is not as well fitted as in the in-plane directions.

To discuss the choice of the representation of the yield surfaces
in terms of plastic work density here rather than in terms of
cumulated plastic strain, a comparison between the mechanical
responses of the HEM identified for the square stacking and those
coming from the simulations on the RVE is illustrated in Fig. 10
(b) in terms of cumulated plastic strain in the plane Σ1Σ2. In fact,
the classical cumulated plastic strain has been chosen a priori as a
representative measure of the plastic behaviour of the tube
stackings in the first part of this work because of their unknown
behaviour. However, regarding the complex form of the yield
criterion identified and especially the strong in-plane/out-of-plane
anisotropy, the use of the cumulated plastic strain presents some
problems since it accounts for an out-of-plane plastic strain even
for a pure in-plane loading. The sharp shape of the yield surfaces
observed for an in-plane bi-axial loading results from the out-of-
plane plastic Poisson's effect and is very difficult to capture. For

Fig. 8. Initial p¼0.002 three-dimensional yield surfaces in the space of the macroscopic stresses: (a) and (b) for the square stacking, (c) and (d) for the hexagonal stacking.
For the sake of clarity, there are no units on the axes and the reader has to refer to Figs. 6 and 7 for the values for the square and the hexagonal stackings, respectively.
However, the shapes of the three-dimensional yield surfaces illustrated in this figure are not distorted ones; the scale is the same for all the axes.

Table 3
Effective plastic properties identified for the square stacking. Similar to the C2323
and C3131 components of the stiffness tensor, the H2323 and H3131 components of
Hill's tensor are not available because of the generalised plane-strain formulation
used for the simulations.

Green's criterion Hill's tensor Isotropic hardening

C 1.8 H1111 5.2 Σy (MPa) 10
F 1 H2222 5.2 H (MPa) 161
c1 0.58 H3333 �2.5 Q1 (MPa), B1 5.5, 97
c2 0.58 H1212 1 Q2 (MPa), B2 6.5, 2700
c3 0
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this reason, the density of plastic work is a very convenient
measure to overcome this difficulty.

3.2. Hexagonal stacking

As shown into the work of Tsuda et al. [40], Hill's criterion does
not suit to capture non-quadratic yield surfaces. A good agreement
can be obtained when fitting the uni-axial mechanical responses
only but not when considering multi-axial loading cases in the
general case of cellular materials with a non-quadratic behaviour
[27,38,40]. Thus, the hexagonal stacking must be modelled with a
more complex yield criterion.

3.2.1. Formulation of the yield criterion
The macroscopic model chosen for the hexagonal stacking still

follows Eqs. (13), (14) and (17) regarding compressibility and
hardening. However, the equivalent shear stress is now governed
by a general non-quadratic yield function according to Bron and
Besson [44]:

Σe ¼ ½αððψ1Þ1=b1 Þaþð1�αÞððψ2Þ1=b2 Þa�1=a ð18Þ
with a, α, b1, b2 being scalar material coefficients. Functions ψ1 and
ψ2 obey

ψ1 ¼ 1
2
ðjS12�S13jb

1 þjS13�S11jb
1 þjS11�S12Þjb

1 Þ

ψ2 ¼ 3b2

2b2 þ2
ðjS21jb

2 þjS22jb
2 þjS23jb

2 Þ

8>>>><
>>>>:

ð19Þ

where the Sk ¼ 1�2
i ¼ 1�3 denote the principal values of two different

stress deviators Σ
�

k ¼ 1�2

D
defined as

Σ
�

k

D
¼ B

�
k : Σ

�
ð20Þ

and where

B
�

k ¼

ðck2þck3Þ=3 �ck3=3 �ck2=3 0 0 0

�ck3=3 ðck3þck1Þ=3 �ck1=3 0 0 0

�ck2=3 �ck1=3 ðck1þck2Þ=3 0 0 0

0 0 0 ck4 0 0

0 0 0 0 ck5 0

0 0 0 0 0 ck6

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð21Þ

An equivalent macroscopic cumulated plastic strain p is defined
from Eq. (12) as _p ¼ _λ assuming an associated plastic flow and Eq.
(16) [44]:

Σ
�

: _E
� p

¼Σeq _p ð22Þ

Many other phenomenological yield functions exist in the
literature [42,43], but the one proposed by Bron and Besson has
been preferred because of its general character that enables us to
capture a large variety of behaviours, anisotropic and quadratic
or not.

3.3. Effective mechanical properties

The procedure used to identify the constitutive parameters of a
HEL for the hexagonal stacking is similar to the one described
previously in Section 3.1.2 for the square stacking. The components
of the effective stiffness tensor have been identified first as already
mentioned (see Table 2 in Section 2.2). The c3 parameter in Eq. (14)
has been set to 0 (for the same reasons as in the case of the square
stacking). Concerning the shear behaviour, the c16 and c26 compo-
nents of the B

�
1 and B

�
2 tensors have been set to 1. In-plane pure

shear, uni-axial and in-plane equi-bi-axial tensions have then been
used to determine the remaining unknown material parameters.
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Fig. 9. Comparison between the mechanical responses of the HEM identified for the square stacking and those coming from the simulations on the RVE: (a) in terms of uni-
axial tensions and in-plane shear, (b) in terms of the Σ1Σ2�in�plane surfaces of plastic work density.

Fig. 10. Comparison between the mechanical responses of the HEM identified for the square stacking and those coming from the simulations on the RVE: (a) in terms of the
Σ1Σ3�out�of � plane surfaces of plastic work density, (b) in terms of the Σ1Σ2�in�plane surfaces of cumulated plastic strain.
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The in-plane shear stress–strain curve has been used for the
identification of the C parameter. The anisotropy parameters of
the B

�
1 and B

�
2 tensors associated with tensions and those

governing the compressibility, c1 and c2, have been calibrated by
fitting both the uni-axial and the equi-bi-axial tensions with the
mechanical responses of the HEM. The transverse strains have also
been used in order to capture the local plastic flow direction. The
set of parameters identified is given in Table 4. It is worth noting
that, because of the numerous parameters of the model, this set of
values is not unique. The results of the fitting procedure obtained
for the hexagonal stacking are illustrated in Fig. 11.

The comparison between the mechanical responses of the HEM
and those obtained from the FE simulations on the hexagonal RVE
shows reasonably close results (see Fig. 11). The bi-axial yield
surfaces in the XY-plane are presented in Fig. 11 too, with the same
graphic representation as the one used for the square stacking (see
Section 3.1.2). The anisotropy as well as the non-linearity of the in-
plane behaviour of the hexagonal stacking are successfully cap-
tured by the fitted HEL. However, when the load state is a mixed
one, with both in-plane and out-of-plane components, the model
displays some limitations due to the plastic transverse strain (not
illustrated here). The results could be improved by using a multi-
potential yield criterion that could be more accurate but more
complex too [53]. In addition, although the non-linear hardening
is fairly well modelled as a whole, in the particular case of the
hexagonal stacking some difficulties are encountered when trying
to capture perfectly the mechanical responses of bi-axial loading
cases. An additional anisotropy might be introduced on the
hardening, and not only on the yield criterion, but it would require
even more parameters. Thus we have preferred to keep the
aforementioned model that contains many parameters yet and
the Y-direction has been favoured in the fitting procedure for the
hexagonal stacking. This is according to the cases of validation of
the identified HEL considered for the simulation of sandwich
structures and described next in Section 4. Fig. 11 illustrates the
fact that both the hardening evolution and the normal to the flow
surface are correctly captured around the Y-axis.

Even if the corresponding fitted properties are not given in
Table 4 for the sake of brevity, we have tried to fit the homogenised
behaviour of the hexagonal stacking by using Hill's equivalent stress
rather than Bron–Besson's one, such as for the square stacking.
However, the fitted yield surfaces have been added in Fig. 11(b). As
mentioned before and according to the results of Tsuda et al. [40],
Hill's criterion permits us to capture uni-axial tensions but is not
sufficient to correctly capture the complex shape of the yield
surface and the right direction of the plastic flow locally in the case
of a multi-axial loading.

Comparisons between the mechanical responses of the HEM
identified for the hexagonal stacking and those coming from the
simulations on the RVE are illustrated in Fig. 12 in terms of the
Σ1Σ3�out�of � plane and Σ2Σ3�out�of � plane surfaces of
plastic work density. Similar to those obtained for the square
stacking, these comparisons assert the difficulty of capturing well
the in-plane behaviour and the out-of-plane one simultaneously,
despite the complex yield function considered here. In fact, neither
Hill's equivalent stress nor the one of Bron and Besson succeed in
reaching a close fit of the simulated yield surfaces.

4. Modelling of sandwich structures

The purpose now is the evaluation of the HELs identified before
for both stacking types for the modelling of finite sandwich
structures. The sandwich structures considered are made of upper
and lower skins with a tube stacking core in between. Reference
full-scale computations on fully meshed sandwich structures have

been performed first. The inhomogeneity of both the stress and
strain fields in the architectures, under uni-axial normal compres-
sive and in-plane simple shear loads, has been analysed. It has
permitted us to discuss the replacement of the stacking core with
its HEM into the modelling. Boundary layer effects resulting from
the finite size of the sandwich core on the mechanical responses of
the sandwich structures are addressed for both stacking types.
Similar to the simulations on RVEs of the tubes stackings (see
Section 2), simulations on the sandwich structures have been
performed by using quadratic triangles and the finite-element
software Z-set.

4.1. Geometries and models

Various sandwich structures have been considered for the
validation step of the HELs. These different structures are sum-
marised in Fig. 13. For all the simulated sandwich structures, the
geometrical parameters (e.g. the tube thickness and external
diameter, and the braze length) are kept constant and are the
same as those used for the identification of the HELs. The thickness
of the skins of the sandwich structures is fixed to 1 mm. The only
parameter that changes from one architecture to another is the
size of the core. It is defined by its numbers of whole tubes in the
width and in the height. The constitutive material properties are
also the same as those used previously for the characterisation of
the infinite tube stackings. Both square of hexagonal tube stack-
ings are considered.

In the case of the square stacking, the definition of the
sandwich structures has been straightforward since the modelled
structure is representative of a real one that would have been
processed by stacking and brazing the tubes between two skins in
one step [21]. For this structure, except for the free lateral edges,
all the core can be considered as periodic. Each tube has the same
number of neighbour tubes, hence the same number of braze
joints equal to 4. Moreover, this number is the same as the one in
the RVE of the stacking.

The case of the hexagonal stacking is a little bit more complex
and two different architectures must be considered. The first
architecture simulated is illustrated in Fig. 14(a). Similar to the
square stacking, we have considered an architecture in which each
tube in the sandwich contains the same number of neighbour
tubes as the one in the RVE, hence the same number of braze
joints that equals 6 for this stacking. It corresponds to a pseudo-
periodic core with cut peripheral tubes. However, this architecture
is not representative of a real structure that would have been
processed in one step by stacking the tubes between the skins.
Thus the second architecture made of full peripheral tubes, and
illustrated in Fig. 14(b), has been studied too in order to discuss
boundary layer effects. The peripheral tubes are not represented
by the periodic unit cell of the stacking because they do not have

Table 4
Effective plastic properties identified for the hexagonal stacking. Similar to the
C2323 and C3131 components of the stiffness tensor, the c14, c

1
5, c

2
4 and c25 components

of B
�

1 and B
�

2 tensors are left undetermined because of the generalised plane-

strain formulation used for the simulations.

Green's criterion Bron-Besson's tensors Isotropic hardening

C 2 b1 3 b2 2 Σy (MPa) 33
F 1 c11 0.81 c21 0.02 H (MPa) 410

c1 0.69 c12 0.15 c22 0.85 Q1 (MPa), B1 19, 71

c2 0.63 c13 0.93 c23 1.31 Q2 (MPa), B2 4.8, 1050

c3 0 c16 1 c26 1

a 17.4
α 0.524
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all their neighbouring tubes, hence a lower strength is expected
from this region of the core.

In parallel to this full-scale modelling, models of the sandwich
structures aforementioned have been proposed by replacing their
cores by their HEM. The aim was to considerably decrease
computational costs in view of structural modelling. The scale
transition between the cellular cores and their HEM has been
made by using the macroscopic laws identified from the homo-
genisation approach. This modelling strategy can be applied
when the load is not local [54]. It means that the multi-axial

stress state must evolve in space more slowly than the character-
istic length of the cellular architecture (or the explicit hetero-
geneity in a more general point of view in heterogeneous
materials) in order to respect the scale separation assumption.
Both the square stacking structure and the first hexagonal one
(architecture shown in Fig. 14(a)) could be described as finite
periodic cores except for the lateral faces of the sandwich
structures. Thus we have assumed in both cases that the tube
stacking cores could be replaced in the whole by their HEM. The
lateral free surfaces of the cores have been modelled as free
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Fig. 11. Comparison between the mechanical responses of the HEM identified for the hexagonal stacking and those coming from the simulations on the RVE: (a) in terms of
uni-axial tensions and in-plane shear, (b) in terms of the Σ1Σ2�in�plane surfaces of plastic work density.

Fig. 12. Comparison between the mechanical responses of the HEM identified for the hexagonal stacking and those coming from the simulations on the RVE: (a) in terms of
the Σ1Σ3�out�of � plane surfaces of plastic work density, (b) in terms of the Σ2Σ3�out�of � plane surfaces of plastic work density.

Fig. 13. Illustrations of the various sandwich structures simulated in the case of a fully periodic core (square stacking on the left, hexagonal one on the right).
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surfaces in the HEM-based simulations, such as in the full-
scale ones.

On the contrary, when considering the technological structures
for the hexagonal stacking illustrated in Fig. 14(b), the results
obtained from the full-scale simulations have shown that the core
can no longer be replaced by its HEM as a whole. It is due to the
preferential collapse of the tubes in contact with the skins.
Therefore, in that case the peripheral half-tubes have been kept
fully meshed and only the central periodic region of the core has
been replaced by the HEM. The interface between these two
domains, i.e. the fully meshed half-tubes and the HEM of the core,
is not continuous and the large strength difference between the
constitutive material of the tubes and the HEM results in an
indentation of the HEM by the tube walls. In order to avoid the
occurrence of this modelling artefact, a uniform displacement
condition normal to the interface between the half-tubes meshed
and the HEM has been applied on several nodes of the outer edges
of the HEM around the tube walls. This complementary modelling
assumption is in rather good agreement with the displacement
fields observed on the reference full-scale simulations. However,
some steps are observed on the deformed geometries between the
regions where the uniform displacement condition is applied and
those where node displacements remain free. A localisation of
the strain is observed at these steps but this modelling artefact
remains very localised and does not affect significantly the
macroscopic mechanical response of the sandwich structures. A
compromise has been found in terms of the width of interface
areas enabling us to minimise the displacement gradient but
without having a too strong indentation of the HEM. The width
equals to one third of the internal diameter of the tubes on both
sides of them; it corresponds to about four elements each time.
Thus, between two tube wall junctions with the HEM, the central
third of the edges of the HEM is deformed freely. In the case of the
in-plane shear load of the cellular structures, the displacement is
approximated by steps as illustrated in Fig. 15. More complex
interface conditions exit in the literature, such as the ones
proposed by Panasenko [55] and based on the decomposition of
the border of the domain in several sub-domains in which higher
order homogenised conditions are applied. However, for the sake
of simplicity, a uniform displacement condition has been preferred
here since it provides accurate enough results.

4.2. Results and boundary layer effects

Uniform compressive and simple shear loads have been applied
on the sandwich structures by imposing displacements to their
skins. Multi-axial stress states in the core of the sandwich
structures are observed due to the heterogeneous interfaces
between the core and both the lower and the upper skins.
Moreover, in spite of the absence of internal length-scale in the
HEM-based modelling developed in the present work, the macro-
scopic mechanical responses of the structures vary with respect to
the size of their core because of the difference in mechanical
strength between the skins and the core. The different mechanical
responses predicted by both the full-scale modelling and those
HEM-based are compared in Figs. 17–21. They are presented in
terms of nominal stress vs. nominal strain curves in order to
consider quantities that are not dependent on the size of the core
of the sandwich structure.

The reference full-scale simulations have been analysed first. In
the case of the square stacking they show in Fig. 16 a decreasing
effective strength of the sandwich structure with respect to an
increasing core size when there are as many tubes in the height as
in the width. However, this general trend has to be reconsidered if
the aspect ratio of the core (i.e. the ratio between the number of
tubes in the height and in the width) is not equal to 1, as illustrated
in Fig. 17. For a fixed height of the core, the macroscopic strength
of the sandwich structure increases with the width of the core
(Fig. 17(a)). This edge effect is the result of the containment role of
the skins. In contrast, for a constant sandwich width, an increase
of the number of tubes in the height of the core results in a
decrease of the macroscopic strength of the sandwich due to the
lateral free edges of the structure as illustrated in Fig. 17(b). The
decrease in macroscopic strength observed for sandwich struc-
tures with an aspect ratio of 1 when increasing the core size
(Fig. 16) suggests that the boundary layer effect that mainly
governs the sandwich structure behaviour is associated with the
lateral free edges. For this particular stacking, a pronounced barrel
shape is observed systematically under compression as illustrated
in Fig. 18(a). If the HEM-based simulations are now considered for
the square stacking (see Fig. 18(b)), they show rather satisfactory
results for modelling the behaviour of the sandwich structures
except for the smaller core size. Fig. 16 shows a convergence in

Fig. 14. The two different sandwich structures studied with a hexagonal core: (a) periodic core. (b) technological geometry, i.e. compact stacking of tubes between the
face skins.
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terms of macroscopic mechanical response between the full-scale
simulations and those HEM-based with respect to the core size of
the sandwich structure. Such a conclusion is true not only in the
case of a compressive load, but also in the case of a simple
shear one.

The case of the sandwich structures made of a hexagonal
stacking core is more complex. If the sandwich structure with a
pseudo-periodic hexagonal core is considered first, the various
full-scale simulations performed on this structure by varying its
core size lead to the same conclusions as those aforementioned for
the square stacking core (see Fig. 20). Furthermore, even if the gap
between the mechanical responses predicted from the full scale
models and those HEM-based is larger than that observed for the
square stacking (HEM-based modelling tends to systematically
overestimate the mechanical response for the hexagonal stacking),
the core size effect is well predicted. However, Fig. 21(a) shows an
increasing strength for the sandwich structure when increasing
the core size, for an aspect ratio close to one. Therefore, in contrast
to the square stacking, the boundary layer effect that mainly
influences the mechanical response of the sandwich structure is
the confinement effect of the skins. Indeed, the barrel shape of the
deformed structure under compression remains small compared
to that one observed for the square stacking core (Fig. 19). The
mechanical responses predicted by the HEM-based simulations
converge to those obtained from the reference full-scale simula-
tions (Fig. 21(a)).

The hexagonal stacking with whole peripheral tubes shows
very different trends due to the additional non-periodicity of the
core. The observation of the deformed maps reveals a strong
localisation of the collapse of the tubes that mainly occurs in the
peripheral tubes. This reduces significantly the strength of the core
but the effect saturates when increasing the core size (see Fig. 21
(b)). In that particular case, replacing the whole core with its HEM
leads to overestimate the mechanical response by the HEM-based
modelling, as illustrated in Fig. 21 in the case of a compressive
load. In contrast, a rather good agreement is obtained between the
results predicted by both the full-scale modelling and the HEM-
based one if only the periodic domain of the core is replaced with
its HEM and the half-tubes at the periphery are kept meshed. This
modelling strategy is a little bit less efficient to reduce computa-
tion costs and despite the very good agreement with the full-scale
model for the compressive load, it shows some limitations for the
simple shear load. It might be due to the use of a too simple
displacement boundary condition at the interface between the
peripheral tubes and the HEM to avoid its indentation. This issue
must be investigated deeper to improve our approach [55].

5. Conclusion

The present work aimed at investigating the relevance of
homogenisation approaches for the modelling of finite size cellular

Fig. 15. Illustration of the problem of the junction between the peripheral meshed
half-tubes and the homogenised core in the case of the technological hexagonal
specimen. This cumulated plastic strain map has been obtained in the case of an in-
plane shear load for the 7�7-hexagonal stacking core. The map is plotted in terms
of integration node values.
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structures under various loading cases. For that purpose, sandwich
structures made of a tube stacking core have been considered as
model cellular structures. Two different tube stacking cores have
been simulated, e.g. square or hexagonal, and two different
loading cases have been applied, e.g. uni-axial transverse com-
pression and in-plane simple shear. From a macroscopic point of
view those simple loading cases are interesting because of the
local multi-axial stress states observed in the cores resulting from
both the heterogeneity of the sandwich structure and the bound-
ary layer effects. The following conclusions can be drawn:

� first, the tube stacking cores have been characterised in detail
by simulating multi-axial loading cases on the represent-
ative volume elements of the stackings through the finite

element method. These simulations show significant differ-
ences between the two stacking patterns in terms of aniso-
tropy and shape of their yield surfaces. Especially, the braze
joints between the tubes and their orientation towards the
load direction play a significant role in the anisotropy of the
tube stacking behaviour. The simulations also highlight the
very strong in-plane/out-of-plane anisotropy of such cellular
structures resulting from their extruded character, hence
some difficulties to model both in-plane and out-of-plane
behaviours by using only one plastic potential. However, in
the restricted case of in-plane behaviours, a very good fit has
been obtained between the mechanical behaviours simulated
on the unit cells of both tube stackings and those predicted by
the identified HELs;

Fig. 18. Deformed maps of cumulated plastic strain of square stacking sandwich structures of a 7�7 tubes; (a) full-scale model, (b) HEM-based model. Note that the two
models have a different plastic strain measure as the full scale model has a very localised plastic strain and the HEM is homogeneous. The maps are plotted in terms of
integration node values.

Fig. 19. Deformed maps of cumulated plastic strain of hexagonal stacking sandwich structures of a 7�7 tubes; (a) full-scale model, (b) HEM-based model. Note that the two
models have a different plastic strain measure as the full scale model has a very localised plastic strain and the HEM is homogeneous. The maps are plotted in terms of
integration node values.
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� then, the identified HELs have been evaluated by simulating
finite sandwich structures consisting of a tube stacking core
between two skins in which the core was replaced with its HEM.
The results of these simulations have been compared to those
obtained on the reference full-scale structures. Even if some
limitations are observed in the case of the hexagonal pattern, the
simulations performed in various geometrical configurations
show the relevance of the HELs identified for the modelling of
sandwich structures made of tube stacking cores. The results of
the HEM-based simulations are very close to those of the full-
scale modelling for most architectures with considerably lower
computational costs (for instance, the gain is about a factor of
300 in the case of the 7�7-square stacking core).

� furthermore, the results obtained highlight significant boundary
layer effects too. Two different antagonistic effects are observed
resulting on one side from the containment effect of the skins
and, on the other side, from the lateral free edges of the
structure. Thus different trends have been identified in terms
of core size effect on the effective strength of the sandwich
structures, depending on the stacking pattern and the main
boundary layer effect that govern the mechanical response;

� nevertheless, the HEM-based approach detailed here still presents
some limitations when the assumption of the scale separation is no
longer verified or for instance when locally the RVE of the cellular
core is no more respected for technological or processing reasons.

Even if these effects are expected to vanish when increasing the
core size, one possible way to prevent them could be the use of
generalised continuummedia such as done for instance in [56–59].

Here, the macroscopic strain levels have been limited to 5% for reasons
of validity of the HELs identified in small deformations. Obviously,
locally the microscopic cumulated plastic strain levels can be con-
siderably higher in the tube stackings. Even if this preliminary study
provides interesting results concerning the effective plastic behaviour
of such cellular structures, some works are in progress to extend this
approach to large deformations and to address the modes of instability
that can occur at larger strain levels. Moreover, even if the HEM-based
approach developed here on tube stackings can be extended to many
other cellular architectures, it is worth noting that a universal yield
criterion does probably not exist for all cellular architectures. The yield
criterion must be adapted to the specific features of each cellular
architecture.
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