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Abstract The dislocation density tensor computed as the
curl of plastic distortion is regarded as a new constitutive
variable in crystal plasticity. The dependence of the free en-
ergy function on the dislocation density tensor is explored
starting from a quadratic ansatz. Rank one and logarith-
mic dependencies are then envisaged based on considera-
tions from the statistical theory of dislocations. The rele-
vance of the presented free energy potentials is evaluated
from the corresponding analytical solutions of the periodic
two-phase laminate problem under shear where one layer is
a single crystal material undergoing single slip and the sec-
ond one remains purely elastic.

Keywords Gradient plasticity · Crystal plasticity · Contin-
uum thermodynamics · Dislocation density tensor · Read–
Shockley energy

1 Introduction

The dislocation density tensor, as initially defined in
Refs. [1, 2] and recently revisited in Refs. [3, 4], is now rec-
ognized as a true constitutive variable to be introduced in the
crystal plasticity theory. Single crystal materials and grains
in polycrystal can store energy by increasing the densities
of so-called geometrically necessary dislocations directly re-
lated to the dislocation density tensor. The partial deriva-
tive of the free energy density function delivers a general-
ized stress having the physical dimension of couple stresses.
Accordingly, the crystal plasticity theory must be extended
to the mechanics of generalized continua that includes strain
gradient plasticity and micromorphic models [5]. Linearized
theories for crystals containing dislocations and disclinations
have been recently presented in Ref. [6]. The non-linear
elastic-plastic regime is the realm of strain gradient crystal
plasticity theory as explored in Refs. [7–10].
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We concentrate on theories introducing the full dislo-
cation density tensor and not the individual contributions of
each slip system. The reason is the computational ineffi-
ciency of the latter model class which requires to introduce,
at least, as many additional degrees of freedom as slip sys-
tems. In contrast, finite element simulations based on models
including the full dislocation tensor always require the same
number of additional degrees of freedom, irrespective of the
number of slip systems which can strongly differ for FCC,
BCC and HCP metals and alloys for instance.

Little is known about the relevant form of the free en-
ergy density function. A quadratic free energy potential
was first proposed in Ref. [11] and further investigated in
Refs. [9, 12, 13]. It leads to a linear relationship between the
generalized stress tensor and the dislocation density tensor.
Computational analyses based on such a quadratic ansatz
were then performed by Refs. [14–19]. In contrast a homo-
geneous function of degree one of the norm of the dislocation
density tensor was proposed in Refs. [20, 21]. Inspiration can
also be found in the free energy functionals proposed in the
class of strain gradient plasticity models that are based on the
individual densities of geometrically necessary dislocations
(GND) attached to each slip system. The effective free en-
ergy in Ref. [22] contains a contribution in ρ log ρ where ρ is
the total dislocation density, and a quadratic term in the GND
content. The internal energy density in Ref. [23] includes a
single logarithmic term in the total dislocation density. As
for them, Svendsen and Bargmann [24] introduce free en-
ergy densities depending on the absolute slip system related
GND densities and also on the product of density and its log-
arithm, thus following Groma. They also split the function
into contributions of screw and edge dislocation parts.

The objective of the present paper is to investigate the
relevance of various forms of the free energy density func-
tions including new ones motivated from dislocation the-
ory, by solving a boundary value problem on a laminate
microstructure. The predicted plastic slip distribution and
the corresponding size effects will be discussed to assess the
physical relevance of the proposed models. For instance, a
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1/� size-dependence of the stress at given plastic strain as a
function of the thickness � of the laminate unit cell was pre-
dicted by Ref. [25] whereas a 1/�2 dependence was found by
Ref. [10].

The kinematics and balance equations of the strain gra-
dient plasticity theory are recalled in Sect. 2. The laminate
boundary value problem is defined in Sect. 3. The corre-
sponding solutions for the quadratic and rank one models
are given in Subsects. 3.1 and 3.2, respectively. New energy
potentials are proposed and discussed in Sects. 4 and 5.

First, second and fourth order tensors are respectively
denoted by aaa, a∼, and a≈. The theory is formulated within the
small perturbation framework. Vector xxx denotes the position
of the material point. The scalar, vector and tensor products
are written “ · ”, “× ”, “⊗ ”, respectively. The differential
operators are defined in the following way with respect to a
Cartesian coordinate basis (eeei)i=1,3

grad aaa =
∂aaa

∂x j
⊗ eee j = ai, jeeei ⊗ eee j, (1)

div a∼ =
∂a∼
∂x j
· eee j = ai j, j eeei, (2)

curl a∼ =
∂a∼
∂xk
× eeek = ε jklai j,k eeei ⊗ eeel. (3)

Use is also made of the permutation third order tensor ε�.
2 Formulation of the curl HHHp model

The motion of the material points of the continuum is de-
scribed by the displacement vector field uuu(xxx). The gradient
of the displacement is called H∼ . It is split into its elastic and
plastic contributions

H∼ = graduuu = H∼ e + H∼ p, (4)

where H∼ e and H∼ p called the elastic and plastic deformations,
respectively. The displacement gradient, and its elastic and
plastic parts are decomposed into their symmetric parts, the
strains, and their skew-symmetric parts, the infinitesimal ro-
tations

H∼ = ε∼+ ω∼ , (5)

H∼ e = ε∼e +ω∼e, (6)

H∼ p = ε∼p +ω∼p. (7)

The dislocation density tensor is defined as

Γ∼ = curl H∼ p = −curl H∼ e, (8)

following Refs. [3, 4, 26]. Since elastic and plastic deforma-
tions are generally not compatible fields, in contrast to H∼ ,
the dislocation density tensor generally does not vanish.

Introducing such a new quantity in the continuum
model requires an extension of the classical Cauchy contin-
uum because the model involves not only the gradient of the
displacement field but also some combinations of the com-
ponents of the gradient of the plastic deformation field H∼ p.

The classical power of internal forces is enhanced by pow-
ers involving generalized stresses that are conjugate to the
plastic deformation rate and dislocation density tensor rate

p(i) = σ∼ : ε̇∼+ s∼ : Ḣ∼
p
+ M∼ : curl Ḣ∼

p
, (9)

where σ∼, only, is a symmetric second order stress tensor.
The generally non symmetric stress tensor s∼ is conjugate to
the plastic deformation rate. The physical dimension of M∼
justifies the name of double-stress tensor.

The Cauchy simple-stress tensor σ∼ fulfills the standard
balance and boundary conditions on the material body Ω
with boundary ∂Ω

divσ∼ = 0, ∀xxx ∈ Ω, (10)

in the absence of volume nor inertial forces

ttt = σ∼ · nnn, ∀xxx ∈ ∂Ω, (11)

where ttt is the usual traction vector. The generalized stresses
fulfill additional balance and boundary conditions

curl M∼ + s∼ = 0, ∀xxx ∈ Ω, (12)

mmm = M∼ · ε� · nnn, ∀xxx ∈ ∂Ω, (13)

where m∼ is called the double traction and corresponds to a
surface density of double forces.

This continuum theory is called the “curl HHHp” model in
Ref. [10] where the previous field and boundary conditions
are derived.

The usual state variables of isothermal plasticity theory
are the elastic strain and some internal variables including for
instance the scalar dislocation density ρs for each slip system
s, known as the length of dislocation lines per unit volume.
As advocated by Kröner [27], the scalar and tensor dislo-
cation densities are independent statistical measures of the
dislocation population in the material volume element. They
should be both introduced in the set of state variables. That is
why it is proposed to introduce the dislocation density tensor
in the arguments of the free energy volume density function

ψ(ε∼e, ρs, Γ∼ )

as originally proposed in Ref. [11]. The dissipation inequal-
ity is written as

p(i) − ψ̇ � 0. (14)

The following state laws are adopted

σ∼ =
∂ψ

∂ε∼e
, (15)

Rs =
∂ψ

∂ρs
, (16)

M∼ =
∂ψ

∂Γ∼
, (17)

where Rs is the thermodynamic force associated with the in-
ternal variable ρs [28]. As a result, the dissipation rate is
reduced to
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(σ∼ + s∼) : Ḣ∼
p −
∑

s

Rsρ̇s � 0. (18)

In crystal plasticity, plastic flow is due to slip processes ac-
cording to slip systems

Ḣ∼
p
=
∑

s

γ̇s���s ⊗ nnns, (19)

where each slip system s is characterized by the slip direc-
tion ���s and the normal vector to the slip plane nnns, γs being
the corresponding amount of slip. The dissipation rate (19)
then takes the form
∑

s

(τs − xs)γ̇s −
∑

s

Rsρ̇s � 0, (20)

with the resolved shear stress

τs = σ∼ : ���s ⊗ nnns (21)

and the back stress

xs = −s∼ : ���s ⊗ nnns = curl M∼ : ���s ⊗ nnns. (22)

This prompts us to postulate a generalized Schmid law stip-
ulating that plastic slip will occur on slip system s as soon as
a critical resolved shear stress value τs

c is reached

|τs − xs| = τs
c. (23)

3 Shearing of an elastic-plastic two-phase laminate

Laminate microstructures are prone to size effects especially
in the case of metals for which the interfaces act as barriers
against dislocations. The material response then strongly de-
pends on the layer thickness. This situation has been consid-
ered for Cosserat, micromorphic and strain gradient single
crystals under single and double slip in Refs. [10, 12, 15, 29].
The laminate is a periodic arrangement of two phases in-
cluding a purely elastic material and a plastic strain gradi-
ent layer. The unit cell corresponding to this arrangement is
shown in Fig. 1. It is periodic along all three directions of
the space. It must be replicated in the three directions so as
to obtain the complete multilayer material. The thickness of
the hard elastic layer is h, whereas the thickness of the soft
plastic layer, endowed with the “curl HHHp” material behaviour,
is s. The unit cell size is l = s + h and the soft phase vol-
ume fraction is f = s/l. Both phases are assumed to share
the same elastic properties for simplicity. More general re-
sults, but without fundamental difference, may be derived
from Ref. [10].

The unit cell of Fig. 1 is subjected to a mean simple
shear γ̄ in direction 1. The origin O of the coordinate system
is the center of the soft phase. The displacement field is of
the form

u1 = γ̄x2, u2(x1) = u(x1), u3 = 0, (24)

where u(x1) is a periodic function which describes the devi-
ation from the homogeneous shear. This fluctuation is the
main unknown of the boundary value problem. The gradient
of the displacement field and strain tensors are computed as

follows

∇uuu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 γ̄ 0

u,1 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ε∼ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2

(γ̄ + u,1) 0

1
2

(γ̄ + u,1) 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(25)

where u,1 denotes the first derivative of the displacement u
with respect to x1.

Fig. 1 Unit cell of the two-phase laminate made of an elastic-plastic
phase s and an elastic phase h

One single slip system is assumed to be activated in the
soft phase with the slip direction ��� = eee1 and the normal to the
slip plane nnn = eee2. This situation will lead to a piling-up of
dislocations with opposite signs at the interfaces x1 = ±s/2.
According to Eq. (19), the plastic deformation takes then the
form

H∼ p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 γ 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (26)

where γ(x1) is the second main unknown field of the prob-
lem. After Hooke’s law, the only activated simple stress
component is σ12. Due to the balance of momentum equa-
tion and the continuity of the traction vector, this stress com-
ponent is homogeneous throughout the laminate. The simple
stress tensor is computed according to Hooke’s law for linear
isotropic elasticity

σ∼ = μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 γ̄ + u,1 − γ 0

γ̄ + u,1 − γ 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

The dislocation density tensor (8) is then computed as

Γ∼ = curl H∼ p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −γ,1
0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

The elasticity law in the elastic phase and the elastic-plastic
response of the soft phase are then exploited in the next sec-
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tions based on specific choices for the free energy potential
to derive the partial differential equations for plastic strain
and, finally, for the displacement fluctuation. The explicit
solution is found after considering precise interface condi-
tions regarding continuity of various variables at interfaces.

3.1 Size effect for a quadratic potential

Linear constitutive equations are first considered, associated
with a quadratic potential in the form

Ψ (ε∼e, curl H∼ p) =
1
2
ε∼e : C≈ : ε∼e +

1
2

curl H∼ p : A≈ : curl H∼ p, (29)

where C≈ denotes the usual tensor of elastic moduli and A≈
is a new fourth order tensor of generalised moduli. For the
sake of simplicity no internal variable is considered in the
analysis. This leads to the following linear state laws

σ∼ = C≈ : ε∼e, M∼ = A≈ : curl H∼ p. (30)

In the isotropic case, the linear constitutive relation between
the dislocation density tensor and the double stress tensor is
characterized by three independent moduli, due to the fact
that Γ∼ is generally not symmetric. In the following analyti-
cal derivation, a simplified constitutive law is adopted in the
spirit of Ref. [30] that involves a single new modulus A (unit
MPa·mm2)

M∼ = A curl H∼ p. (31)

This corresponds to a potential of the form

Ψ (ε∼e, curl H∼ p) =
1
2
ε∼e : C≈ : ε∼e +

1
2

A‖curl H∼ p‖2. (32)

This simplifying assumption was first made in Ref. [11].
The expression of the back stress can now be worked out
from Eq. (22)

xs = (curl M∼ ) : ���s ⊗ nnns = A(curl H∼ p) : ���s ⊗ nnns, (33)

assuming piece-wise constant distribution of A parameter.
It is remarkable that the expression involves second deriva-
tives of plastic deformation. This dependence on the sec-
ond derivative of slip is reminiscent of Aifantis strain gradi-
ent plasticity model [31, 32]. However, a significant differ-
ence in the present model is that the obtained strain gradient
hardening is of kinematic nature whereas Aifantis considered
isotropic hardening.

In the case of the two-phase laminate problem, the dou-
ble stress tensor takes the form

M∼ = A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −γ,1
0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (34)

The curl of the double stress tensor is then computed as

curl M∼ = A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −γ,11 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(35)

from which the back stress is found to be proportional to the
second derivative of slip in the direction of slip

x = −Aγ,11. (36)

The application of the generalized Schmid law for slip in di-
rection 1 gives

τ = σ12 = τc + x = τc − Aγ,11. (37)

The shear stress component σ12 being uniform in the lami-
nate, it follows from the previous equation that plastic slip γ
has a parabolic profile. The interface condition of vanishing

slip γ
(
± s

2

)
= 0, due to the fact that dislocations cannot cross

nor accumulate in the interface, is used to determine some of
the integration constants and find

γ(x1) = α
(
x2

1 −
s2

4

)
. (38)

The shear stress is related to the displacement in the elastic
phase u(x1) = uh(x1) and u(x1) = us(x1) in the soft phase by

σ12 = μ(uh
,1 + γ̄ ), σ12 = μ(us

,1 + γ̄ − γ), (39)

which implies that

uh(x1) = Cx1 + D, us(x1) = α
x3

1

3
+

(
C − α s2

4

)
x1, (40)

where the integration constants α, C, D remain to be deter-
mined by means of three additional interface conditions.

The continuity of the displacement at x1 = s/2 requires

us
( s
2

)
= uh
( s
2

)
=⇒ D = − s3α

12
. (41)

Periodicity of displacement entails

us
(
− s

2

)
= uh
(
− s

2
+ �
)
=⇒ C� + D =

s3α

12
. (42)

Continuity of the shear stress at x1 = s/2 gives

τc − 2Aα = μ(C + γ̄ ) (43)

and finally

C =
τc − μγ̄
μ +

12A�
s3

. (44)

The obtained profiles of slip and displacement are given in
Fig. 2 for the material parameters of Table 1 chosen for the
illustration.

At the end, the overall stress is expressed as a function
of overall shear

σ12 = τc +
μ

1 +
μs3

12A�

(
γ̄ − τc

μ

)
. (45)
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Fig. 2 Profiles of the normalized slip and displacement in the lam-
inate (quadratic potential, γ̄ = 0.01, σ12 = 36 MPa)

Table 1 Material and geometric parameters of a laminate
microstructure made of strain gradient crystal plasticity material

endowed with a quadratic free energy density

μ/MPa τc/MPa A/(MPa·mm2) f �/μm γ̄

30 000 20 0.005 0.7 10 0.01

The stress can also be expressed as a function of the mean
slip

〈γ〉 = 1
�

∫ s/2

−s/2
γ(x1)dx1

= f
(
γ̄ − σ12

μ

)
+

1
�

(
us
( s
2

)
− us
(
− s

2

))

= f
(
γ̄ − σ12

μ

)
−C(1 − f ). (46)

The combination of Eqs. (45) and (46) leads to the following
linear hardening rule

σ12 = τc +
12A
f 3�2
〈γ〉. (47)

This expression clearly shows the existence of the pile-up in-
duced work-hardening. The hardening modulus is found to
be proportional to the new parameter A and to be inversely
proportional to the square of the unit cell size. In the limit of
thick layers the constant stress τc is retrieved whereas hard-
ening becomes infinite for smaller and smaller sizes. The
obtained linear kinematic hardening is illustrated in Fig. 3
for the set of parameters of Table 1.

Fig. 3 Hysteresis loop for cyclic periodic shear test of the lami-
nated γ̄ = ±0.01

The size dependence in 1/�2 is quite unusual in physi-
cal metallurgy so that the model should be modified in order
to reach more realistic scaling laws [33]. It is proposed to
modify the dependence of the free energy density on the dis-
location density tensor.

3.2 Solution for a rank one potential

The norm of the dislocation density tensor is a measure of
the density of geometrically dislocations ρG according to the
terminology introduced by Ashby [34]

Γ = ‖curl H∼ p‖ =
√

curl H∼ p : curl H∼ p ∼ ρGb, (48)

where b is the norm of the Burgers vector.
A direct dependence of the free energy density on the

norm of the dislocation density tensor has been proposed
by several authors instead of the previous quadratic poten-
tial [20, 35, 36]

ψ(ε∼e, curl H∼ p) =
1
2
ε∼e : C≈ : ε∼e + A‖curl H∼ p‖. (49)

Note that the contribution in Γ = ‖curl H∼ p‖ is not differen-
tiable atΓ∼ = 0. The new state law for the double stress tensor
then is

M∼ = A
curl H∼ p

‖curl H∼ p‖ = A
Γ∼
Γ
. (50)

In the case of the two-phase laminate

Γ∼ = −γ,1eee1 ⊗ eee3 =⇒ M∼ = −A signγ,1eee1 ⊗ eee3. (51)

The double stress tensor is therefore piece-wise constant in
the soft phase. It follows that the back stress x given by
Eq. (23) vanishes almost everywhere. The size effect induced
by the discontinuity of plastic strain at the interface, associ-
ated with a dislocation wall, will be studied in the forthcom-
ing work [37]. The authors in Ref. [35] have found a size
effect for a spherical grain subjected to Dirichlet boundary
conditions, based on the same potential. For this grain ge-
ometry, the higher order stress is not piece-wise constant and
is related to the curvature of the surface.

4 Logarithmic free energy potential

As a next candidate for the formulation of the free energy
density dependence on the dislocation density tensor, the fol-
lowing expression is proposed

ψ(ε∼e,Γ∼) =
1
2
ε∼e : C≈ : ε∼e + A

‖Γ∼‖
Γ0

(
log
‖Γ∼‖
Γ0
− 1
)
, (52)

where A and Γ0 are material parameters. This choice is mo-
tivated from a statistical dislocation theory presented in Sub-
sect. 4.1. Parameter Γ0 is regarded as the initial value of the
norm of the dislocation density tensor Γ = ‖Γ∼‖. The energy
density function (52) then is an increasing convex function
of Γ � Γ0.

The state laws of the model are
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σ∼ = C≈ : ε∼e, M∼ =
A
Γ0

log
(
Γ

Γ0

)Γ∼
Γ
. (53)

4.1 Motivation from the statistical theory of dislocations

The existence of a back stress induced by dislocations struc-
tures also arises in the statistical theory of dislocations as de-
veloped by Groma for single slip of edge dislocations [38].
It can be estimated in terms of the gradient of density of ge-
ometrically necessary dislocations as

x =
μbβ

2π(1 − ν)ρ
∂ρG

∂x1
, (54)

where ρ is the total scalar dislocation density, β is a non-
dimensional constant and direction 1 is the slip direction for
the considered single slip system. It has been incorporated
in the crystal plasticity theory in Ref. [39]. In the absence
of statistically stored dislocations, ρ = ρG and the previous
equation can be integrated as

x =
μbβ

2π(1 − ν)
∂

∂x1
log ρG. (55)

Keeping the expression (22) as a function of the double stress
tensor, the previous relation is integrated twice in the form

M13 ∼ log ρG =⇒ ψ ∼ ρG(log ρG − 1). (56)

Note however that this potential is not fully consistent with
the statistical dislocation theory in Ref. [38] since it is based
on the simplification ρ � ρG. A more realistic function
will therefore include combined terms in the total dislocation
density and in the GND content. The corresponding theory
is left for future work since it may not be amenable to close
form solutions of the differential equation to be solved in the
next section.

4.2 Solution of the two-phase laminate problem

For the two-phase laminate, the double stress tensor accord-
ing to Eq. (53) takes the value

M∼ = −
A
Γ0

log
( |γ,1|
Γ0

) γ,1
|γ,1|eee1 ⊗ eee3

= − A
Γ0
ε log

|γ,1|
Γ0

eee1 ⊗ eee3, (57)

curl M∼ = −
A
Γ0

γ,11

|γ,1|eee1 ⊗ eee2, (58)

where ε = signγ,1. The induced back stress then is

x = curl M∼ : eee1 ⊗ eee2 = −
A
Γ0

γ,11

|γ,1| . (59)

The Schmid law requires that

σ12 = τ = τc + x = τc − A
Γ0

γ,11

|γ,1| . (60)

This is a differential equation in γ the solution of which is of
the form

γ(x1) = α
[
exp
( s
2L

)
− exp

(
− ε x1

L

)]
, (61)

where α is a constant to be determined and

1
L
=
σ12 − τc

A
Γ0. (62)

The constant L has the physical dimension of length. It is
positive for positive shear in direction 1 and under the as-
sumption of plastic loading. The slip function (61) fulfills

the conditions γ
(
± s

2

)
= 0. The shear stress can be used to

compute the displacements in the soft and hard phases

us(x1) =
[
σ12

μ
− γ̄ + α exp

( s
2L

)]
x1

+αLε
[

exp
(
− ε x1

L

)
− 1
]
, (63)

uh(x1) =
(
σ12

μ
− γ̄
)
x1 + D. (64)

The uniform translation in us was chosen such that it is con-
tinuous at x1 = 0 and us(0) = 0.

The constants to be determined are α, D, and σ12 or,
equivalently, L. Two conditions are obtained from the conti-
nuity requirement of the displacement at s/2 and at s/2 + h.
From us(s/2) = uh(s/2), we get

D = α
[( s

2
− L
)

exp
( s
2L

)
+ L
]
. (65)

From us(−s/2) = uh(s/2 + h), we get

D =
(
γ̄ − σ12

μ

)
�

2
. (66)

The two last relations have been obtained under the as-
sumption that ε = −1 for x1 ∈ [0 : s/2] and ε = 1 for
x1 ∈ [−s/2 : 0], which corresponds to an applied shear
γ̄ > 0.

Detailed determination of coefficient α is given in
Ref. [37] is given in Fig. 4 for given values of the shear stress
and the values of material parameters coming from the Table
1, except that A/Γ0 = 0.03 MPa·mm. The profiles are expo-
nential and differ from the parabolic one of Fig. 2. They are
close to the cosh-solutions worked out in Ref. [29].

A regularization of the potential (52) can be proposed
in the form

ψ(ε∼e,Γ∼) =
1
2
ε∼e : C≈ : ε∼e + A

Γ

Γ0

(
log

Γ0 + Γ

Γ0
− 1
)
, (67)

in order to avoid the singularity of the derivative at x1 = 0.
This potential equation (67) is regular and convex and can
be used for Γ � 0. A similar regularization was proposed in
Ref. [24] for the individual logarithmic contributions of the
GND densities associated with each slip system. Note that
the linearization of Eq. (67) with respect to Γ leads to the
quadratic potential (32). This regularization does not lead to
an analytical solution.
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Fig. 4 Profiles of the normalized slip and displacement in the lam-
inate for a stress value a σ12 = 35 MPa and b σ12 = 65 MPa (loga-
rithmic potential)

5 Read–Shockley free energy potential

The potential equation (52) motivated by the statistical the-
ory of dislocations is reminiscent of the well-known expres-
sion of the Read–Shockley energy for low angle grain bound-
aries [40–42]

ψ(ε∼e,Γ∼) =
1
2
ε∼e : C≈ : ε∼e + A

‖Γ∼‖
Γ0

(
1 − log

‖Γ∼‖
Γ0

)
, (68)

where A and Γ0 are material parameters. This choice
amounts to considering that the energy density associated
with the dislocation density tensor is estimated as that of
a continuous distribution of low angle grain boundaries. It
is related to the link between the dislocation density tensor
and lattice curvature, embodied by Nye’s well-known rela-
tion [1, 7]. Lattice curvature represents the continuum dis-
tribution of lattice misorientation which is the classical ar-
gument of Read–Shockley energy function. Note that the
physical meaning of the constant Γ0 is different from that
in the expression (52). Here it is regarded as the maximum
reachable value of Γ instead of the initial one. The energy
density function (68) then is an increasing concave function
of 0 � Γ � Γ0. It is continuous but not differentiable at
Γ = 0.

There are therefore two reasons for considering the
Read–Shockley as a candidate potential in our analysis.
First, it is interesting to notice that the potential (68) is
the opposite of Eq. (52) and that its physical meaning re-
quires a different interpretation of the parameter Γ0. Second,

such dislocation walls can form inside grains in the form of
kink bands resulting from strain localization, as shown in
Ref. [43]. They are the precursors of grain fragmentation and
subgrain formation after large deformations.

The state laws of the model are

σ∼ = C≈ : ε∼e, M∼ = −
A
Γ0

log
(
Γ

Γ0

)Γ∼
Γ
. (69)

Typically the parameter Γ0 can be estimated as the ratio
θ0/�GB where θ0 is the maximal misorientation of low an-
gle grain boundary and �GB is a typical thickness of the con-
sidered grain boundary. Taking θ0 = 15◦ and �GB = 1 nm,
we get Γ0 = 2.6 × 108 m−1. The corresponding maxi-
mum dislocation density then has the order of magnitude
ρG0 = Γ0/b = 5 × 1016 m−2. The ratio A/Γ0 has the order of
magnitude Em/θ0 where Em is the maximum grain boundary
energy. Taking Em = 1 J·m−2 gives A/Γ0 ∼ 4 Pa·m.

5.1 Solution of the two-phase laminate problem

For the two-phase laminate, the double stress tensor accord-
ing to Eq. (69) takes the value

M∼ =
A
Γ0

log
( |γ,1|
Γ0

) γ,1
|γ,1|eee1 ⊗ eee3

=
A
Γ0
ε log

|γ,1|
Γ0

eee1 ⊗ eee3, (70)

curl M∼ =
A
Γ0

γ,11

|γ,1|eee1 ⊗ eee2, (71)

where ε = sgnγ,1. The induced back stress then is

x = curl M∼ : eee1 ⊗ eee2 =
A
Γ0

γ,11

|γ,1| . (72)

The Schmid law requires that

σ12 = τ = τc + x = τc +
A
Γ0

γ,11

|γ,1| . (73)

This is a differential equation in γ the solution of which is of
the form

γ(x1) = α
[
exp
(
ε

x1

L

)
− exp

(
− s

2L

)]
, (74)

where α is a constant to be determined and

1
L
=
σ12 − τc

A
Γ0. (75)

The slip function (74) fulfills the conditions γ
(
± s

2

)
= 0. The

shear stress can be used to compute the displacements in the
soft and hard phases

us(x1) =
[
σ12

μ
− γ̄ − α exp

(
− s

2L

)]
x1

+εαL exp
(
ε

x1

L

)
− 1. (76)

uh(x1) =
(
σ12

μ
− γ̄
)
x1 + D. (77)



770 S. Forest, N. Guéninchault

The constants to be determined are α, D and σ12 or, equiv-
alently, L. Two conditions are obtained from the continuity
requirement of the displacement at s/2 and at s/2 + h. From
us(s/2) = uh(s/2), we get

D = α
[
L − exp

(
− s

2L

)(
L +

s
2

)]
. (78)

From us(−s/2) = uh(s/2 + h), we get

D =
(
γ̄ − σ12

μ

)
�

2
. (79)

The two last relations have been obtained under the as-
sumption that ε = −1 for x1 ∈ [0 : s/2] and ε = 1 for
x1 ∈ [−s/2 : 0], which corresponds to an applied shear
γ̄ > 0.

The slip profiles can be drawn for fixed values of the
stress level, see Fig. 5. The used material parameters are
those of Table 1, except that A/Γ0 = 4 kPa·mm. The concav-
ity of the slip profile is opposite to that found for the previous
potentials.

Fig. 5 Profiles of the normalized slip and displacement in the lam-
inate for a stress value σ12 = 22 MPa (Read–Shockley potential)

6 Conclusions

Four distinct free energy functions of the dislocation density
tensor have been examined in the context of strain gradient
plasticity. The quadratic and rank one potentials existing in
the literature have been considered first to solve the problem
of the shearing of a two-phase laminate including a purely
elastic phase and an elastic-plastic single crystal whose sin-
gle slip plane and slip direction are perpendicular to the in-
terface. The quadratic potential leads to a physically relevant
parabolic slip profile but an unusual 1/l2 scaling law for the
effective kinematic hardening modulus. Groma’s statistical
theory of dislocations has been used to motivate a new po-
tential involving the logarithm of the norm of the dislocation
density tensor, and similar to potentials proposed for indi-
vidual GND densities in Refs. [22, 24]. The solution of the
laminate problem leads to realistic exponential slip profiles
are predicted. An alternative logarithmic potential was then
proposed based on the well-known Read–Shockley low an-
gle grain boundary energy. The corresponding slip profiles

were found to have a convexity opposite to that found with
Groma’s potential. The size effects as predicted by the rank
one and logarithmic models will be explored in a forthcom-
ing publication [37].

The present analysis was focused on bulk free energy
potentials and did not address the related question of con-
stitutive laws for the interface or grain boundary behaviour.
Continuity requirements were imposed at the interface in
the laminate problem. Instead, specific interface constitutive
laws can be also considered as derived by Refs. [44–51]. In-
terfacial gradient plasticity is also addressed in Refs. [25, 52,
53]. Additional work is needed to investigate the size effects
predicted by combinations of bulk and interface models.

Jumps in the double traction were found at the interface
between the elastic and elastoplastic phase. Validity of the
solution then requires the external application of the corre-
sponding double traction at the interface. Alternatively, it has
been shown in Ref. [10] that the strain gradient crystal plas-
ticity model can be regularized so that the double tractions
are eventually transmitted to the elastic phase, by means of a
micromorphic crystal plasticity theory. Similar extension to
the micromorphic framework is possible for the free energy
potentials proposed in the present paper.

Dissipative contributions associated with the increase
of the dislocation density tensor have not been considered
in the present work. The discussion was restricted to the free
energy contribution. It is expected that both contributions are
significant and that the introduction of the dissipative part is
necessary in ways that are still largely open [13].

The proposed potentials and their regularized forms
will be used in finite element simulations in order to work
out the predicted size effect in cases where no analytical so-
lution can be derived for laminate microstructures, but also
inclusions in single crystal matrix [54] and polycrystalline
aggregates [18]. For that purpose, they can be readily incor-
porated in the micromorphic generalizations introduced by
Ref. [10] where the merits of such extensions of the strain
gradient model were exhibited.
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26 Kröner, E.: Dislocations in crystals and in continua: A con-
frontation. International Journal of Engineering Science 33,
2127–2135 (1995)
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one defect energies in gradient crystal plasticity analytical and
numerical 1D solutions. submitted (2013)

38 Groma, I., Csikor, F.F., Zaiser, M.: Spatial correlations and
higher-order gradient terms in a continuum description of dis-
location dynamics. Acta Materialia 51, 1271–1281 (2003)

39 Yefimov, S., Groma, I., Van der Giessen, E.: A comparison
of a statistical-mechanics based plasticity model with discrete
dislocation plasticity calculations. J. Mech. Phys. Solids 52,
279–300 (2004)

40 Read, W.T.: Dislocations in Crystals. McGraw-Hill, New York
(1953)



772 S. Forest, N. Guéninchault

41 Humphreys, F.J., Hatherly, M.: Recrystallization and Related
Annealing Phenomena. Elsevier, Amserdam (2004)

42 Abrivard, G., Busso, E.P., Forest, S., et al.: Phase field mod-
elling of grain boundary motion driven by curvature and stored
energy gradients. Part I: Theory and numerical implementa-
tion. Philosophical Magazine 92, 3618–3642 (2012)
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