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Résumé : La mécanique des milieux continus généralisés fournit des outils pour décrire les effets d’échelle que
présentent certains matériaux hétérogénes. Cependant les liens entre les nouveaux degrés de liberté que certains de
ces milieux introduisent et la microstructure ne sont clairement établis que pour quelques cas extrémes (cristaux
liquides...). Dans ce travail, on essaie de construire un milieu de Cosserat homogene équivalent 4 un milieu classique
micro-hétérogene, par des méthodes d’homogénéisation généralisées. Ces techniques permettent alors de rendre compte
des champs de contraintes et de déformation dans un matériau hétérogene sollicité de telle sorte que la taille de I'élément
de volume représentatif ne soit pas négligeable devant la longueur d’onde des sollicitations.

1. INTRODUCTION

Generalized continua can be used to introduce size effects in the mechanical modelling of
heterogeneous materials. They involve additional degrees of freedom (higher order continua) or/and
higher order gradients of the displacement fields (higher grade continua) [1,2]. In this work, we
concentrate on the Cosserat continuum for which independent rotational degrees of freedom are
introduced at each point of the continuum in addition to the displacement field [3]. The Cosserat
rotation R can be represented by a vector ® according to

Rij = bij — €ijxPr. (1)
The (relative) deformation tensor and the torsion-curvature tensor are defined as
Eij = Ui,j =+ fijkq>k and Ki]' = (Di‘j. (2)

The dual quantities in the expression of the power of internal forces are the generally non-symmetric.
force-stress tensor ¥ and couple-stress tensor M. The equations of balance of momentum and of
balance of moment of momentum read

Y45;+F,=0 and M,-j,j — €kl +C; =0 (3)

where volume forces F* and couples C have been introduced. An illustrative way of understanding
the physical meaning of couple stresses is to remark that, contrary to the classical continuum (also
called Boltzmann continuum), the size of the volume element of generalized continuum mechanics is
not vanishingly small. In particular, there is “enough space” on each side of the volume element to
apply a linear distribution of forces (tension + flexion). The mean value of these forces divided by
the small surface represents the corresponding components of the stress tensor and the slope of the
distribution is related to the associated couple stress components.

There has been a long quest for the experimental determination of Cosserat elastic constants
for heterogeneous materials [4]. Cosserat effects arise when the wavelength L,, of the applied
stress gradients in the structure is not much larger than the size L of the representative volume
element (RVE) of a heterogeneous material, which leads to very difficult experimental conditions
and interpretation. Instead, we propose in this work to deduce the Cosserat elastic properties using
homogenization methods starting from a classical micro-heterogeneous medium.
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Classical homogenization methods are designed to derive effective properties of micro-
heterogeneous materials and are valid only if L <« L, [5]. When this hypothesis is dropped, the
wanted homogeneous equivalent medium (HEM) is expected to be a generalized continuum [6]. The
determination of the numerous parameters involved in constitutive equations for generalized media
has been a long-standing obstacle to their use. If these constants can be determined thanks to a
systematic homogenization procedure, generalized continua have a promising future in mechanics of
materials.

Some pioneering work in Germany in this field [7-12] has given the incentive to the following
developments. Note that, in this work, the word ”homogenization” is used in a loose sense and that,
in fact, the word "equivalent” refers to an estimation of the actual response of the heterogeneous
material. In particular, the HEM is not expected to be unique and there exists a more adapted
specific choice for each type of final structural loading conditions.

2. CONSTRUCTION OF A HOMOGENEOUS COSSERAT MEDIUM STARTING
FROM A MICRO-HETEROGENEOUS BOLTZMANN CONTINUUM

2.1 Definition of the micro-mechanical problem
The constituents of the RVE €2 are classical materials with different mechanical properties. Their
spatial distribution is given exactly or in a statistical sense and can be very intricate. We look for
the displacement field u(z, t) solution of the following boundary value problem (BVP) :
&ij = U(ij)
constitutive equqtions @)
Oijj = 0 Ve
boundary conditions

where € and o are the local strain and stress tensor fields. The constitutive equations are
left unspecified, since the first results derived in the following do not depend on the specific
local behaviour. In classical homogenization theory, one usually considers homogeneous boundary
conditions or periodic ones, for which a mean strain or stress is prescribed. As soon as the hypothesis
L < L, is dropped, more general loading conditions must be introduced and, more specifically, non
homogeneous ones.

2.2 Non-homogeneous boundary conditions

The main difficulty arises from the fact that there is a large variety of possible non-homogeneous
boundary conditions. A set of relevant non-homogeneous boundary conditions can be found by
considering the typical loading conditions that the whole structure will eventually undergo for a
specific application. Accordingly, the choice of appropriate non-homogeneous boundary conditions
depends on the final structural application one aims at. Furthermore, this choice then dictates the
type of generalized HEM that must be resorted to, as will be seen in the sequel.

Consider for instance the following non-homogeneous boundary conditions

u; = E,;jl‘j -+ F;—“;-kew(:t).’l,'j Vi €2 (5)
where F*k¢¥ is the following z - dependent skew-symmetric tensor
FFY = —eijufu(z) with  fi = Kz (6)

The third-rank permutation tensor is denoted by e. Vector f is a linearly varying rotation vector so
that K has the meaning of a prescribed curvature. General tensors E and K are given and constant.
Finally the proposed non-homogeneous boundary conditions read :

Uu; = E,'j.’L‘j ~+ EiijﬂJIl.’L'k, Vz € o5d. (7)

If K vanishes, classical homogeneous boundary conditions are retrieved. If only K33 or K3, are
non-zero, we get respectively

uy = —K33.’1,‘2.’L'3 u; = —-K31.’L‘1172
=K or = Kyz? (8)
Uz = A33T173 Uz = A3 Ty

which are torsion-like and flexion-like boundary conditions.
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The mean deformation in €2 reduces to
1 i
<y >= ‘—//s;uwdﬂlz Eij (9)

if the origin of the coordinate system is taken as the geometric centre of mass. Computing now the
mean work of internal forces and, using Gauss theorem,

1 ! 1
< 04i&45 >= V[) aiju,-,deZ = ‘—//Qaijuinjds (10)

where n denotes the normal to the surface. The application of boundary conditions (7) leads to the
expression
< 0j5€45 >= E.,'jEij =z Mi]‘Ki]‘ (11)
with
Eij =<0y > and Mij =< €kTk0y; > . (12)

As a result, if £ and K are regarded as macroscopic deformation and torsion-curvature tensors,
and if relations (12) define the overall force and couple stress tensors, equation (11) represents a
part of the work of internal forces of a Cosserat homogeneous equivalent medium. However, in
this expression, the skew-symmetric part of E does not work with ¥, since, according to (12), ¥ is
symmetric. Additional conditions are introduced in the next section to achieve the identification of
the HEM with a Cosserat continuum, at least in the 2D case. Note that M;; = 0 so that K; does
not work in (11). In fact, relation (11) completely defines a constrained Cosserat overall medium
(couple stress theory).

3. APPLICATION TO HETEROGENEOUS LINEAR ELASTICITY

In this section, we show how the effective Cosserat elastic properties of a heterogeneous material can
be worked out using the finite element method in a special case.

3.1 Unit cell and classical boundary conditions

A structural component with periodic microstructure is considered, for which the unit cell is given
in figure 1. Such an element can be found for instance in a cylinder head gasket of a car engine
[13] and is made of steel (£ = 200000 MPa, v = 0.3, in gray on figure 1) and of a composite latex
material (£ = 5500 MPa, v = 0.45). For simplicity, we investigate the two-dimensional problem only
(plane strain conditions) and periodicity is assumed in the two directions, so that there only a loose
analogy to the actual head gasket. The size of the RVE is L = 5mm. The overall symmetry of this
multilayered material is orthotropic. The relevant effective elastic constants in the two-dimensional
case are the following :

~ =
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o 022 }"1122 }’"2222 0 0 0 0 €22 E

) ow _ 0 0 Y2 Yiow O 0 €12 (13)
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0
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A K
] ! 1{ M3z | | 0 0 0 0  Csoz || k3 |

The RVE admits a centre of symmetry so that there will be no coupling between the overall Cosserat
deformation and curvature tensors [6].

The classical orthotropic constants are deduced from two extension tests and a shear test with
homogeneous () or periodic (p, figures 2 and 3) boundary conditions :

Y1111 = 79620 MPa, Y,3,, = 39470 MPa, Y}%,, = 22880 MPa and C%, = 6890 MPa,

Y, = 79025 MPa, Y2, = 31630 MDPa, YH2, = 21150 MPa and C?%, = 3060 MPa (14)
where the classical shear modulus reads
Cy =

2Y1221 — Y1212 — Yo

72 'd Ve
Y501 — Yio12Yoim

(15)
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Figures 1 and 2 : Unit cell of the coarse grain structure (left) and extension test in direction 1 (right).

I .
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Figure 3 : Extension test in direction 2 (left) and shear test (right).
3.2 Flexural rigidity

It must be noted that a Timoshenko beam is but a one-dimensional Cosserat continuum and that
there is a homogenization theory for composite beams. The homogenization procedure introduced in
this work merely is a generalization to the two and three-dimensional cases. Accordingly, a flexion
rigidity must be attributed to the RVE. The simplest way to determine it is to perform a flexion test
with prescribed rotations of two opposite sides, the two other sides being free of forces (figure 4),
from which we deduce

Caiz = 24700 MPa.mm? and  Chgsp = 24860 MPa.mm?.

However, this is only an approximative way of imposing a curvature to the RVE. The explicit
boundary conditions (7) lead to the deformed states of figure 5. We get

Caiz1 = 87500 MPa.mm? and Ciygz = 71310 MPa.mm?.

To relieve a little bit the previous conditions that provide too stiff moduli for obvious reasons (see
figure 5), a certain type of periodicity conditions can be introduced :

U = Eij.’l,‘j + e,-]-kKﬂzlxk +v; Vz e (16)



40° COLLOQUE DE METALLURGIE Pr4-43

where v; takes equal value on opposite sides. These conditions have been implemented in the FE
code as a multipoint-constraint condition. In fact there is the additional condition that the curvature
associated with v also is periodic, which is not implemented yet. The application of these periodic
conditions up to a curvature term gives the deformed state of figure 6 and the effective moduli

03131 = 25870 MPa.mmZ and 03232 = 42320 MPa.mm2.

Figure 4 : Simple bending of the RVE according to directions 1 (left) and 2 (right).

Figure 5 : Prescribed curvatures K3, (left) and K3, (right) at the boundary.

Figure 6 : Periodic conditions up to a curvature term K3, (left) and K3, (right).
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3.3 Cluster of RVEs

In a Cosserat theory, the translational and rotational degrees of freedom are independent. At the
mesoscopic level, the translation can describe the displacement of the centre of gravity of the RVE
whereas the global rotation of each RVE is accounted for by the additional degrees of freedom. It
is clear that neighbouring cells will oppose resistance to inner rotation. As a result, considering an
individual RVE as in the previous sections is not sufficient to derive the overall Cosserat effective
properties of the heterogeneous material. We propose to consider a cluster of RVEs made of one
central RVE with its direct neighbours (figure 7 a).
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Figure 7 : (a) Definition of a cluster of RVEs and (b) prescribed global rotation of the central cell.

For the determination of the moduli Yi212, Y1221 and Y3191, the following test can be considered in
addition to the shear test of figure 3. The centres of the RVE 0 to 8 are fixed and a rigid rotation is
prescribed at the boundary of RVE 0 (figure 7 b). It corresponds to a non-vanishing relative rotation
of the microstructure with respect to the material lines (< e >gygo is skew-symmetric). The FE
calculation provides the reaction forces RU1 and RU2 on each side of the RVE that represent the
resistance of the material to inner rotation. The wanted moduli satisfy

Cyu = Y12221 — Y1212Y2121/(2Y1221 — Yi212 — Yau21)
}"1221 e Y1212 = 2RU1/S (17)
—Yi291 + Yo121 = 2RU2/S

which giVBS )/1212 = 4430 MPa, Y2121 = 14430 MP&, )’1221 = —880 MPa.
Figure 8 shows the deformed state of the neighbouring cells.

Figure 8 : Imposed inner rotation in a cluster of VERs.
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4. ANALYSIS OF A “COARSE GRAIN STRUCTURE”

In general, a structure made of a heterogeneous material will be called a coarse grain structure if the
characteristic size of the RVE L is not negligible when compared to L.

Consider, for instance, a rectangular structure made of 4x5 cells (figure 9). The structure is small
enough to take every heterogenity into account in a FE calculation. However such a calculation
requires a mesh with 19800 quadratic elements, i.e. about 120000 d.o.f., which leads to several hours
computation time on a work-station RISC6000 for the resolution of the elasticity problem. Loading
conditions are prescribed that lead to strongly non-homogeneous deformations (figure 10). This will
be the reference calculation.

f| U1=U2-0
| d3=0

U1=U2=0
D3=0

D > >
U2=10 mm

Figure 9 : Loading conditions prescribed on a coarse grain structure made of 4x5 cells.

In contrast the structure can also be modelled as a homogeneous equivalent elastic continuum. It
will be successively regarded as a classical continuum using the classical effective properties (periodic
assumption) and a Cosserat continuum with the effective moduli derived in section 3. Convergence
is obtained with respectively 12360 and 18540 d.o.f. Note that, in the two-dimensional case, a
computation with the Cosserat continuum is not really more expensive than the classical one. The
calculation involving the HEM clearly is much less expensive than the reference one.

Figure 10 : Deformed state of the coarse grain structure (the soft material has not been represented).
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Additional boundary conditions are needed for the Cosserat structure (figure 8). The results obtained
using the HEM can be compared to the reference exact response of the material. The computation
involving the Cosserat HEM is seen to provide a more realistic displacement field (figure 11). However,
in some cases, the reaction forces and couples at the boundaries where displacement is prescribed
are overestimated by the Cosserat prediction. Whether or not the Cosserat HME actually gives a
better estimation than the classical continuum, depends on the type of non-homogeneous loading
conditions in the final structure. In some situations, Jonasch [9] showed that the classical estimation
can be very bad up to a factor 2. In fact, there is an appropriate generalized homogeneous equivalent
medium for different types of non-homogeneous boundary conditions [6]-

A decisive advantage of using a Cosserat HEM also lies in the fact that additional boundary
conditions can be prescribed. The conditions &3 = 0 at the boundary 1 and 3 (figure 8) enable us
to impose clamping conditions like in the case of a beam. This explains the better prediction of the
displacement near the boundary.
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Figure 11 : Displacement field in direction 2 : reference calculation (a), classical equivalent medium (b), Cosserat
equivalent medium (c).

5. CONCENTRATION PROBLEM

The concentration problem leads us back to the microstructure. The deformation and curvature at
each point of the HEM are related to mean values of local quantities as explained in section 2. But if
vou are interested in damage initiation for instance, local values are more relevant than mean values.
For that purpose, mean values of e and  are computed on the surface occupied by each cell in the
homogeneous calculation. The obtained values £ and K are then prescribed to an individual RVE
according to (7) or (16). The resulting deformed state of the cell 9 (for boundary conditions on the
structure different from figure 8, and combining flexion and shear) is given in figure 12c and compared
to the reference one (figure 12a). The same concentration problem can be solved using the classical
HEM with classical periodic conditions and leads to figure 12b where flexion is not accounted for.
The Cosserat HEM gives a more realistic local strain field.
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Figure 12 : Deformed state of one inidividual cell within the structure (a) and deformed states deduced from the
homogeneous equivalent, structure using periodic conditions (b) and curvature-periodic conditions (c).

C.
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6. CONCLUSIONS

As soon as the size of the RVE of a heterogeneous material cannot be regarded as infinitely
small with respect to the wavelength of the loading conditions, which can happen in the case of
localization of deformation for instance, or if the unit cell of a structural component is not small
when compared to the component size, or at a crack tip, the classical homogenization schemes are not
sufficient. Non-homogeneous boundary conditions must be introduced and the HEM is a generalized
continuum. The type of resulting continuum depends on the choice of the applied non-homogeneous
loading conditions. In [6], we have tried to give guidelines for the choice of the appropriate HEM.

In each application, very specific boundary conditions can be developed, that better represent the
loading conditions under operating conditions. Instead, we have proposed general non-homogeneous
boundary conditions that can be used as a basis for developing more appropriate ones. It has been
necessary to resort to a cluster of RVEs that accounts for the interaction with neighbouring cells.

Numerical computations using the overall generalized medium can be performed to deal with such
coarse grain structures without considering each geometrical detail of each cell. The obtained results
give a precise enough description of the deformation of the aggregate. The homogenization techniques
can then be used as concentration methods to work out the complex local fields in each cell. The
example presented in this work is taken from structural mechanics (sandwich material). However,
this approach should also be used for heterogeneous materials with microstructure (inclusions,
precipitates, fibers...).
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