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Abstract

The constitutive equations currently used for metallic materials are written on a macro-
scopic scale, using macroscopic criteria and internal stresses to represent hardening. The
granular nature of the material is then not represented. Since it may be critical in some cases,
many attempts have already been made to account for it. So a series of modeling have been
made in the framework of models having uniform stress or strain in each (crystallographic)
phase. As a result, each crystallographic orientation has a different stress—strain state, but the
actual microstructure is generally not introduced (Taylor model, self-consistent approach), so
that the heterogenity obtained is not realistic. The aim of this work is to have a better eva-
luation of the heterogenity of stress and strain fields in realistic polycrystalline aggregates. For
that purpose, an aggregate model is generated, and computed by finite element technique. The
paper is presented in two parts, the first one being devoted to the description of the numerical
tools, the second one showing the results at different scales. The present part includes the
description of the 3D generator of microstructures, able to define any number of grains in a
given 3D volume, with arbitrary shapes, and with a monitoring of the volume fraction of each
phase. The result of this code will be taken as a starting point of the modeling, which is per-
formed with a crystallographic model implemented in a parallel finite element code. Typical
validation results are shown, with convergence data, on the size of the meshes and on the
geometrical realisations of aggregates. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classical mechanical models are built after introducing the concept of repre-
sentative volume element (RVE). The polycrystalline RVE is a material piece which
must include a “’sufficient” number of grains, in terms of crystallographic orienta-
tion, shape and size. The size of the RVE will depend of course on the typical lengths
of the microstructure, and on the statistical distribution of the properties. In this
case, a unique strain tensor and a unique stress tensor represent the material, for-
getting on a macroscale the effect of the heterogenities. Authors usually refer to this
type of stress as level 1 stress field. Level 2 corresponds to the mean value in a given
phase of the material, which can be measured by X-ray diffraction with a spot
including many grains, level 3 to the local value inside each grain, accounting for
transgranular gradients.

Having access to the variation of the strain and stress fields on a microscale (level
3) can be useful for understanding the plasticity mechanisms and the crack initiation
process. It has to be noted that the microstructural observations made by SEM or
TEM concern this level. The aim of this paper then, is to generate a realistic 3D
grain morphology and to apply constitutive equations describing crystal plasticity in
each grain, by means of a finite element code, to characterise the heterogenity of
these fields. This first approach concerns only spherical grain shapes, with only one
chemical phase in each grain. The crystallographic orientation is the only character
defining a ““phase”, and we will use isotropic textures, loaded in small deformations.
Due to the neighborhood effect, two grains belonging to the same crystallographic
class can have a different response. In the computations, it is assumed that the local
behavior is uniform in each grain. On the other hand, a large number of degrees of
freedom are introduced to account for the strong gradients in the grains. Having in
hand these types of results, one can be interested in several types of analyses:

e global volume average produces stress—strain curve on the RVE (level 1);

e volume average on each phase (i.e. each set of grains belonging to the same
crystallographic orientation class) produces local information which can be
compared to Taylor or self—consistent approach (level 2). This analysis pre-
serves the constitutive equations of each phase, but “forgets” the neighbor-
hood effect;

e volume average on each individual grain gives some information at an inter-
mediate scale, where the effect of the real morphology is present, but not the
transgranular fields (no grain boundary effect);

e the local analysis of the stress and strain field is the only one which preserves
both the local behavior and the local load balance, and which can give a rea-
listic evaluation of the heterogenity inside the material.

The F.E. analysis of crystalline solids is now classical in the literature. The con-
stitutive equations used can either describe single crystal or polycrystal behavior.
The case of the single crystal can be considered to investigate the local behavior of
bicrystalline specimens (Méric et al., 1994) or multicrystalline specimens with a low
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number of grains (Havlicek et al., 1990; Teodosiu et al., 1991; Havlicek et al., 1992;
Yao and Wagoner, 1993; Becker and Panchanadeeswaran, 1995; Harder, 1999). An
intense activity can be expected in this field for the next decade, since it is now pos-
sible to get local strain fields (instead of discrete measurements) from the experi-
mental observations. Another possible application of this type of computation is to
deduce the global behavior of a polycrystal from elementary behavior of its grains.
This type of application started more than 20 years ago (Engel, 1978; Gotoh, 1978).
Since intensive computational resources are needed to achieve the computation, the
field is still very active. Most of the time, the papers concern computations of poly-
crystals at large strains. Several types of meshes have been used by the authors.
Many papers simply introduce a squared or a cubic mesh, each element corre-
sponding to a different crystallographic orientation (Havlicek et al., 1992; Kalidindi
et al., 1992; Takahashi et al., 1994; Beaudoin et al., 1995; Bertram et al., 1998;
Bachu and Kalidindi, 1998; Dawson and Marin, 1998; Takahashi et al., 1998). This
method is convenient to provide results concerning the global response of the
aggregate. Still, it cannot provide any information on the local behavior, and has
nothing to do with the real microstructure. A more precise modeling of the grain
shape has also been proposed, with cylinders having a hexagonal section in quasi-3D
computations (Harren and Asaro, 1989; Becker, 1991), or dodecahedra (Mika and
Dawson, 1999). This approach has allowed the authors to investigate the local
behavior at a transgranular level.

The viscoplastic approach proposed by Asaro (Asaro, 1983) is the most common
model used for the single crystal with a simple interaction matrix, which is often
reduced to a Taylor assumption (isotropic hardening) (Becker, 1991; Beaudoin et
al., 1993; Mika and Dawson, 1998, 1999; Staroselski and Anand, 1998). More
complex models, considering the dislocation-dislocation interaction, have also been
used (Teodosiu et al., 1991; Harder, 1999). To account for anisotropic effects of the
hardening in the slip systems, self-hardening and latent-hardening of the slip system
resistances can be used (Bachu and Kalidindi, 1998). Kinematic hardening can be
seen to simulate cyclic- and cross-loading tests (Takahashi et al., 1998). As well, twin
has been introduced (Staroselski and Anand, 1998) to model the behavior of mate-
rials with low stacking fault energy like a-brass. In this case, latent hardening laws
have been used for slip and twin resistance.

The original points of the present paper are first to consider 3D realistic
morphologies, then to use a specific crystallographic model accounting for visco-
plasticity, isotropic and kinematic hardening, and to focus on the small strain levels.
At this stage of the deformation, the redistribution effect is already present, but not
saturated, so that it is possible to compare the F.E. results with sophisticated models
like self—consistent approach instead of considering a Taylor model. Besides, a
detailed analysis of the intragranular level will be proposed.

In a recent paper (Quilici and Cailletaud, 1999), a brief presentation of the meth-
odology was made, and initial results concerning the behavior in the core of the
material were given. A comprehensive description of the methods has now been
given, the second part of the paper (Barbe et al., 2001) being devoted to the study of
the intragranular contours and the surface effect.
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The first section of the present part describes the numerical tools used to generate
a polycrystalline aggregate. Later the models for single crystal and polycrystal plas-
ticity are presented. Section 3 provides a description of the numerical aspects of the
model implementation, including both the parallel F.E. code and the small simula-
tion code for the equivalent polycrystal model. In order to illustrate the influence of
the numerical parameters of major importance in the definition of a polycrystal,
several realisations, either with geometrical variations on the morphology of the
microstructure or with different sets of textures, are presented in Section 4. After-
wards, Section 5 is devoted to the study of the convergence of the simulations with
respect to the discretisation used, in terms of macroscopic responses compared to
the responses of a homogenisation model.

2. Polycrystal generation
2.1. Models of random polycrystals

To account for the heterogenity of polycrystalline structures, a model of random
medium, namely of random tesselation, has to be used. Every class of the tesselation
will reproduce a metallic grain with a given crystallographic orientation and/or
mechanical constitutive equations, according to the definition of phases in this
paper.

The Voronol polyhedra model (Gilbert, 1962) is a good candidate to generate
random polycrystals, for geometrical considerations, since it provides planar
boundaries separating grains, and because it reproduces some morphogenetic pro-
cess, where germs grow with a constant and isotropic growth rate from random
seeds. It was already used by Canova et al. (1992) in its standard version and with a
limited number of crystals (100 in the mentioned reference). A more general model,
reproducing germination and growth models is provided by the Johnson and Mehl
model (1939), which can be simulated with slight changes of the present algorithm.
To generate such microstructures, we propose an original method, with numerous
extensions of the classical model (Decker and Jeulin, 2000). Its main advantages, as
compared to standard procedures, is to be able to generate texture with a very large
number of grains with a low computational cost, as explained below. Formally,
Voronol polyhedra are defined as zones of influence of a particular set of points,
corresponding to their centers. Let D C R® and E = {4,} be a set of N random
points P(x, y, z) corresponding to the centers of grains in the continuous domain D.
If d(Py, P,) is the euclidean distance between two points P; and P,, the zone of
influence of a point A4; is defined in (1) by the set of points P(x, y, z) with:

i(4;) = {P(x, y, 2)e DId(P, ;) < d(P, A))Vj # i} (1)

In more physical terms, a point P belongs to the zone of influence of germ A4;, if
it is closer to A4; than to any other germ. By construction, this zone of influence
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generates the Voronol polyhedron centered in A;. The set of zones of influence
{iz(A,-)} builds a random tesselation of the domain D into N classes, every A; being
the germ of one class.

Centers of polyhedra are usually obtained by simulating a Poisson point process,
resulting in a uniform location inside the domain D (their coordinates are obtained
as independent uniform random variables). Other distributions of germs can be
simulated, as illustrated below. Polyhedra are immediately known from their
boundaries (or faces), resulting from intersections of median planes of all segments
connecting nearest neighbors (Ai, A_/). Building polyhedra with a common face is
equivalent to looking for the solution of the dual problem of the Delaunay graph
connecting the center of any polyhedron to the centers of its neighbors. In three
dimensions, the determination of the solution of this problem by means of compu-
tational geometry is rather prohibitive when the number of germs N is larger than a
few hundreds. Therefore, we have proposed a new approach.

2.2. Construction of Voronoi polyhedra on a grid of points

A specific procedure was developed to build Voronoi polyhedra inside a discrete
domain, made of a 3D voxel map. The polyhedra are generated at a given resolution,
defined by the size of the three-dimensional domain. We have to assign to each voxel
the number (or label) of the grain to which it belongs. The generation of polyhedra is,
therefore, obtained with a given spatial resolution, according to the size of the
resulting image. For a given size, the precision of the definition of grain boundaries
depends on their average volume, and, as a consequence, on the number of grains.

In a first step, a germination process gives the locations (on the grid) of the centers
of grains. Then the Euclidean distance function of this set of points (Gratin, 1992,
1993) is calculated from an isotropic propagation starting from points. This process
can be interpreted as a growth starting from every germ. The result can be displayed
as a grey level image where the value in each point is proportional to the distance to
the nearest source. This is illustrated in Fig. la for the case of a single source and in
Fig. 1b for a set of point sources. The calculation of the distance function is imple-
mented in a very efficient way, using the hierarchical queues algorithm (Meyer, 1990;
Gratin and Meyer, 1992; Gratin, 1993; Ragnemalm, 1992), which enables us to

| —
a) Distance function of a b) Distance function of a ¢) Final result after construc-
single point source set of point sources tion and labelling

Fig. 1. Construction of Voronoi polyhedra on a periodic grid (2D example).
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produce simulations in a short time. The memory space needed for simulations is
reasonable, although an intermediary 3D image with floating data is required (63
Mb are used for a domain with 180% voxels). The boundaries of polyhedra (as in
Fig. 1¢) can be obtained by two different ways. In the first method, the image of
distances is considered as a topographical relief and the grain boundaries are
obtained as the divide surfaces of the watersheds (a watershed being associated to
each center). They are built by the “relief immersion™ algorithm (Meyer and Beu-
cher, 1990; Meyer, 1992). In the second method, the boundaries are obtained during
the step of the calculation of the distance, if any voxel is assigned the label of its
closest source.

This construction can be a first step in an analytical construction of polyhedra,
using information on neighboring grains contained in the discrete 3D image. The
calculation of intersection of planes is then obtained easily and it is possible to
obtain coordinates of vertices of polyhedra, from which a finite element mesh may
be generated. In the present paper, the mesh is made of a network of cubes as in
(Canova et al., 1992).

Times to generate random tesselations are short, and can be neglected as com-
pared to finite element calculations. The complexity of calculation is practically
proportional to the number of voxels (and does not depend on the number of poly-
hedra). For indication, using a PC computer with the Linux OS (133 MHz, 64 Mb
memory), 200 s are required to produce a cubic domain with 180° voxels, containing
1000 as well as 3000 polyhedra.

2.3. Extensions of the model and results

The proposed method can be easily extended. Periodic boundary conditions can
be imposed, as in Fig. 1b,c: the vicinity graph of the grid is simply made periodic
before the calculations. Edge effects are suppressed by this process, and infinite
media can be simulated. This type of periodic simulation is very useful for further
finite element computations with periodic boundary conditions.

Grain shape anisotropy can be generated from any deformation of the distance
function (Fig. 2a). Thus are reproduced structures as obtained by a rolling process.
Notice that it would be difficult to generate such anisotropic textures from standard
computational geometry procedures, since a Poisson point process remains Poisson
(and, therefore, isotropic) after any transformation of coordinates by affine trans-
formations. Our construction based on distance function does not present this
drawback. If a phase, or a component, is randomly assigned to each grain according
to a given distribution, a multiphase polycrystal is generated. The assignation can be
made uniform over space, or can be made according to an underlying random
medium. In the last case, the phases are assigned non independently to the different
polyhedra. This is obtained by assigning to every center a color (or label) according
to a map generated by a second image. The color of any germ is then assigned to
every voxel of the polyhedron that it generates. This differs from standard simula-
tions, where the assignation of grains is made randomly, and independently for any
pair of grains. An example is provided in Fig. 2b, where the map was produced by
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the simulation of a color dead-leaves model (Jeulin, 1989), while in Fig. 3 the phases
are assigned without any spatial correlation.

Finally, the distribution of grains can be made more regular, as compared to the
standard Voronoi model: a minimal distance r between centers can be introduced, or

'I

(a) Anisotropic grains obtained
by deformation of the distance
function.

(b) Assignation of a phase to each grain (right) from a reali-
sation of a random multiphase dead-leaves model (left)

Fig. 2. Extension of the model.

200 grains

16000 grains

Faces of the domain Extraction of phase 1

Fig. 3. Two-scale simulations of multiphase polycrystals. Grains are uniformly distributed over three
phases, independently on each grain. Cubic domain (250° voxels) with periodic boundary conditions. A
differently grey level is assigned to each phase.
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more generally, a repulsion kernel (containing no other germ) can be given around
every point of the process. In the last case, the location of centers is made sequen-
tially, using an additional 3D image which records the forbidden locations. In this
way, grains with a low size are eliminated and the distribution of the grain volumes
is made much more uniform (Fig. 4b), as compared to the purely random case
(Fig. 4a). This is interesting for investigating the effect of the dispersion of the grain
volumes on the behavior of polycrystals.

3. Model for the single- and polycrystal
3.1. Single crystal

It is assumed that slip is the predominant deformation mechanism and that
Schmid’s law is valid. The resolved shear stress can then be used as a critical variable
to evaluate the inelastic flow. A viscoplastic framework is chosen, in order to avoid
the problems related with the determination of the active slip systems in plastic
models. A threshold is introduced both in positive and negative directions on each
slip system: 12 octahedral slip systems will be used for FCC materials. Two variables
are defined for each slip system s, ¥ and x*, corresponding respectively to isotropic
hardening (expansion of the elastic domain), and kinematic hardening (translation
of the elastic domain). A system will be active provided its resolved shear stress t° is
greater than x* 4 ¥ or less than x* — ¥ and the slip rate will be known as long as
stress and the hardening variables are known. The state variables used to define the
evolution of ¥ and x* are the accumulated slip v* for isotropic hardening and the
variable o for kinematic hardening. Knowing the stress tensor applied to the grain
g, a$ the resolved shear stress for system s can be classically written according to (2),
7% and m* being respectively, for the system s, the normal to the slip plane and the
slip direction in this plane. The hardening variables x* and r* can then be expressed

1400 grains located with a repulsion
(sphere with radius r = 20)

1000 grains on a Poisson point process

Fig. 4. Voroni polyhedra: display of faces of a cubic domain (2503 voxels) with periodic boundary con-
ditions. A random grey level is assigned to each grain.
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as a function of o* and v* following (3), their actual values allowing then to compute
the viscoplastic slip rate p°, the viscoplastic strain rate tensor £% (4), and the hard-
ening rules [(5) and (6)]. The present formulation gives a saturation of the hardening
in both monotonic and cyclic loading, and takes into account the interactions
between the slip systems, through matrix /,,, as in (Kocks and Brown, 1966). Nine
material-dependent coefficients are involved in the model (E, v, K, n, ¢, d, Ry, Q, b).

‘CS:ggII_I,lSZEQgI(H @m' + ' ®7") 2
X =co’; ¥ = Ry + Qth{l _ e—bt”'} (3)
y' = isign(r’ — x); 65 = ) m'y’ “4)
= <¥> with (x) = Max(x, 0) and '(t = 0) = 0 (5)
a’ =y —doa’v with (1 =0)=0 (6)

Such a formulation (Cailletaud, 1987; Méric et al., 1991) is an extension of the
classical crystallographic approach for single crystal modeling in plasticity or in
viscoplasticity [see for instance (Taylor, 1938; Mandel, 1965; Asaro, 1983)]. Other
more recent models belong to the same class, they were also developed in the eighties
(Jordan and Walker, 1984; Swanson and Bill, 1985; Dame and Stouffer, 1986;
Busso, 1990) to correctly represent the stress—strain behavior of superalloy single
crystals. Due to the saturation of the hardening and the presence of kinematic hard-
ening, the present model is valid for the simulation of cyclic loadings. It has been
extensively used for single crystal modeling including Finite Element simulations.

3.2. Transition rules for the polycrystal

In a polycrystalline aggregate, one phase may be characterised by its shape, size,
crystallographic orientation, location with respect to the surface of the material, etc.
Most of the models usually specified for polycrystals made of equiaxial grains retain
only the crystallographic orientation (Beaudoin et al., 1993; Staroselski and Anand,
1998; Mika and Dawson, 1999), and put in the same crystallographic phase all the
grains having the same orientation. The alloy is then considered as a n-phase mate-
rial, each phase being defined by a set of Euler angles, and the model will then be
used to describe the mean behavior of all of them.

The oldest models proposed to obtain local stresses and strain in plasticity use
simple assumptions like (i) uniform plastic strain (Taylor, 1938), (ii) uniform stress,
(iii) uniform total strain (Lin, 1957). Nevertheless, it is generally admitted that, for
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the case of polycrystals, the self-consistent scheme is a good candidate to schemati-
cally represent the phase interaction. The application in plasticity has been devel-
oped by Hill (1965), after the work done by Kroner on the elastic accomodation
(Kroéner, 1961) or Budianski and Wu (1962) who applied Eshelby solution for the
problem of an ellipsoidal inclusion in an infinite medium (Eshelby, 1957). The case
of viscoplastic behavior was treated by Hutchinson (1966). The problem can be
written in terms of rates, allowing the computation of the local stresses g¢ if the
global stresses and strains and the local strain are known (7), by means of a fourth-
order tensor L* (3):

6 =g+ (¢ - &) ™
with:
Lo () s () ®

where L characterises the incremental behavior of the equivalent medium, and
Lfthe tangent behavior of each grain. If elasticity is uniform, the same model is valid
with the local and macroscopic plastic strains. On the other hand, in the case of
spherical phases, isochoric plasticity and proportional loading path, the model has a
simplified expression (Berveiller and Zaoui, 1979). The relation (9) summarises the
results given by several models, according to the definition of «, with a specific
mention to & = 1 (Kroner, 1961), or to (10) involving the overall equivalent stress &
in uniaxial tension and the plastic part of the overall strain tensor £ (Berveiller and
Zaoui, 1979):

¥ =g+ au<Ep - §pg) ©)

with:

I 3uEP o e
S= 1+ andE _<§ ) (10)

From a physical point of view, the previous rule simply shows that a local plastic
strain decreases the local stress, whereas the stress redistribution related to plastic
accomodation tends to decrease for larger plastic strains. Many other works having
used transition rules for polycrystal can be referenced (Beradai et al., 1987; Weng,
1987, 1993; Hess, 1993). The transition can also be expressed by a phenomenological
model, and identified from finite element computation (Cailletaud and Pilvin, 1994;
Pilvin, 1996):
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gg=g+u<§—/§g) (11)

The new variable g% has a non linear evolution, depending on the local plastic
strain in grain g, and B is its mean for the aggregate. This approach no longer
assumes that the stress is uniform in the equivalent homogeneous medium, and can
be easily calibrated for cyclic loadings. Nevertheless, additional coefficients have to
be introduced, which are not necessary in (9). Since the loading path in the present
paper is just a tension, Berveiller—Zaoui model (BZ) will be chosen as the reference
for the polycrystal behavior. The following coefficients are then used:

— isotropic elastic behavior: £ = 196000 MPa, v = 0.3

— viscous effect in (5) and (6): K = 10 MPa.s!/", n = 25

— kinematic hardening in (3): ¢ = 1600 MPa, d = 40

— isotropic hardening in (3) and (4): Ry = 111 MPa, Q =35 MPa, b =7

4. Numerical implementation
4.1. Integration of the constitutive equations

The crystal plasticity models are implemented in the F.E. code ZéBuLoN, written
in C+ + (Besson and Foerch, 1998). Many constitutive equations are implemented
in this code; from a numerical point of view, the crystal plasticity models can be
considered as classical macroscopic models (Besson et al., 1998). For the single
crystal, the state variables retained for the integration of the constitutive equations
are the elastic strain tensor, the accumulated slip v* and the kinematic variable «* on
each slip system. In the case of a FCC single crystal, 12 slip systems are considered,
so that there are (6 +2x12) variables for each Gauss point. For the polycrystal, a
variable defining the intergranular hardening has also to be considered [either g8
used in (9) or B¢ introduced in (11), depending on the scale transition rule], so that,
for P FCC grains, the number of variables is (6+ 6x P+ 2x12x P). The integration
of the system is made by means of a theta—method, solved with a local Newton
problem, for the models with a low number of variables (less than 100), but the code
switches to Runge-Kutta methods for a large number of variables (using P =200
leads for instance to 6006 variables on each integration point). The consistent tan-
gent matrix is obtained numerically in the Newton solution of the theta-method
problem (Simo and Taylor, 1985; Cailletaud and Chaboche, 1996), and a BFGS
algorithm is used at the global level together with the Runge-Kutta integration.

It has to be noted that the code has two original capabilities to applied loading
paths on RVE’s:

e A special RVE element, in which the degrees of freedom are the components of
the strain tensor, and the reactions the stresses (the matrix [B] of the derivative
of the shape functions is simply identity). This element can be included in a
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F.E. computation, but the calculations are about 10 times faster than the cor-
responding computations with a regular finite element

e A simulator (ZSeT/Z¢BuLoN-8, 1999) which consists in an independent piece
of code acting on the material library, and with a fast numerical treatment of
the loading (strain partition between elastic and plastic strain), so that the
CPU time is again 10 times smaller than with the RVE element.

These capabilities are used to calibrate the material parameters, inside an optimi-
sation loop, or simply to make the simulation, as in the present case: the reference
tensile curves made with the self—consistent polycrystal model are produced with the
RVE element.

4.2. Parallel computation

Many time-steps are needed, since the local loading paths are highly non-propor-
tional. As the global problem is quite large for a single workstation, the parallel
version of the code is used (Feyel et al., 1997; Feyel, 1998). The solution of the sys-
tem is obtained by subdomains, with the FETI method (Fahrat and Roux, 1994)
and the interprocessor communications are managed by use of the PVM or MPI
libraries. The jobs are performed on an IBM-SP2 11-node parallel computer.

4.3. Representation of the RVE

The polycrystalline volume is discretised as a regular cubic mesh, and the material
properties are distributed on each Gauss point. The actual aggregate in the calcula-
tion differs then slightly from the initial one. The main problem of such an approach
is that the grain boundary is not a collection of oblique flat faces, but presents many
steps. This problem will be discussed later on. Let us just note that in the present
calculation we have tried to put as many integration points as possible in each grain,
in order to have a reasonable general description of the stress and strain gradients in
the grains. A balance must be found between two opposite requirements (i) having a
large number of grains to have a representative microstructure, (ii) having enough
Gauss points in each grain. A good compromise was found with 238 grains in a
18x18x 18 mesh made of 20-node-clements with 3x3x3 integration (157464 Gauss
points). The mean value is then 661 Gauss points in each grain. In other works
dealing with polycrystals, i.e. for computation of aggregates containing a sufficient
number of grains, the most discretised structures propose 576 points per grain in
(Mika and Dawson, 1999) for a total number of 300 crystals. This large number of
points is illustrated in Fig. 5, where the volume of each grain is plotted as the dis-
tance to the surface of the aggregate (each finite element is assigned a volume equal
to 1, the volume of the whole structure is then 183 =15832). As many grains are cut
by the “numerical machining”” when the cube including 238 grains is extracted from
the original aggregate, most of the small grains are near the surface. It can also be
seen that more than 50 grains have more than 1000 Gauss points, and more than 100
grains have more than 500 Gauss points.
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Fig. 5. Volume of the grain vs distance to the surface of the aggregate.
5. Validation of the numerical model
5.1. Construction of the aggregate

Two strategies are tested to generate the set of grain orientations. The first one
considers 40 orientations, designed to provide a cubic symmetry (Cailletaud and
Pilvin, 1994; Pilvin, 1996). Those orientations can be classified into four different
“base orientations’ only, which are defined in the standard triangle, each of them
allowing the generation of ten grains by rotation around the last free Euler angle.
All the grains generated from a given base orientation are then equivalent under
tensile loading in a self consistent approach. Other orientation sets have simply been
generated by a random generation of Euler angles.

Several polycrystalline aggregates have been computed that allow us to compare
the responses of the F.E. model and of the self—consistent approach for different
geometrical and texture realisations. In the following notation, each code m1 to m5
corresponds to a new geometrical aggregate. The first number specifies the number
of real grains, the second one refers to the number of phases:

i. microstructure (m1-238-40) with 238 grains whose crystallographic orientations
are taken from the 40-phase set,

ii. microstructure (m1-238-238) with 238 grains with 238 random crystallographic
orientations,

iil. microstructure (m3-200-40) with 200 grains and the same 40-phase set,

iv. microstructure (m4-200-200) with 200 grains and 200 random crystallographic
orientations (geometrical realisation 1),
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v. microstructure (m5-200-200) with 200 grains and 200 random crystallographic
orientations (geometrical realisation 2).

All the computations have been made with a 18x18x 18 mesh. Each aggregate is
described by a mesh made of 18x 18x 18 quadratic cubic elements (20 nodes and 27
Gauss points per brick). The spatial distribution of the phases is shown in Fig. 6;
(m4) is studied in detail in the second part of the article (Barbe et al., 2001). Aggre-
gates with 10 or 40 grains have also been considered, but they do not produce an
isotropic aggregate, since the volume fraction of each grain is not the same. There-
fore, the results are not reported here.

For the case of m1-238-40, the volume fraction of each base orientation has been
controlled, it is respectively 25.09, 25.04, 24.97 and 24.90%. Nevertheless, the indi-
vidual contribution of each ten ‘“‘children” of each base orientation cannot be accu-
rately set to 25%, since it depends on the geometry of a low number of grains. The
volume fraction for each phase varies between 0.0073 and 0.0546%. For m3-200-40,
there is no special control on any volume fraction, leading to a minimum value of
22.67%, and a maximum value of 27.15% for the base orientations.

Fig. 6. F.E. representations of all the aggregates simulated under isovolumic conditions of load: (a) ml,
(b) m3, (c) m4, (d) m5.
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5.2. Influence of the geometry and of the texture

All these microstructures have been loaded in tension, in order to reach an axial
strain of 1.5%, with isovolumic conditions (lateral strain —0.75%). Reference com-
putations have also been performed with BZ model, by taking the same crystal-
lographic orientations and the same volume fraction for each phase. Typical results
are shown in Fig. 7a,b,c where the average values of each stress and strain compo-
nent on the whole mesh have been used to draw the macroscopic curve coming from
the F.E. For the sake of clarity, since the discrepancy between the various BZ
responses remains low, the only curves plotted for the BZ model are the solutions
obtained with m1-238-40 microstructure (BZ-238-40), that is, with the volume frac-
tions read in m1-238-40, and the reference solution with the same amount of the 40
special orientations (BZ-40-40).

In the tensile direction (Fig. 7c), the discrepancy between the various computations is
very low (less than 5%), the BZ model appearing as a higher bound. The two BZ com-
putations are the same, due to the good balance between the various base orientations.
It has to be noted that the sensitivity to the different assumptions made in the compu-
tations is larger for the lateral stresses (Fig. 7a and b). The difference between the two
BZ simulations in these planes is significant, the result on the real microstructure m1-
238-40 being anisotropic (116 MPa in x direction, 132 MPa in y direction). The larger
discrepancy is found for m1-238-40 microstructure, on xx component of the stress
(around 8%), while the best isotropy is obtained for the m5-200-200 microstructure.

The present results demonstrate that 200 is a reasonable number of grains, the
mean behavior being almost the same for any kind of distribution. The choice of a
random set of orientation seems to provide a good quality aggregate. In the fol-
lowing, the 40-phase distribution will be used for the comparison of the F.E. with
the BZ model, since it offers the opportunity to compare the responses of individual
grains which have exactly the same orientation in different positions (and with dif-
ferent neighbors) in the aggregate. Besides, we will switch to randomly oriented
grains for further analysis of the intragranular behavior.

5.3. Influence of the element interpolation

Several microstructures have been computed using two different interpolation
levels in the element: each aggregate is represented either with quadratic elements
made of 20-node-bricks containing 27 integration points, or with linear elements
made of 8—node-bricks containing 8 integration points. The structures have been
generated in such a way that the number of integration points in a given micro-
structure remains the same whether the elements are quadratic or linear. In this type
of computations, the linear meshes usually appear to be too stiff. This is illustrated
in Fig. 8, which shows the macroscopic stress—strain curve for the case of m1-238-40
microstructure. The difference is still more important on a transgranular level, the
quadratic interpolation allowing a finer description of the local fields. As demon-
strated by Fig. 9a,b, which shows the contour plot of the amount of plastic slip,
after a 1.5% tension, there is a qualitative agreement between the two calculations
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concerning the zone of strain concentration, nevertheless the values are quite differ-
ent: the range is (0.00545-0.0858) for the linear mesh, while (0.00005-0.1219) is
obtained with the quadratic interpolation.
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Fig. 8. Effect of the interpolation mode on the mean stress-strain response of three aggregates subjected
to isovolumic loading conditions, for m/-238-40

(b)
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m1-238-40 ; 157464 gp ; amount of plastic slip
Fig. 9. Effect of interpolation mode on the local slip activity of the m1-238-40 distribution subjected to

isovolumic loading conditions: (a) 5832 quadratic elements, 157464 integration points, (b) 19683 linear
elements, 157464 integration points.
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5.4. Influence of the size of the mesh

In order to check the convergence of the mean stress—strain response relatively to
the number of elements used to represent a given aggregate, the simulation of a
simple tensile test on microstructure (m4-200-200) has been performed with four
meshes of different sizes:

16x16x16 quadratic elements, i.e. 110592 integration points,
18x18x 18 quadratic elements, i.e. 157464 integration points,
20%x20x20 quadratic elements, i.e. 216000 integration points,
24x24x24 quadratic elements, i.e. 373248 integration points.

Only the onset of plasticity was computed in the bigger meshes (203 and 243 ele-
ments), so that the comparison is made for a low total strain (0.2%). It is not
surprising to check that the global response is the same for all the meshes, as
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Fig. 10. Effect of the mesh size on the response of the m4-200-200 microstructure after a 0.2% tension: (a)
axial stress vs axial strain, (b) min and max local values of the axial stress.
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shown in Fig. 10, since it is known that a relatively low number of elements (typi-
cally 12%) provides the proper answer. On the other hand, the local response still
depends on the size of the mesh in the investigated range, as summarised in Fig. 10b,
which contains the min and max values of the axial stress in the aggregate. This
effect can be precised by the observation of the contour plots of the axial stress in

180.0 222.3 258.5 300.8 343.1 385.4 427.7 470.0
axial stress (MPa); E=0.2 %

Fig. 11. Effect of the mesh size on the local behaviour of the m4-200-200 microstructure after 0.2% simple
tension: (a) 16> quadratic elements, (b) 18* quadratic elements, (c) 20°quadratic elements, (d) 243quadratic
elements
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Fig. 11 and of the cumulated slip on all the slip systems, in Fig. 12. These last contours
are specially significant, since they show the organisation of the deformation pat-
terns independently of the local microstructure (i.e. localisation zones crossing the
grain boundaries). These patterns become finer when the precision of the mesh
increases.

0. 0.0004 0.0008 0.0013 0.0017 0.0021 0.0025 0.003 0.0034

equivalent cumulated plastic strain ; E=0.2 %

Fig. 12. Effect of the mesh size on the local behaviour of the m4-200-200 microstructure after 0.2% simpler
tension: (a) 16 quadratic elements, (b) 18* quadratic elements, (c) 203quadratic elements, (d) 24’quadratic
elements



F. Barbe et al. | International Journal of Plasticity 17 (2001) 513-536 533

7 S

o

2

] i

£ S

g

é -
.
x
x
5

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

axial strain

Fig. 13. Stress-strain curves for each basic orientation of the standard triangle for the m1-238-40 micro-
structure tensile strained at 1.5% with isovolumic conditions.

5.5. Local comparison with the self—consistent model

The previous comparisons between F.E. and BZ model only concern the global
response. The curve in Fig. 13 shows the comparison of the tension curves obtained
for each “‘base orientation” of the m1-238-40 microstructure. The curve is obtained
from the F.E. result by averaging the value of the axial stress and strain components
in four classes of grains coming from the same initial orientation, as explained in
Section 5.1. The agreement is correct, but not as good as for the global loading. This
difference is a first step toward the high level of heterogenity which will be discussed
in the second part of the article.

6. Conclusion

The present paper describes a numerical environment for studying the mechanics
of crystalline solids on a microscale. The main results concern the validation of the
different tools and of the numerical techniques. Synthetic microstructures can be
created to represent material elements with a controlled number of grains. Pre-
scribed textures can therefore be applied to the aggregate. The first purpose of this
paper was to propose a solution to get a representative microstructure for an iso-
tropic RVE. It is not surprising to see that it is better to work with as many grains as
possible. On the other hand, it is shown that the results obtained are quite compar-
able with a random microstructure or a polycrystal with a reduced number of
orientations, chosen to reproduce an isotropic behavior. In the following part
(Barbe et al., 2001), we will work with at least 200 grains, and a random micro-
structure. The influence of the mesh size has also been considered. It can be observed
that, since small strain assumption is used in the paper, quadratic elements give
better results than linear ones. Full integration in the quadratic elements (3x3x3
integration points per element) gives the opportunity to have a better description of
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the local geometry and remains acceptable compared to reduced elements. With our
conditions of loads, the overall strain is not too high so that the elastic strain cannot
be neglected and the definition of hydrostatic stresses is still correct. Using a
18x 18x 18 mesh corresponds to a good quality-price ratio, as confirmed by com-
putations performed with 20x20x20 and 24 x24x24 elements. In the last section of
the paper, the F.E. model is also validated with respect to the self—consistent
approach. The agreement between the macroscopic responses is good, with only 2%
discrepancy in terms of stress for a given strain. The heterogenity on the phases is
also correctly represented, even if the difference for the two types of modeling
reaches now 8% for the local axial stresses. In the following part, the numerical
procedure will be used to compute an aggregate made of 18x18x18 elements in
order to provide a numerical evaluation of the various stress and strain fields on a
microscale, specially concerning the intragranular heterogenity, which is essential to
understand damage initiation.
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