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Abstract: The process of bone remodeling includes a cycle of repair, renewal, and optimization. This adap-
tation process, in response to variations in external loads and chemical driving factors, involves three main
types of bone cells: osteoclasts, which remove the old pre-existing bone; osteoblasts, which form the new
bone in a second phase; osteocytes, which are sensing cells embedded into the bonematrix, trigger the afore-
mentioned sequence of events. The remodeling process involves mineralization of the bone in the di�use in-
terface separating the marrow, which contains all specialized cells, from the newly formed bone. The main
objective advocated in this contribution is the setting up of a modeling and simulation framework relying on
the phase �eldmethod to capture the evolution of the di�use interface between the newbone and themarrow
at the scale of individual trabeculae. The phase �eld describes the degree of mineralization of this di�use in-
terface; it varies continuously between the lower value (no mineral) and unity (fully mineralized phase, e.g.
new bone), allowing the consideration of a di�use moving interface. The modeling framework is the theory
of continuous media, for which �eld equations for the mechanical, chemical, and interfacial phenomena are
written, based on the thermodynamics of irreversible processes. Additional models for the cellular activity
are formulated to describe the coupling of the cell activity responsible for bone production/resorption to the
kinetics of the internal variables. Kinetic equations for the internal variables are obtained from a pseudo-
potential of dissipation. The combination of the balance equations for themicroforce associated to the phase
�eld and the kinetic equations lead to the Ginzburg–Landau equation satis�ed by the phase �eld with a
source term accounting for the dissipative microforce. Simulations illustrating the proposed framework are
performed in a one-dimensional situation showing the evolution of the di�use interface separating new bone
from marrow.

Keywords: Bone remodeling, phase �eld, thermodynamics of irreversible processes, di�use interface,
Ginzburg–Landau equation, cellular activity

1 Introduction
Bone tissue is an adaptable living structure, having the capacity to adapt its internal structure and external
shape to variations in its mechanical environment. Bone is a complex multiscale structure as shown in Fig-
ure 1, with two distinct types of tissues: the cortical bone, which is dense and compact and forms the outer
surface of bones, and it encloses the trabecular bone tissue, which has a honeycomb-like structure and is
made of trabeculae surrounded by bone marrow. The mineralized matrix of bone tissue has an organic com-
ponent consisting mainly of type I collagen and an inorganic component of bonemineral made up of various
salts.
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Figure 1. Histological description of trabecular and cortical bone. Trabecular bone is made of skeleton (80%) and has an open
cell porous structure. The cortical region is compact (20%) and contains lamellae of collagen �bers, with sensing cells trapped
between the strati�ed layers (osteocytes) and other cells communicating by tubules through the collagen matrix.

Bone is a dynamic living tissue, with the ability to modify its internal architecture in response to its envi-
ronment in order tomaintain its structural integrity as the support of the body and its physiological functions,
especially as a reservoir of nutrients [1, 2].

In adult bones, skeletal development is the result of growth,modeling, and remodelingprocesses. Growth
means the change of overall bone mass and is due to both genetic and epigenetic factors, including mechan-
ical physiological loads supported by the body. Modeling occurs in a concomitant manner to growth, as it
modulates the bone architecture during growth in response to a variation of the mechanical conditions. It
accordingly controls the shape, size, and strength of bones by the addition or resorption of bone material at
the surfaces of trabeculae. Remodeling involves the replacement of old bone by new lamellar bone through
resorption processes; bone remodeling as an integrated process incorporates themechanisms throughwhich
living bone adapts its internal structure to changes of the external load. The gold standard for bone remod-
eling is the BMU, the acronym for basic multicellular unit [3].

Both cortical and trabecular bone undergo remodeling, the di�erence between thembeing in the geomet-
rical progression: the BMU has the ability to move along the surface of the trabeculae, whereas it penetrates
the compact cortical bone by digging a tunnel. The temporal sequence of remodeling steps on a trabecula is
illustrated in Figure 2.

Bone remodeling plays an important role in the processes of formation, maintenance, and repair of bone
tissues; it aims at shaping the skeleton and repairing bone fractures by adapting the microstructure in re-
sponse to mechanical and physiological stimuli: following a phase of growth and development, bone under-
goes a continuous cycle of repair, renewal, and optimization inwhichmechanical stimuli play a fundamental
role. Bone remodeling can also be perturbed in a pathological manner, due to age-related factors, changes
in physical activity, drugs, secondary diseases, menopause-associated hormonal changes, all leading to an
imbalance of the extracellular matrix remodeling and local angionesis.

Bone remodeling is further classi�ed as either internal or external bone remodeling [4, 5]: external re-
modeling occurs by apposition or resorption of new bone on the external surfaces and is thus also called sur-
face remodeling. It is opposite to internal remodeling, which only occurs at the scale of individual trabeculae,
leading to an overall density change. An increase in mechanical stimuli is found to cause bone formation,
whereas a decrease in load leads to bone resorption [6]. Bone undergoes a continuous and repetitive remod-
eling cycle involving the sequence of activation, resorption of old bone (modeling), inversion, and forma-
tion of new bone (remodeling) by specialized cells (osteoclasts/osteoblasts/osteocytes), as illustrated on the
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Figure 2. Schematic view of a BMU moving along a microcrack within trabecular bone. Osteoclasts resorb bone in the form
of a cutting cone. Osteoblasts subsequently �ll the resorbed space with osteoid (the new bone matrix) and di�erentiate into
sensing cells called osteocytes.

Figure 3. Bone remodeling cycle. From Biomedical Tissue Research, University of York; www.york.ac.uk/res/bonefromblood;
�gure completed by the delivery of cells.

synthetic Figure 3. In the remodeling process, specialized cells called osteoclasts resorb bone tissue, whereas
other cells called osteoblasts deposit newbone tissue.When osteoblasts become trappedwithin the bonema-
trix they secrete, they di�erentiate into osteocytes, playing the role of load sensing cells. Osteoblasts increase
bone mass under high loading conditions, by producing hydroxyapatite, the mineral forming the new bone,
together with collagen I, an organic matrix. Bone tissue is removed by osteoclasts under low loading con-
ditions; the overall cell activity aims to reach an optimized bone architecture. The interactions between the
activity of osteoblasts and osteoclasts is responsible for bone remodeling at the level of the BMU.

Many biological factors are involved in the regulation of the bone remodeling process [7, 8], including
autocrine and paracrine signaling molecules, systemic hormones and extracellular matrix components that
a�ect cell-to-cell communication, migration, adhesion, proliferation, and di�erentiation. The interactions
between osteoclasts and osteoblasts are very complex because osteoblasts can regulate the activity of os-
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teoblasts by specialized molecules called RANK and RANKL (see [9] for a review). More details relative to the
biological aspects of bone remodeling will be given in Section 6.

The integrity and strength of the bone microstructure is determined by the balance between the volume
of resorbed bone and that of newly formed bone [10, 11]. One can classify the models developed in the liter-
ature aiming at simulating the functional adaptation of bone into three main classes: optimization theories
considering bone as amechanical structure undergoing an evolutionary process, phenomenological models,
and mechanistic models, some of which in this third category incorporate the chemical and biological pro-
cesses responsible for the modi�cation of bone architecture. More details relative to each of these classes of
models are given in [12].

The need for bone remodeling models and simulations is especially marked in applications dealing with
bone adaptivity, such as bone implants and sca�old design [13]. This contribution focuses on the bone inter-
nal remodeling processes occurring at the scale of individual trabeculae, to re�ne the more external remod-
eling approaches [14, 15].

As proposed in [16], remodelingmodels can be classi�ed into several categories: (i) models based on the
global optimality criterion [17–21]; (ii) models including a homeostatic state of mechanical energy [22–36];
(iii)models based ondamage [26, 27, 37, 38]; (iv)models including bothmechanical andmetabolic factors in
the remodeling cycle [39–45]; (v) onemodel considering the interstitial �uid �ow [46]; and (vi) models based
on a reaction di�usion and including mechanical stress but without biophysical activities of osteoblasts and
osteoclasts [47–50].

To complete thepicture, one shall also considermathematicalmodels describing the activity of BMUsand
based on the work of Komarova et al. [51] focusing on the non-linear autoregulation between osteoblasts
and osteoclasts [52–57]. The interactions with biological factors highlighted by Komarova et al. [51] were
completed by Bonfoh et al. [58], who considered the in�uence of mechanical stimuli on cell dynamics. More
recently, Hambli [16] proposed an approach that combined thework of Komarova et al. [51] and Bonfoh et al.
[58] to include fatigue damage growth and repair, mineralization, porosity, bone properties evolution, and
cellular accommodation during the load history.

As a main originality advocated in the present contribution, we shall set up mechanobiological descrip-
tions of bone remodeling at the trabecular level, considering a �eld theoretical approach within the thermo-
dynamics of irreversible processes (TIP). Thereby, we shall set up a multiphysical framework incorporating
mechanical, chemical, di�usion phenomena, and the mineralization of the osteoid apposed on the existing
bone. Furthermore, we shall provide a micromechanical view of the interface propagation between marrow
andnewbone, by incorporating a scalar phase �eld variable representing the proportion ofmineralized bone.
These �eld equations will, in a last stage of the model, be coupled with the cellular activity responsible for
bone remodeling phenomena.

The phase �eld theory is designed for the continuum modeling of di�use interface migration and there-
fore is a good candidate for �eld modeling of bone remodeling processes [59]. The phase �eld approach has
recently been applied to the growth of tumors but not yet to bone remodeling [60].

This paper is organized as follows: The bone remodeling cycle is described from the point of view of
physiology and biology in Section 2. The �eld equations re�ecting the interactions amongst these phenom-
ena shall be expressed based on the principle of virtual power, highlighting macroscopic and microscopic
forces (Section 3). The energy balance and the local dissipation are expressed in Section 4, together with the
state laws, the kinetic equations for the internal variables, and the spatio-temporal evolution of the phase
�eld, so-called Ginzburg–Landau equation. The set of governing equations is �nally obtained based on the
speci�cation of the di�erent contributions to the free energy density (Section 5). The issue of the connection
between the cellular activity and the mechanical stimuli sensed by the osteocytes network is addressed in
Section 6. The formation of new bone is illustrated numerically in a one-dimensional (1D) example in Sec-
tion 7. Finally, a summary of themain thrust of the paper is given (Section 8) together with a few perspectives
for future research.
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Figure 4. Schematic remodeling cycle including four main steps: healthy bone, initiation and development of microcracks un-
der mechanical stresses, resorption, and new bone formation. The evolution of the phase order parameter is represented in 1D
as a function of variable x.

2 Schematic bone remodeling cycle
Following a phase of growth and development, bone undergoes a continuous cycle of repair, renewal, and
optimization in which mechanical stimuli play a fundamental role. The various stages of remodeling are
summarized in Figure 2, showing the corresponding activity of specialized cells. The �rst stage of the cycle
is activation: under the action of repeated stimuli, such as strain energy, stress concentrations, high strain
levels, and existingmicrocracks, mechanical signals are detected by the osteocytes forming a networkwithin
the available space between successive bone lamellae. The osteocytes then send a signal to the osteoclasts,
which erode the matrix to resorb old bone. This is followed by the formation of osteoid, a non-mineralized
organic portion of the bone matrix forming prior to the maturation of bone tissue. Mineralization resulting
from the activity of osteoblasts then proceeds by the synthesis of an extracellular matrix, composed of 90%
collagen �bers, 10% proteoglycans, and non-collagen proteins involved in the regulation of mineralization.
New bone consists of hydroxyapatite, themineral phase, the dissolution of which has the following chemical
reaction (bone formation corresponds to the inverse reaction), which condenses a more complicated set of
(up to 14) chemical reactions:

[Ca3(Po4)2]3Ca(OH)2 + 8H+ → 10Ca2+ + 6HPO2−
4 + 2H2O.

Because of the complexity of bone remodeling mechanisms, we shall consider a small representative volume
of material from the standpoint of physicochemical/biochemical mechanisms and mechanical phenomena,
as illustrated in the simpli�ed view depicted in Figure 4. In the present work, we shall consider mechanical
factors as themain stimuli triggering bone remodeling: due to the formation and development ofmicrocracks
under mechanical stresses, strain energy builds up, leading to stress concentration around the crack tips
(Figure 4). The existing bone needs �rst to be eroded to remove the stress concentration zones (modeling
process), before new bone can be formed to shape the eroded trabeculae close to their original trabecular
shape (remodeling process).

3 Phase �eld modeling: Virtual power principle and balance
equations

It is assumed that the degrees of freedom (DOFs) of the thermodynamic system shown in Figure 3 can be
resumed to the order parameter ϕ, its gradient ∇ϕ, the gradient of the displacement ∇u, the total number of
moles k-species nk, and temperature T, all encapsulated into the vector of DOF, {ϕ, ∇ϕ, ∇u, nk , T}. Its gra-
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dient rapidly varies in the di�use interface between bone and marrow and contributes to the corresponding
interface energy. The phase �eld describes the degree ofmineralizationwithin newly formedbone (the degree
of formation of new bone due to the mineralization of the produced species); a number of authors [16, 39]
introduced di�erent models for the ash function denoting the degree of mineralization.

The total number ofmoles nk results from the production of the corresponding chemical species by chem-
ical reactions nprodk and of exchanges with the external environment nexchk (in the present case, the bone mar-
row) as expressed in the balance law:

nk = nexchk + nprodk .
The principle of virtual power states that the sum of the virtual power of internal, external, and contact forces
vanishes in a quasi-static situation (one shall add the virtual power of inertia forces for non-quasi-static
situations):

∫
V

p(i)dV + ∫
V

p(e)dV + ∫
∂V

p(c)dS = 0.

The previous integrals have been formulated as volume integrals of the corresponding densities over a
�xed control volume V. This formulation based on an extended principle of virtual power was proposed by
Ammar et al. [61] as a generalization of Gurtin’s thermodynamic phase �eld model, which introduces ad-
ditional balance equations for generalized so-called microforces and microstresses in the context of phase
transformation [62, 63].

Previous weak form of equilibrium relies on power densities involving the rates of the DOF and their
conjugated variables

p(i) = πϕϕ̇ − ξϕ ⋅ ∇ϕ̇ − σ : ∇u̇ + µprodk ṅprodk ,

p(e) = πext
ϕ ϕ̇ + f ⋅ u̇ + µprodextk ṅprodk ,

p(c) = πcont
ϕ ϕ̇ + t ⋅ u̇ + µprodcontk ṅprodk ,

where πϕ, πext
ϕ and πcont

ϕ represent the internal, external, and contact forces associated to ϕ, respectively, ξϕ
is the microforce associated to ∇ϕ, and σ is the Cauchy stress tensor. The scalars µprodk , µprodextk and µprodcontk
are the chemical potentials (for the production, external, and contact chemical actions, respectively) asso-
ciated to the production term nprodk , and f and t denote the volume and surface densities of external forces,
respectively.

The free energymay be expressed as Ψ(ϕ, ∇ϕ, ϵe , nexchk , T), where ϵe is the elastic part of the total strain;
by analogy with elasticity, it incorporates the number of moles being exchanged.

The equilibrium equations arising from the principle of virtual powers are therefore of the following local
form in V:

∇ ⋅ σ + f = 0,
∇ ⋅ ξϕ + πext

ϕ + πϕ = 0, (3.1)

(µprodk + µprodextk )ṅprodk = 0, (3.2)

with the decomposition of themole fraction of k-species into exchanged and produced terms, viz. ṅk = ṅexchk +

ṅprodk , which implies the condition µprodcontk ṅprodk = 0, together with the boundary conditions on ∂V for the
stress �eld and the microforce equations, respectively,

σ ⋅ n = t, ξϕ ⋅ n = πcont
ϕ .

These boundary conditions are supplemented by boundary conditions for the thermal variables (q, T).
The following choices are made with respect to external �elds:

πext
ϕ = 0, (3.3)

µprodk + µprodextk = 0.

Thereby, the external force associated to the phase �eld vanishes, whereas the chemical potential of external
forces is balanced by the internal chemical potential.
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4 A thermodynamic framework for a phase �eld approach of bone
remodeling

The TIP is the adequate framework to formulate the internal dissipation accounting for themultiphysical pro-
cesses underlying bone remodeling: mechanical dissipation, chemical reactions, and transport phenomena
of the produced chemical species. From a constitutive point of view, bone ismodeled as an elastic orthotropic
solid material undergoing small strains; the constitutive law of the bulk material can be obtained by the ho-
mogenization of the underlying microstructure, based on an idealized prototype architecture [64].

4.1 Energy balance

The combination of the �rst principle and the virtual power principle allows obtaining the energy balance on
the basis of the expression of free energy rate as follows:

Ψ̇ = ∂ϕΨϕ̇ + ∂∇ϕΨ ⋅ ∇ϕ̇ + ∂ϵeΨ: ϵ̇e + ∂nexchk
Ψṅexchk + ∂tΨṪ,

Ė = −P(i) + δQ,

ė = −πϕϕ̇ + ξϕ ⋅ ∇ϕ̇ + σ : ∇u̇ − µprodk ṅprodk − ∇ ⋅ q,
T ̇s = ė − Ṫs − Ψ̇.

The last expression combined with the second principle, inequality

̇s ≥ −∇ ⋅ (
q
T )

+
1
T
∇ ⋅ (µprodk Jk)

leads to Clausius–Duhem inequality,
− πϕϕ̇ + ξϕ∇̇ϕ̇ + σ : ∇u̇ − µprodk ṅprodk − ∇.q − Ṫs − ∂ϕΨϕ̇ − ∂∇ϕΨ ⋅ ∇ϕ̇ − ∂ϵeΨ: ϵ̇

− ∂nexchk
Ψṅexchk − ∂TΨṪ + T∇ ⋅ (

q
T )

− ∇ ⋅ (µprodk Jk) ≥ 0.

The last inequality can be reorganized as follows:
[−πϕ − ∂ϕΨ]ϕ̇ + [ξϕ − ∂∇ϕΨ] ⋅ ∇ϕ̇ + [σ − ∂ϵeΨ] : ϵ̇e + σ : ϵ̇irr − µprodk ṅprodk

− ∂nexchk
ṅexchk − ∇ ⋅ (µprodk Jk) − [s + ∂TΨ]Ṫ − (

1
T )
q ⋅ ∇T ≥ 0. (4.1)

Anticipating the identi�cation of the state laws, the previous inequality leads to the total dissipation:

−πdiss
ϕ ϕ̇ + σ : ϵ̇irr − µprodk ṅprodk − ∂nexchk

Ψṅexchk − ∇ ⋅ (µprodk Jk) − (
1
T )

q ⋅ ∇T ≥ 0.

Thus, the residual dissipation takes the �nal form

−πdiss
ϕ ϕ̇ + σ : ϵ̇irr − µprodk ṅprodk − Jk ⋅ ∇µprodk − (

1
T )
q ⋅ ∇T ≥ 0.

The di�erent sources of dissipation associated with the phase �eld, mechanical, chemical, and thermal phe-
nomena are, respectively,

Dϕ = −πdiss
ϕ ϕ̇, Dmech = σ : ϵ̇irr, Dchem = −µprodk ṅprodk − Jk ⋅ ∇µprodk , Dtherm = −q ⋅ (

∇T
T ).

4.2 State laws

The state laws are conventionally obtained from the Clausius–Duhem inequality (4.1) by the standard
Colleman–Noll procedure (the rates factoring the quantities under brackets in (4.1) have arbitrary signs),

ξϕ = ∂∇ϕΨ, (4.2)
πnondiss
ϕ = −∂ϕΨ,
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where the internal phase �eld force decomposes additively into

πϕ = πnondiss
ϕ + πdiss

ϕ ,

with the dissipative microforce, Cauchy stress, chemical potential, and entropy density, respectively, given
by

πdiss
ϕ = πϕ + ∂ϕΨ, (4.3)

σ = ∂ϵeΨ,

µprodk = ∂nexchk
Ψ, (4.4)

s = −∂TΨ.

4.3 Kinetic laws

At this stage of the modeling, one needs to specify the kinetic laws that govern the evolution of the internal
variables. For this objective, one introduces a scalar valued dissipation function Ω(πdiss

ϕ , σ, ∇µprodk , µprodk , ∇T)
decomposing into di�erent contributions involving the forces satisfying the previous state laws,

Ω =
1
2L(ϕ)∇µ

prod
k ⋅ ∇µprodk −

1
2(

1
τϕ

)(πdiss
ϕ )2 + f(σ) − 1

2(
1
τk

)(µprodϕ )2 +
1
2 k(

∇T
T )

2
(4.5)

and satisfying Onsager’s properties. As expected, the resulting kinetic laws follow from previous writing as

ϵ̇irrmech =
∂Ω
∂σ = λ̇ ∂f

∂σ ,

ϕ̇ = −
∂Ω
∂πdiss

ϕ
= −

1
τϕ
πdiss
ϕ ,

ṅprodk =
∂Ω

∂µprodk

= −
1
τk
µprodk , (4.6)

−Jk =
∂Ω

∂∇prod
k

= L(ϕ)∇µprodk , (4.7)

where the variable λ̇ is the plastic multiplier. The in�uence function L(ϕ) relating the mass �ux of chemical
species to the gradient of the corresponding chemical potential in (4.7) may take the typical form of a mixing
law including the di�usion within marrow and bone,

L(ϕ) = h(ϕ)DB
kB

+
(1 − h(ϕ))DM

kM
,

wherein the following simple quadratic interpolation function is chosen as [61, 65]

h(ϕ) = ϕ2(3 − 2ϕ).

The coe�cients DM and DB represent the di�usivities within bone or marrow, respectively, the Fick’s law be-
ing recovered in both phases. These equations successively express the evolution of the irreversible mechan-
ical strain tensor and of the phase �eld, the number of producedmoles, and the �ux of chemical species. The
variables involved in the �eld equations are illustrated in Figure 5.

4.4 Ginzburg–Landau equation

Furthermore, the �ux of chemical species Jk through the boundary of the control volume ∂V leading to min-
eralization satis�es the following balance law:

ṅexchk := −∇ ⋅ Jk . (4.8)
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Figure 5. The three regions (old bone, new bone, and marrow) and the variables involved in the remodeling process. The phase
�eld spatial distribution ϕ(x, t) is plotted.

Combining thebalance equations (3.1) and (3.3)with the state equations (4.2) and (4.3) delivers the so-called
Ginzburg–Landau equation governing the spatio-temporal evolution of the phase �eld

∇ ⋅
∂Ψ
∂∇ϕ

− (
∂Ψ
∂ϕ ) = −πdiss

ϕ . (4.9)

The source term on the right-hand side has been de�ned in (4.3). The balance laws of forces andmicroforces,
the state laws, and the kinetic equations constitute the complete set of equations one has to solve in order to
describe the formation of newbone through the evolution of the interface between apposedbone andmarrow.

5 Mechanical aspects
Adopting a small strain framework (the peak strains in bone is about 0.3% [28]), one may consider the usual
additive decomposition of the total strain rate and the partition of the irreversible strains into strains due to
mechanical and to chemical sources of dissipation:

ϵ̇irr = ϵ̇irrmech + ϵ̇irrprod.

The occurrence of an irreversible mechanical strain can be explained as follows: the network of osteocytes
detects microcracks and local damage, which naturally involves high local strains in the vicinity of zones of
ultimate strength, which in turn entails that the material locally deforms plastically. The elastic strain rate is
then computed as the di�erence

ϵ̇e = ϵ̇ − ϵ̇irr = S : σ̇.

Meanwhile, we can make some additional assumptions. First, we assume that the irreversible strain rate
linked to the production of hydrostatic k-species is an isotropic tensor linearly depending on the rate of pro-
duced species, viz.

ϵ̇irrprod = ã ṅprodk I,

where I represents the identity tensor.
Furthermore, the production of k-species is directly correlated to the change of the order parameter re-

�ecting the formation of new bone,
ṅprodk = aϕ̇.
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These two assumptions lead to the following relationship:

ϵ̇irrprod = aã ϕ̇I.

This leads to the following expression of the elastic strain rate:

ϵ̇e = ϵ̇ − aã ϕ̇I − ∂f
∂σ .

The free energy, taking into account the chemical and mechanical contributions, is expressed as

Ψ(ϕ, ∇ϕ, ϵe , nexchk , T) = Ψmech(ϵe , ϕ, T) + Ψchem(nexchk , ϕ, ∇ϕ), (5.1)

with the mechanical and chemical contributions therein, terms Ψmech(ϵe , ϕ, T) and Ψchem(nexchk , ϕ, ∇ϕ), re-
spectively.

Regarding mechanical aspects, the free energy of elastic deformations reads

Ψmech(ϵe , ϕ, T) =
1
2 ϵ

e : C(ϕ, T)σ : ϵe , (5.2)

where C(ϕ, T) is the elastic sti�ness tensor, a function of the order parameter ϕ, and depending upon the
elastic properties of the medium by a mixture law including the interpolation function h(ϕ), involving the
elasticity tensors CB and CM of new bone and marrow, respectively, viz.

C(ϕ, T) = h(ϕ)CB + (1 − h(ϕ))CM .

Based on [61, 65–67], we adopt a chemical free energy potential of the form

Ψchem(nexchk , ϕ, ∇ϕ) = h(ϕ)ΨB(nexchk ) + [1 − h(ϕ)]ΨM(nexchk ) +Wϕ2(1 − ϕ)2 + α2∇ϕ ⋅ ∇ϕ. (5.3)

Here, the scalar parameters W and α control the di�use interfaces behavior. Given a chemical free energy
of the type “Wϕ2(1 − ϕ)2 + α

2∇ϕ ⋅ ∇ϕ” and a planar interface at equilibrium, the di�use interface width
can be estimated as δ ≅ 2√2α/W. Parameter α determines the strength of interfacial e�ects, described by
the square of the Euclidean norm of the spatial gradient of the phase �eld, and leads to an interface energy
σ = √αW/(3√2) as a standard result [61, 65].

We shall select as in [61, 65] free energy densities of bone andmarrow as quadratic forms in the number
of exchanged chemical species

ΨB(nexchk ) =
1
2 kB(n

exch
k − nk0)2 + ΨB0, ΨM(nexchk ) =

1
2 kM(n

exch
k − nk0)2 + ΨM0. (5.4)

These energies are controlled by the curvature parameters kB, kM, and the constant nk0 therein represents
the equilibrium value of the mole fraction of k-species, corresponding to the minimum of the free energy
densities ΨB(nexchk ), ΨM(nexchk ).

By combining (4.9), (5.1), (5.2), (5.3), and (5.4), we obtain the spatio-temporal evolution of the phase
�eld, governed by the parabolic equation

τϕϕ̇ = α∆ϕ + 2(1 − ϕ)(2ϕ − 1)W + 6ϕ(1 − ϕ)[−12 ϵ
e : (CB − CM) : ϵe + (ΨM − ΨB)].

This equation is of the form ϕ̇ = F(ϕ̇, ∆ϕ), and it has to be completed with initial (IC) and boundary (BC)
conditions of Dirichlet type, such as (Figure 5)

IC: ϕ(x, t = 0) = ϕ0(x), (5.5)
BC: ϕ(xIM , t) = 0, ϕ(xIB , t) = 1.

The spatio-temporal evolution of the reaction di�usion of produced or resorbed matter must also satisfy
a �eld equation that can be obtained from (4.5), wherein (3.2), (4.4), (4.6), (4.7), (4.8), (5.1), and (5.4) are
combined. One therefore obtains

ṅexchk = ∇{L(ϕ)∇[ϕ2(3 − 2ϕ)(kB − kM)(nexchk − nk0) + kM(nexchk − nk0)]},
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with the following initial (IC) and boundary (BC) conditions:

IC: nexchk (x, t = 0) = nk0, (5.6)
BC: nexchk (xI,M , t) = neqk,IM , nexchk (xI,NB , t) = 0.

From amechanical point of view, the stress and strain �elds should satisfy the following set of equations:

∇ ⋅ σ + f = 0, σ = (ϕCB + (1 − ϕ)CM) : ϵe , ϵ̇e = ϵ̇ − ϵ̇irr,

ϵ̇irr = ϵ̇irrmech + ϵ̇irrprod, ϵ̇irrprod = ã ṅprodk I, ϵ̇irrmech = λ̇ ∂f
∂σ

supplemented by initial and boundary conditions, as will be illustrated in the 1D example, described in
Section 7.

The network of osteocytes detects microcracks and local damage, which naturally involves high local
strains in the vicinity of zones of ultimate strength, which in turn entails that the material locally deforms
plastically.

The irreversible mechanical strain associated to the development of the plastic zone is computed from
the yield function corresponding to a Von Mises yield criterion,

σ̄ = σ0 +
ϵ̄p

ϕ�(σ̄)
,

with σ̄ as the e�ective VonMises stress and ϕ�(σ̄) as the (here constant) slope of the ϵ̄p(σ̄) relation. The equiv-
alent cumulated plastic strain ϵ̄p is given by the Prandtl–Reusss �ow rule:

ϵ̇irrmech =
3
2ϕ

�(σ̄)
̇σ̄
σ̄
Ṡ,

with the deviatoric stress tensor S := σ − 1
3 Tr(σ)I and its rate Ṡ.

6 Connection between cell activity and bone production
Osteocytes are cells that forman interconnecting network in the bone tissue anddi�erentiate into osteoblasts.
The location andpropagationof information signaling themechanical damageand stress concentrations take
place through this network. Osteoclasts are derived from the di�erentiation of stem cells in the bone marrow
and can live for about 10 days. They resorb mineralized bone tissue while moving on the surface of the bone
matrix. A key stimulator for osteoclast di�erentiation and activation is a molecule called RANK. Osteoblasts
are also di�erentiated from stem cells in the bonemarrowand express the RANKLmessengermolecule and its
decay receptor OPG (osteoprotegerin). Once osteoclasts have resorbed bone, they recruit osteoblasts, which
ful�ll the previously resorbed cavity to form osteoid, the organic part of the bone tissue. The bone formation
takes about 10 times longer than resorption, and the �nal phase corresponds to the mineralization of the
matrix. Then, osteoblasts di�erentiate into osteocytes after 2 weeks and are inserted into the newly formed
bone or they die.

Coordination of osteoclasts, osteoblasts, and osteocytes in a BMU (Figure 6) is performed through a com-
plex exchange of information that passes through autocrine signaling pathways (between cells of the same
type) andparacrine (between cells of di�erent types) and various couplings. Among themessengers involved,
RANKL and OPG play a critical role both in the physiological bone remodeling and in the development of
diseases. RANKL has a stimulating e�ect on the di�erentiation of osteoclast precursors and subsequent ac-
tivation of mature osteoclasts in the resorption of the active cells. The OPG molecule produced by mature
osteoblasts acts as a decay receptor for RANKL, inhibiting the RANK-RANKL bond formation and thereby the
stimulation of osteoclasts. A high ratio of RANKL/OPG promotes the bone resorption phenomenon, whereas
a low ratio leads to a decrease in osteoclast activity. Meanwhile, it seems that canalicular �uid �ow is respon-
sible for osteoclast activity and their ability to move in the BMU.
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Figure 6. Dynamic system illustrating cell activity and the di�erent interactions leading to the formation of new bone or bone
resorption [51].

6.1 Production of bone mass

As emphasized in [16], predictive models of bone remodeling generally ignore the coupled activity of the
specialized cells (osteoclasts, osteoblasts, and osteocytes), which combines with the mechanical response
of bone. The cell activity involves many interactions between families of cells and their precursors, as illus-
trated in Figure 6. We shall consider here the well-known model of Komarova et al. [51], which syntheti-
cally describes these phenomena. Here, we remember that the osteocytes sense themechanical stimulus and
transmit the information to the other cells located in their vicinity. The scheme adopted by previous authors
describes the e�ects of osteoblasts and osteoclasts precursors on the mature cells and includes the feedback
e�ect and the interaction between osteoblasts producingmaterial and osteoclasts responsible for resorption.
The various produced biochemical factors (RANKL, OPG, IGF, and IGF TGF β) are at the origin of these e�ects.
The corresponding dynamic system of equations is given as

ṅoc = α1n
g11
oc n

g21
ob − β1noc, ṅob = α2n

g12
oc n

g22
ob − β2nob,

where nob(t) and noc(t) represent the total numbers of osteoblasts and osteoclasts, respectively (they reach
equilibrium values denoted as neqoc and nqob, and the exponents g11, g12, g21, and g22 transduce the trans-
duction phase by the osteocytes, which sense mechanical signals and activate osteoblasts and osteoclasts
in response. Previous system describes the temporal changes of the osteoclasts and osteoblasts populations
including the autocrine and paracrine regulations between both populations. The eight parameters of this
non-linear system represent the mutual e�ects, interaction, and feedback among the cell populations. Thus,
parameters α1 and α2 re�ect the e�ect of precursors of osteoclasts and osteoblasts on the osteoclasts and
osteoblasts proliferation; in contrast, parameters β1, β2 are the speed of the cell degradation process. It is
now possible to establish a link between the antagonist cell activity of osteoclasts and osteoblasts. To do this,
let us consider only the active cells N1 and N2 that represent a fraction of the full populations (n1 = noc,
n2 = nob),

Ni = H(ni − n̄i),

where H(x) = x+|x|
2 is the usual ramp function and n̄i is the number of cells i at steady state. The formation of

new bone is described by the mass production term ṁ which satis�es the equation

dm
dt

= −K1N1 + K2N2 = ∑
k
ṅprodk Mk = ∑

k
(ṅprodk + ṅexchk )Mk = V

dρ
dt
,

where K1 and K2 are the normalized cell activities in terms of mass production.
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Figure 7. Perception of the mechanical stimulus by the network of osteocytes.

6.2 Equilibrium solutions for the cell populations

Given the dynamic system of themodel expressed in [51] we examine the di�erent solutions, especially those
leading to equilibrium [51]. The equilibrium points (ṅeqoc = ṅeqob = 0) corresponding to the stability of the cell
populations are easily computed as

neqoc = (
β1
α1

)
1−g22
Γ

(
β2
α2

)
g21
Γ
, neqob = (

β1
α1

)
g12
Γ
(
β2
α2

)
1−g11
Γ
,

with Γ := g12g21 − (1 − g11)(1 − g22).
Depending on the sign of Φ = β1(g11 − 1) + β2(g22 − 1), the model predicts di�erent types of dynamic

behavior: for Φ = 0, one obtains a periodic solution, the case Φ < 0 leads to damped oscillations converging
to neqoc and neqob, and the last situation Φ > 0 to unstable oscillations. The computation of the solution for a 1D
problem will be done in Section 7.

6.3 Cell activity in relation to the mechanical stimulus

As we noted above, and following the model of Bonfoh et al. [58], the sensing activity of osteocytes may be
connected to mechanical stimuli through the deformation energy of the bone at the vicinity of the region of
high stress concentration such as microcracks. Thus, one may assume that

gij = gij(∆Y),

with the following mechanical signal obtained as a volume integral over a characteristic zone Docy including
a crack (Figure 7) and submitted to a stress �eld corresponding to a combined tension and bending (i.e.
corresponding the mode 1 of crack opening),

∆Y(x) = ∫
Docy

dVf(x, y)(ω(y)ρ(y)
− w0) = ( ∫

Docy

dVf(x, y)ω(y)
ρ(y) )

− S0

including the speci�c strain energy ω(y)
ρ , with ω(y) = 1

2σ(y) : ϵ(y).
The spatial in�uence function may be de�ned as the following fading exponential:

f(x, y) =
{
{
{

0 if d > ROC,
e−d(x,y)/ROC if d ≤ ROC,

in which d(x, y) = |x − y| is the distance between the considered osteocytes and pre-osteoclasts or pre-
osteoblasts. According to [58], it is estimated that no signal will be received from the outside of this zone of
in�uence. Finally, the signal received by osteoclasts and osteoblasts in�uences the autocrine and paracrine
factors through the exponents gij.

The bending load applied to a trabeculum (Figure 8) causes a tensile stress on one side and a compressive
stress on the opposite side. This generates pressure gradients driving the �uid �ow through the canaliculae
and across the osteocytes from regions in compression to regions in tension, providing the nutrients.
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Figure 8. Schematic representation of a trabeculum under bending load [68].

7 One-dimensional example
Weanalyze bone formation or resorptionwithin a rectangular domain (Figure 9) corresponding to a biological
situation shown in Figure 8, relying on the �eld equations written in previous sections.

7.1 Boundary value problem

Accounting for the selected form of the stress �eld and assuming that the component σxx = −p is uniform
(corresponding to the boundary condition at the horizontal edge x = hm(t)), mechanical equilibrium leads
to the following stress �eld:

σ = σxx(y)ex ⊗ ex + σyy(x)ey ⊗ ey = −pex ⊗ ex + (σm + ax)ey ⊗ ey . (7.1)

Consideration of the lateral boundary condition along the vertical edgewith consideration of the chosen form
of the stress component σyy(x) corresponding to a combination of tension and bending leads to (we consider
a domain with unity thickness)

hm(t)

∫
0

σyy(x, t)dx = F ⇒ σmhm(t) +
a(t)
2 hm(t)2 = F, (7.2)

which provides a relation between the stress gradient parameter a(t) and the domain height, hm(t), delim-
iting the border between bone formation region and marrow; previous relation clearly means that the stress
gradient controls the speed of remodeling through the size of the grown domain. The stress �eld in (7.1) is ac-
cordingly equilibrated when conditions (7.3) below are satis�ed. The plastic strain tensor may be evaluated
after straightforward computations using the following well-known �ow rule:

dϵp = dλ ∂g(σ)
∂σ ,

where λ and g(σ) represent the plastic multiplier and the stress surface, respectively.
The domain is subjected to an applied stress normal to the crack opening (oriented along y) and present-

ing a gradient along the x direction, so that

σext(x) = σyy(x)ey ⊗ ey , σyy(x) = σm + ax, (7.3)
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Figure 9. Domain with formation of new bone and network of osteocytes (Docy).

with σm as the stress at the bottom edge (x = 0) and the constant a controlling the stress gradient inten-
sity. We presently assume the stress �eld to depend only on the x coordinate (the domain is thin enough in
the y direction such that the stress and strain gradients in this direction can be neglected). The mechanical
boundary conditions are the following (Figure 7):

u(x = 0, t) = 0, t(x = ±
1
2 , t) = (σm + ax)ex , ∫

Sh

t(x, t)dS = Fex . (7.4)

The �rst BC expresses the clamped bottom edge, the second the applied traction along the domain vertical
edges, and the third the applied constant vertical force F on the top edge.

We aim at computing both the propagation along x of the di�use interface within which mineralization
takes place. Neglecting the strain energy contribution of the marrow (the bulk modulus of the marrow phase
is a few megapascals), the elastic contribution depends on the relative elastic energy, quantity

1
2 ϵ

e : (CB − CM) : ϵe ≈
1
2 ϵ

e : CB : ϵe ≈
1
2σ : C

−1
B : σ =

1
2σ

2
xx{C−1B }xxxx +

1
2σ

2
yy{C−1B }yyyy (7.5)

with the compliance coe�cients therein given versus the homogenized moduli in x and y directions as

{C−1B }xxxx =
1
E∗x
, {C−1B }yyyy =

1
E∗y
. (7.6)

The stress components σxx, σyy correspond to the applied mechanical loading; the stress component σyy is
varied by changing the slope a(t); this in turnmodi�es the height of the interface between bone andmarrow,
the variable hm(t), obtained as the solution of (7.2).

Bone is considered as an orthotropic e�ective material, with e�ective properties given from the homog-
enization of an hexagonal prototype microstructure, adopting a relative density ρ∗/ρs = 0.19, with ρs =
2000 kg/m3, and [64]

E∗x = 0.014Es , E∗y = 0.067Es .

The bulk modulus of the trabeculae is taken as Es = 12 GPa [69]. The characteristic time τϕ is computed
based on the relation

τϕ =
L2

D
with L as a characteristic di�usion length, itself evaluated from the average velocity of apposition of mineral,

V̄ := L
τϕ

⇒ τϕ =
D
V̄2

≈ 8.64 × 106 s Jm−3
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Parameter Value

Loading data p := 106 Pa, F = 103 N, σm := 1 MPa
Di�usion coe�cient Dm = 10−12 m2 s−1

Relaxation time for mineral apposition τϕ = 8.64 × 106 s Jm−3

Interfacial free energy penalty parameter W = 103 J m−3

Curvatures of the chemical free energy kB = 105 J, kM = kB/100
Coe�cient α in Ginzburg–Landau equation α = 8.64 × 10−6 J m−1

Bone e�ective orthotropic moduli in x and y directions Exx = 0.17 GPa, Eyy = 0.8 GPa

Table 1. Value of the model parameters.

representing a duration of 100 days. This entails the determination of the coe�cient α in the Ginzburg–
Landau equation

α
τϕ

= D = 10−12 m2s−1 ⇒ α = Dτϕ ≈ 8.64 × 10−6 Jm−1.

It is realistic to neglect di�usion in bone, so that the in�uence coe�cient for di�usion simpli�es to the fol-
lowing function of the phase �eld variable:

L(ϕ) = [1 − h(ϕ)]DM
kM

.

The curvature coe�cient is much smaller in the formed bone compared to marrow; thus, we select kM =
kB/100. The selected model parameters are summarized in Table 1.

7.2 Algorithm for the resolution of the system of PDEs

One shall solve the following system of two coupled PDEs for the phase �eld ϕ(x, t) and chemical concentra-
tions nexchk (x, t):

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

τϕϕ̇ = α∆ϕ + 2ϕ(1 − ϕ)(2ϕ − 1)W + 6ϕ(1 − ϕ)[−12 ϵ
e : (CB − CM) : ϵe + (ΨM − ΨB)],

ΨB(nexchk ) =
1
2 kB(n

exch
k − nk0)2 + ΨB0,

ΨM(nexchk ) =
1
2 kM(n

exch
k − nk0)2 + ΨM0,

ṅexchk = ∇{L(ϕ)∇[ϕ2(3 − 2ϕ)(kB − kM)(nexchk − nk0) + kM(nexchk − nk0)]},

L(ϕ) = [1 − ϕ2(3 − 2ϕ)]DM
kM

.

Due to the quite slow remodeling process in comparison to the return to equilibrium of the mechanical re-
sponse, one can consider a succession of quasistatic problems, thus neglecting the time derivatives in pre-
vious equations. After normalization of the spatial variable x by the thickness parameter hn (one adopts the
non-dimensional spatial variable x̃ := x/hn) and simpli�cation of the second PDE by the constant factor
DM/kM (intermediate quantities are computed in Appendix A), one then obtains the following static bound-
ary value problem in normalized form:

α
h2n
∂2x̃x̃ϕ + 2ϕ(1 − ϕ)(2ϕ − 1)W + 6ϕ(1 − ϕ)[−12 ϵ

e : (CB − CM) : ϵe + (ΨM − ΨB)] = 0,

∂x̃{([1 − ϕ2(3 − 2ϕ)]DM
kM

)∂x̃[ϕ2(3 − 2ϕ)(kB − kM)(nexchk − nk0) + kM(nexchk − nk0)]} = 0,

with the new spatial dependencies ϕ(x) = ϕ̃(x̃), n(x) = ñ(x̃). The second equation yields a �rst integral

([1 − ϕ2(3 − 2ϕ)]DM
kM

)∂x̃[ϕ2(3 − 2ϕ)(kB − kM)(nexchk − nk0) + kM(nexchk − nk0)] = Cte.
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Figure 10. Evolution of the chemical concentration of the mineral phase versus the phase �eld. nk0 = 0.1, n∞kM = 0.5.

The constant therein vanishes considering the value ϕ = 1 of the phase �eld in the bone phase; this yields

{ϕ2(3 − 2ϕ)(kB − kM) + kM}(nexchk − nk0) = Cte

with the constant determined from the boundary condition in the phase in which the phase �eld vanishes,
viz. nexchk ≡ n∞kM representing the mineral concentration in the marrow phase, in the spatial domain charac-
terized as the epigraph of the phase �eld {x/ϕ(x, t) ≤ ϕmin = 0.05}. Previous equality delivers the following
expression of the molar concentration versus the phase �eld, as

nexchk (x) − nk0 =
n∞kM − nk0

ϕ2(3 − 2ϕ)(kB/kM − 1) + 1 .

This in turn delivers the following ODE for the phase �eld:

α
h2n
∂2x̃x̃ϕ −

6ϕ(1 − ϕ)
2 ϵe : (CB − CM) : ϵe

+ 6ϕ(1 − ϕ){12 (kM − kB)[
(n∞kM − nk0)

ϕ2(3 − 2ϕ)(kB/kM − 1) + 1]
2
+ ΨM0 − ΨB0}

+ 2ϕ(1 − ϕ)(2ϕ − 1)W = 0.

The following boundary conditions are adopted in the physical domain:

ϕ(xIM , t) = 0.05, ϕ(xIB , t = 0) = 0.95, nexchk (xIM , t = 0) = 0.95, nexchk (xIB , t = 0) = 0.05.

The evolution of themolar concentration versus the phase �eld variable is represented in Figure 10, selecting
the following values for the equilibrium and far �eld marrow concentrations, nk0 = 0.1, n∞kM = 0.5; the
concentration of mineral decreases rapidly with the degree of mineralization up to saturation.

We have denoted the position of the new bone/marrow and old bone/new bone interfaces by xIB ≈ 0
and xIM(t), respectively; the second variable xIM(t) is changing with time due to remodeling and has to be
computed from the solution obtained at each new time increment. Denoting x̃IM = xIM/hn, x̃IB = xIB/hn, the
counterparts of the boundary conditions expressed in the non-dimensional spatial variables are

ϕ̃(x̃IM , t) = 0.05, ϕ̃(x̃IB , t = 0) = 0.95, ñexchk (x̃IM , t = 0) = 0.95, ñexchk (xIB , t = 0) = 0.05.
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Figure 11. Evolution of the interface height versus time. a(t) = a0 + kt with a0 = 1010 MPam−1, k = −103 MPam−1 s−1.

The interface height separating newly formed bone frommarrow is obtained by solving the balance of forces,
(7.4), using the form of the stress �eld given in (7.3):

h(t) =
−σm + (2Fa(t) + σ2m)1/2

a(t)
.

The stress �eld varies nearly linearly versus time for the chosen slope parameter a(t) = a0 + kt, as shown in
Figure 11.

7.3 E�ect of mechanical and chemical energies on remodeling

We aim at determining the relative in�uence of the mechanical and chemical energies on the remodeling
process, relying on the idea that remodeling or resorption will occur according to the respective contribution
of each type of energy contribution.

We �rst determine the reference solution (�ctive) in the absence of chemical and mechanical energies,
writing the set of local equations in non-dimensional form considering an density energy variation reference
value of |δΨ| = kM (or |δΨ| = Ψ0

M − Ψ0
B); this is achieved by de�ning the following reduced parameters: the

reduced time t∗ = |δΨ|t/τϕ; the reduced spatial variable r∗ = r/l, with l as the characteristic length of the
problem, typically the interface width; the non-dimensional gradient is de�ned as ∇∗ = l∇. Moreover,

α∗ =
α

|δΨ|l2
, Ψ∗

M =
ΨM
|δΨ|

, Ψ∗
B =

ΨB
|δΨ|

, W∗ =
W

|δΨ|
,

C∗B =
CB
|δΨ|

, C∗M =
CM
|δΨ|

, L∗(ϕ) = L(ϕ)
τϕ
l2
, k∗B =

kB
|δΨ|

, k∗M =
kM

|δΨ|.

Based on the introduced reduced spatial and time scales, the non-dimensional form of the local di�erential
equations for the phase �eld and chemical concentration is

∂ϕ
∂t∗

= α∗∆∗ + 2ϕ(1 − ϕ)(2ϕ − 1)W∗ + 6ϕ(1 − ϕ)[−12 ϵ
e : (C∗B − C∗M) : ϵe + (Ψ∗

M − Ψ∗
B)], (7.7)

∂nexchk
∂t∗

= ∇∗ ⋅ {L∗(ϕ)∇∗[ϕ2(3 − 2ϕ)(k∗B − k∗M) + k
∗
M](n

exch
k − nk0)}.

The last two terms in the phase �eld parabolic equation represents contributions from mechanical and
chemical energies; the equilibrium concentration nexchk is seen to depend on the elastic strain, due to the
indirect coupling of elastic strains with the phase �eld variable. This means one cannot truly distinguish
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purely chemical from purely mechanical energy in the PDE governing the phase �eld variable. To analyze the
in�uence of the overall energy contribution

α∗∆∗ϕ + 2ϕ(1 − ϕ)(2ϕ − 1)W∗ + 6ϕ(1 − ϕ)[−12 ϵ
e : (C∗B − C∗M) : ϵe + (Ψ∗

M − Ψ∗
B)]

on the local bone remodeling process within the di�use interface, we �rst take as a reference solution the
phase �eld ϕ∗(x∗) satisfying the stationary PDE, termed the stability equation,

∂ϕ
∂t∗

= 0 = α∗∆∗ϕ + 2ϕ(1 − ϕ)(2ϕ − 1)W∗. (7.8)

Its solution is a hyperbolic tangent of the form

ϕR(x∗) = 1
2 +

1
2 th(

a − x∗

b ).

Parameter a corresponds to the interface position for ϕ = 1/2, and b = √2α∗/W∗. This solution is stable in
the sense that the phase �eld does not change in time locally (in the absence of chemical and mechanical
energies).

The motion of the di�use interface will lead to remodeling (respectively, resorption) if any point with
a �xed spatial position will experience a local increase (respectively, decrease) in time of the phase �eld
variable, i.e. if the time derivative dϕ

dt∗ is non-negative (respectively, negative). The sign of the last derivative
is in�uenced by the additional chemo-mechanical energetic contribution

6ϕ(1 − ϕ)[−12 ϵ
e : (C∗B − C∗M) : ϵe + [Ψ∗

M(n
exch
k ) − Ψ∗

B(n
exch
k )]].

Considering the fact that 6ϕ(1−ϕ) > 0 and 1
2 ϵ

e : (C∗B−C∗M) : ϵe > 0, remodeling (respectively, resorption) will
take place locally when last quantity is positive (respectively, negative). Note that the chemical concentration
nexchk depends on the elastic strain through the phase �eld variable.

To get a qualitative understanding on the behavior of our BMU model system under stress, we will �rst
assume that the quantity α∗∆∗ϕ + 2ϕ(1 − ϕ)(2ϕ − 1)W∗ in (7.8) is always equal to zero, thus leading to a
�xed shape of the interface. This assumption is obviously only an approximation, considering the fact that
ϕ is coupled with nexchk and that the additional chemo-mechanical energetic contribution will also change
the shape of the interface. In any case, the interface will have in case of small perturbations a shape not far
from the form given by ϕR(x∗) or at least with the same tendency. Considering this assumption, the interface
motion will be determined by the sign of the quantity

−
1
2 ϵ

e : (C∗B − C∗M) : ϵe + [Ψ∗
M(n

exch
k ) − Ψ∗

B(n
exch
k )]

calculated at the position x∗ = hm of the interface.
The mechanical energy (the �rst term in previous sum) is evaluated versus the stress as

1
2 ϵ

e : (CB − CM) : ϵe ≈
1
2
σ2xx
E∗x

+
1
2
σ2yy
E∗y
.

Relying on (7.3), (7.5), and (7.6), we obtain a simple form of the stress tensor at x∗ = hm as follows:

σxx = −p, σyy(hm(t)) =
2F
hm(t)

− σm .

This leads to a mechanical term of the form

1
2 ϵ

e : (CB − CM) : ϵe ≈
1
2
p2

E∗x
+

1
2E∗y

(
2F
hm(t)

− σm)
2
,

where hm(t) is the interface position at given time t and F is an external force applied to the BMU model
system. In Figure 12, the mechanical term is plotted as a function of the ratio 2F/hm(t), which leads to
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Figure 12. Plot of the mechanical contribution as a function of 2F/hm for a given interface at position hm under an applied
force F , compared to the chemical term ΨM − ΨB, considered here as a constant (solid horizontal red line).

a simple parabolic shape centered on the residual stress σm and which is compared to the chemical term
[ΨM − ΨB], represented as a constant (horizontal plain line in Figure 12).

According toFigure12, the following comparison rulesholdbetweenbothprevious energy contributions:

1
2
p2

E∗x
+

1
2E∗y

(
2F
hm

− σm)
2{
{
{

< ΨM − ΨB if 2F
hm ∈ ]σc , 2σm − σc],

> ΨM − ΨB if 2F
hm < σc or 2F

hm > 2σm − σc .
(7.9)

In the �rst case in (7.9), the derivative dϕ
dt∗ takes positive values, which leads to an increase in ϕ values at the

interface, i.e. bone remodeling. In the second case in (7.9), the derivative dϕ
dt∗ takes negative values, which

leads to a decrease in ϕ values at the interface, i.e. bone resorption.
Several conditions can be deduced from these inequalities, in linewith Figure 12. First, force F and resid-

ual stress σm should already be present (with non-vanishing values), which makes sense from a biological
viewpoint. Second, considering an interface at a given �xed position hm, the interface pro�le should verify
the condition

1
2
p2

E∗x
+

1
2E∗y

(
2F
hm

− σm)
2
= ΨM − ΨB

at position x = hm. This implies that the quantity ΨM − ΨB should be positive at the interface for bone
remodeling to take place.

For instance, a �xed interface at x = h0m is obtained for

2F0

h0m
= σc or 2F0

h0m
= 2σm − σc .

Case 2F0/h0m = σc: Any applied force F > F0 increases the quantity 2F/h0m, which then falls into the
bone remodeling domain as long as 2F/h0m ∈ ]σc , 2σm − σc]. Remodeling then increases the interface height
hm (> h0m), which leads to a decrease in quantity 2F/hm until 2F/hm = σc for which a new stable position
of the interface is reached at position x = hm > h0m. On the contrary, any applied force F < F0 decreases
the quantity 2F/h0m, which falls into the bone resorption domain. Resorption entails a decrease in interface
height hm (< h0m), which leads to an increase in quantity 2F/hm until 2F/hm = σc, for which a new stable
position of the interface is reached at x = hm < h0m.
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Figure 13. Evolution versus time (in days) of the spatial distribution of the phase �eld solved in one dimension (see (7.7)) with
an external force F = 1000 N, starting from an equilibrium con�guration at t = 0 with no external force.

In this �rst case, increasing progressively the force F leads to bone remodeling, whereas decreasing the
force F leads to bone resorption.

Case 2F0/h0m = 2σm − σc: Any applied force F > F0 increases quantity 2F/h0m, which then falls into the
bone resorption domain. Resorption leads to a decrease in hm (< h0m), which leads to an increase in quantity
2F/hm until complete bone resorption. On the opposite, any applied force F < F0 decreases quantity 2F/h0m,
which then falls into the bone remodeling domain. A remodeling behavior entails an increase in interface
height hm (> h0m), which leads to a decrease in quantity 2F/hm until 2F/hm = σc, where a new stable position
of the interface is reached at x = hm > h0m.

Case 2F0/h0m = σc seems to be closer to reality: in that case, the position of the interface can be calculated
as a function of F; in this case, additional conditions to be satis�ed by the quantity ΨM − ΨB can be also
deduced (see Appendix B):

hm =
2F

σm − √2E∗y √(Ψ∗
M − Ψ∗

B) − p2/(2E∗x )
with p2

2E∗x
< ΨM − ΨB <

σ2m
2E∗y

+
p2

2E∗x
.

It is important to note that increasing the force in time much faster than the kinetics of bone remodeling will
lead to a metastable situation because the BMU does not have enough time to adjust to the imposed e�ort.

Figure 12 shows a simple 1D example of bone remodeling under stress. Note that the interface remains
localized (it does not thicken); thickening occurs for the bone phase. The spatial distribution of the phase
�eld (Figure 13) generates, according to Figure 10, a similar distribution of the fraction of the mineral phase.
The application of a resultant F = 1000Nmoves the bone/marrow interface, up to a new equilibriumposition
is reached (after about 100 days), as shown in Figure 13.

7.4 Evolution versus time of the number of osteoblasts and osteoclasts

Based on the solution of the �eld equations for the phase �eld and chemical concentrations at the contin-
uum level, one shall next solve at the cellular level the dynamic system for the population of osteoclasts and
osteoblasts given in Section 6.
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Figure 14. Stable regulated oscillatory changes in bone cell populations and bone mass: red line, osteoclasts (×70); blue line,
osteoblasts. Calculations are performed with the following parameters: α1 = 3, α2 = 4, β1 = 0.2, β2 = 0.02, g11 = 1.1,
g12 = 1, g21 = −0.5, g22 = 0. Initial number of cells: 11 osteoclasts and 212 osteoblasts [51].

We shall select in view of numerical illustrations the following parameters:

g11 = 0.5, g22 = 0, g12 = 1, g21 = −0.5
w0 = 0.002 J/g, ρL = 1.2 g/cm3, ROC = 100 µg,
g11 = A1 + B1e−ã1∆Y , g12 = A2 + B2e−ã2∆Y ,
A1 = 1.6, A2 = −1.6, B1 = −0.49, B2 = 0.6, ã1 = 16.67 g/J, ã2 = 33.37 g/J.

The initial conditions are selected as follows:

noc(t = 0) = 11.06 cells, nob(t = 0) = 212.13 cells.

The evolution versus time of the number of osteoclasts and osteoblasts is shown in Figure 14.
The equilibrium points are obtained as follows:

ṅeqoc = ṅeqob = 0 ⇒ α1 = 3 day−1, α2 = 4 day−1, β1 = 0.2 day−1, β2 = 0.02 day−1,

neqoc = (
β1
α1

)
1−g22/Γ

(
β2
α2

)
g21/Γ

, neqob = (
β1
α1

)
g12/Γ

(
β2
α2

)
1−g11/Γ

.

8 Summary and discussion
In thiswork,wehave developed amechanobiologicalmodel of bone remodeling involving amineralization of
bone in a moving di�use interface separating the marrow containing all specialized cells from newly formed
bone. The phase �eld describes the degree of mineralization within the di�use interface at the level of indi-
vidual trabeculae; it varies continuously between the lower value (no mineral) and unity (fully mineralized
phase corresponding to new bone). The �eld equations for the mechanical, chemical, and interfacial phe-
nomena have been written, based on the TIP. The kinetic equations for the internal variables are obtained
from a pseudo-potential of dissipation. The combination of the balance equations for the microforce asso-
ciated to the phase �eld and the kinetic equations lead to the Ginzburg–Landau equation satis�ed by the
phase �eld with a source term accounting for the dissipative microforce. The bone remodeling phenomena
have been further coupled to the cell activity responsible for bone production/resorption. Simulations illus-
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trating the proposed framework have been performed in a 1D situation showing the evolution of the di�use
interface separating new bone from marrow.

The present model incorporates as a novel aspect the asynchronous activity of the remodeling sites be-
cause the cellular activity is coupled to the spatio-temporal evolution of the phase �eld within the BMU.
The analysis of strain energy e�ects will lead to a spatial localization of the cell activity within the BMU
and deserves future work. We have shown in a simple 1D model problem of the BMU and basing on a non-
dimensional writing of the local equations that the direction of the remodeling process (apposition versus
resorption of mineral) is determined from the respective contribution of two energetic contributions.

A better description of the coupling between the internal stress state and the kinetics of chemical reac-
tions will be investigated in the near future; we shall also better formalize the mineralization process in the
set of governing equations. The analysis of the respective in�uence of mechanical and chemical energies on
the remodeling velocity shall be studied in a systematic way through sensitivity analyses to the main param-
eters of themodel. The adopted writing of the boundary value problem in non-dimensional form is a suitable
prerequisite for such an analysis.

The developed modeling framework at the level of the BMU will lead to the development of a numerical
platform to simulate bone remodeling coupled to cell activity due to mechanical loading in the presence of
fatigue damage and cracks.

A Evaluation of the contributions to the free energy
According to the considered form of the free energy density, we evaluate the following derivatives:

∂Ψ
∂ϕ

=
∂Ψmech
∂ϕ

+
∂Ψchem
∂ϕ

, ∂Ψ
∂∇ϕ

=
∂Ψchem
∂∇ϕ

= α∇ϕ,

∂Ψmech
∂ϕ

=
1
2 ϵ

e : ∂C(ϕ)
∂ϕ

: ϵe , ∂Ψchem
∂ϕ

= h�(ϕ)(ΨB − ΨM) + 2ϕ(ϕ − 1)(2ϕ − 1)W,

h�(ϕ) = 6ϕ(2ϕ − 1), ∂C(ϕ)
∂ϕ

= CB − CM ,

∂ΨM
∂nexchk

= kM(nexchk − n0),
∂ΨB
∂nexchk

= kB(nexchk − n0).

Those intermediate results are needed to specify the coupled PDEs satis�ed by the phase �eld and chemical
variables.

B Position of the interface as a function of the applied force
For a given force F ≥ 0 applied to the BMU, we consider an interface reaching an equilibrium position at
x = hm. The balance of chemical and mechanical forces is written as

1
2 ϵ

e : (CB − CM) : ϵe = (ΨM − ΨB),

1
2
p2

E∗x
+

1
2E∗y

(
2F
hm

− σm)
2
= (Ψ∗

M − Ψ∗
B),

1
2E∗y

(
2F
hm

− σm)
2
= (Ψ∗

M − Ψ∗
B) −

1
2
p2

E∗x
,

(
2F
hm

− σm)
2
= 2E∗y[(Ψ∗

M − Ψ∗
B) −

p2

E∗x
].

The last equation gives the following condition:

(Ψ∗
M − Ψ∗

B) −
p2

2E∗x
> 0.
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This last condition is satis�ed in accordance with Figure 12 by the condition

0 <
2F
hm

= σc < σm .

Reworking this last condition �nally gives the expression of the interface height versus the applied force:

σc =
2F
hm

= σm − √2E∗y √(Ψ∗
M − Ψ∗

B) −
p2
2E∗x

, hm =
2F

σm − √2E∗y √(Ψ∗
M − Ψ∗

B) − p2/(2E∗x )
.

This last expression gives a second condition at the position of the interface, σc > 0; thus,

σm > √2E∗y √(Ψ∗
M − Ψ∗

B) −
p2
2E∗x

, Ψ∗
M − Ψ∗

B <
σ2m
2E∗y

+
p2

2E∗x
.

In the opposite case:
2F
hm

= 2σm − σc > σm .

We obtain the following expression of the interface height:

2F
hm

= σm + √2E∗y √(Ψ∗
M − Ψ∗

B) −
p2
2E∗x

, hm =
2F

σm + √2E∗y √(Ψ∗
M − Ψ∗

B) − p2/(2E∗x )
.

The two conditions on quantity Ψ∗
M − Ψ∗

B,

p2

2E∗x
< Ψ∗

M − Ψ∗
B <

σ2m
2E∗y

+
p2

2E∗x
,

are here obtained for given value of the phased �eld ϕ and chemical term nexch at the interface, considered
to be the same for any position of the interface. These two conditions can be easily understood. As the me-
chanical term is always negative in (7.7), the chemical term that has the same sign as quantity Ψ∗

M − Ψ∗
B at

the interface should then be positive to ensure the possibility of remodeling. On the other side, a too large
value of this quantity at the interface provides bone remodeling for F = 0, which contradicts observations.
The range of value for the quantity Ψ∗

M − Ψ∗
B leads to the possibility for F to take values into the range

hmσc
2 < F <

hm(2σm − σc)
2 ,

in which case, bone remodeling takes place under su�cient applied stress. In any case, for a too large value
of force F, our model gives a complete bone resorption behavior.

Nomenclature
Thermo-mechanical variables
u Displacement
σ Cauchy stress
f , t Volume and surface densities of external forces
T Temperature
q Heat �ux
ϵ̇e Elastic strain rate
(⋅)prod Quantity relative to the production of chemical species
ϵ̇irr, ϵ̇irrmech, ϵ̇irrprod Total, mechanical, and produced irreversible strain rates
C(ϕ, T) Elastic sti�ness tensor
CB , CM Elasticity tensors of new bone and marrow
σ̄ Equivalent Von Mises stress
∆Y(x) Strain energy density
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Biochemical variables
ϕ Phase �eld variable (order parameter), 0 ≤ ϕ ≤ 1
πϕ , πext

ϕ , πcont
ϕ Internal, external, and contact forces associated to ϕ

ξϕ Microforce associated to ∇ϕ
πnondiss
ϕ , πdiss

ϕ Non-dissipative and dissipative microforces
nk , nexchk , nprodk Total, exchanged, and produced number of moles of k-species
nk0 Initial value of the mole fraction of k-species
neqk,IM Equilibrium value of the mole fraction of k-species at the bone-marrow

interface
neqk,IM Equilibrium value of the number of moles of k-species at the bone-marrow

interface
nexchk Number of exchanged moles of k-species
µprodk , µprodextk , µprodcontk Chemical potentials for the production, external, and contact chemical

actions
Ψ(ϕ, ∇ϕ, ϵe , nexchk , T) Free energy density
Ω(πdiss

ϕ , σ, ∇µprodk , µprodk , ∇T) Dissipation potential
L(ϕ) In�uence function
Jk Di�usion �ux of k-species
DM , DB Di�usivities of chemical species in marrow and bone
kB , kM Curvature parameters
α,W Interface parameters; δ ≅ 2√2α/W interface width
nob(t), noc(t) Total numbers of osteoblasts and osteoclasts
g11, g12, g21, g22 Exponents expressing transduction by osteocytes
n̄i Number of cells of type i at steady state
K1, K2 Normalized cell activities
Docy Characteristic domain occupied by the osteocytes
ROC Radius of the in�uence zone for the osteocytes
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