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Experimental evidence has documented that during compression of metal foams, deformation is
governed by the development of horizontal strain localization bands. Higher-order theories, such
as the micromorphic continuum and gradient plasticity have been successfully employed to model
experimental data. In the present study after comparing the aforementioned theoretical approaches,
an analytical model, using gradient plasticity, is developed that can predict the strain distribution
within the foam localization bands. Furthermore, in order to obtain a better understanding of the
foam mechanics a numerical approach using cellular automata is used to predict the damage evo-
lution and the stress–strain response during compression; the resulting stress-strain graphs are in
very good agreement with experimental data.
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1. INTRODUCTION

During the past decade metal foams have found use in
many industrial applications; particularly in power sources
(Ni batteries) and the automotive industry (candidate mate-
rials for energy absorption during car crashing). Some
of the unique properties that metal foams possess and
make them preferable over traditional metallic materi-
als are good stiffness and strength to weight ratios, high
impact energy absorption, good sound damping, electro-
magnetic wave absorption, thermal insulation and non
combustibility.1 Their high stiffness and temperature capa-
bility makes them preferable over their counterpart poly-
mer foams and therefore they have found wide use as cores
of sandwich beams, plates and shells.

In all of the aforementioned applications the main
mechanical aspect that needs to be understood and
modeled, in order to optimize the use of foams, is their
behavior during deformation. The present study will, there-
fore, focus on the response of foams during compressive
loading. Experimental evidence in this area has revealed
that upon compression, strain localization takes place,
leading to the formation of multiple horizontal bands,
which allow the material to deform at a relatively con-
stant stress, as seen in Figure 1 (see Refs. [1–3]). In the
kind of aluminum foams investigated in these references,
brittle fracture can take place within these bands, at an

∗Author to whom correspondence should be addressed.

early stage, resulting in the collapse of the material. This is
especially the case in the rather brittle foams investigated
in Refs. [3, 4].

During the past several years various analytical and
numerical models have been developed in order to cap-
ture this behavior and related size effects.5� 6 Two particular
theoretical frameworks that have been employed are the
gradient plasticity theory in Ref. [7] and the micromorphic
continuum in Refs. [6, 8]. In the present study after sum-
marizing the similarities and differences between these two
theoretical approaches, strain gradient plasticity9 will be
employed to (i) predict analytically the shear strain distri-
bution within a band, (ii) capture numerically the damage
evolution and stress–strain response of foams during com-
pression.

2. STRAIN GRADIENT PLASTICITY VERSUS
MICROMORPHIC MODELS

2.1. Gradient Plasticity

The difference between gradient plasticity and conventional
plasticity is consideration of the gradient of the plastic
strain as a state variable. The first gradient model, moti-
vated by the existence of pattern formation during defor-
mation, is that proposed by Aifantis in 1984,9 according to
which the gradient of the plastic strain is simply subtracted
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from the classical equivalent flow stress; allowing therefore
for a gradient dependent equivalent stress written as

� = k��p�− c	 2�p (1)

where k��p� is the equivalent flow stress under classical
plasticity and the constant c is termed the gradient coef-
ficient and is required for dimensional consistency. It is
related to an intrinsic material length (
), characteristic of
the particular material at hand (

√
c = 
).

2.2. Micromorphic Model

The micromorphic model can be thought of as being more
general, since it not only accounts for the gradient of the
plastic strain but for the full gradient. This approach was
introduced in the works of Eringen10 and Mindlin,11 and
has been revisited in.12 In this section it will be shown that
if the micromorphic model is specialized to plastic strain,
it reduces to the gradient plasticity model proposed in,9 aka
Equation (1). Letting p be the cumulative plastic strain and
introducing the micromorphic plastic strain, �p, which is
regarded as an independent degree of freedom in the spirit
of Eringen,10 the energy functional � is defined as

p���e�p��p�	�p� = �� 1��e�p�+�� 2��p−� p��	�p�

= 1
2

�eC�e+ 1
2

Hp2+ 1
2

�H�p−� p�2

+ 1
2

A	�p ·	�p (2)

where ��1 denotes the specific free energy density for a
classical material, while ��2 is the additional energy con-
tribution that characterizes the micromorphic continuum.
Equation (2) implies the following conjugate variable
expressions:

� =�
��

��e
= 1

2
�eC�e� R=�

��

�p
=�H−� H�p−� H�p�

a=�
��

��p
=−�H�p−� p�� b=�

��

�	�p
=A	�p (3)

where �e denotes the elastic strain tensor. According to the
micromorphic model, the generalized stresses a and b are
introduced that are respectively conjugate with �p and 	�p.
They fulfill the following balance equation:

a=divb

Inserting the constitutive Eqs. (2) and (3) into the previous
balance equation yields:

a=−�H�p−� p� = divb=Adiv	�p=A��p

⇒ p=� p−A/�H��p (4)

Equation (4)2 has been postulated in,13 but is derived here
from the micromorphic framework using simple linear
constitutive equations.

In order to compare with gradient plasticity, the corre-
sponding yield function is written for the aforementioned
micromorphic continuum as:

f ���R�=�eq−R0−R=�eq−R0−� H�p+c��p (5)

Where �eq is an equivalent stress measure, which for simple
tension gives

� =R0 + �H�p−c�H + �H���p (6)

the coefficient c is of the same nature as in Eq. (1) and is
equal to c=A�H + �H�/�H .

At this stage, an internal constraint can be imposed
such that p≡ �p. Under these conditions, the micromor-
phic model reduces to the strain gradient formulation,9 aka
Equation (1).

3. DETERMINATION OF LOCALIZATION
BAND WIDTH

Although one of the first applications of gradient plasticity
was the determination of shear band widths, it has not been
applied in such a way to foams. Most gradient plasticity
models in this area are concerned with the interpretation of
size effects.7 The micromorphic model, however, has been
implemented through the finite element method to provide
numerically the stain distribution inside foam localization
bands.3�6 In this section it will be shown that the gradient
plasticity framework can be used so as to provide analytic
solutions for the strain distribution inside bands.

To account for the presence of localization bands the
yield function must allow for softening, therefore it is
defined as

f ���=
√

J 2
2 +�I 2−R�p�+c	 2p (7)

where p is the plastic strain multiplier, c the gradient coeffi-
cient, and R�p� is the hardening function. The first and sec-
ond invariants of the stress tensor respectively are I and J2.
The model corresponds to the elliptic criterion used for
compressible plasticity and applied to metallic foams in
Refs. [14–15]. It should be noted that elimination of the
last term in Eq. (7) gives us a yield function for classical
plasticity.

The plastic strain rate may now be defined as

�̇p = ṗ
�f

��
⇒ �̇p = ṗ

1
�

(
3
2

�dev+��tr��1
)

(8)

where p is the cumulative plastic strain such that
�  �̇p = ṗ�eq .

For compression, Eq. (7) can be re-written as

f ��� =
√

�2+��2−R�p�+c	 2p

= √
1+�
� 
−R�p�+c	 2p

⇒ √
1+a
� 
=R−c	 2p=R0+Hp−cp�yy (9)
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where the hardening function has been defined as
R�p�=R0+Hp.

The resulting equilibrium conditions are:

�yy�y =0⇒� =constant (10)

Hp�y−cp�yyy =0⇒p�yyy =
H

c
p�y (11)

When the hardening modulus, H , is negative (softening
behavior associated with shear band formation), Eq. (11)
can be integrated to give us the plastic strain distribution as

p�y�=Acos�#y�+Bsin�#y�+C (12)

where, #2=
H 
/c >0, and A, B, C are constants of
integration.

Letting the plastic strain at the endpoints of the localiza-
tion band equal to zero, and imposing a maximum at y=0
the following conditions are developed:

p�L�=p�−L�=0� p′�0�=0 (13)

It is noted here that the band width is 2L.
Combination of Eq. (13) with Eq. (12) gives

Acos�#L�+Bsin�#L�+C=0

Acos�#L�−Bsin�#L�+C=0

A#sin�0�+B#cos�0�=0

which allows the determination of B and A as: B=0;
A=−C/�cos#L�.

Since, however, a maximum has been imposed at y=0
an additional condition is present: pmax =p�0�=A+C,
which allows the determination of A and C as:

A=− pmax

1−cos�#L�
� C= pmax cos�#L�

1−cos�#L�

Inserting the above expressions in Eq. (12) allows for the
complete expression for p as

p�y�=pmax

cos�#y�−cos�#L�

1−cos�#L�
� for −L≤y≤L (14)

where 2L=cell size. In order to evaluate Eq. (14) it remains
to define the gradient coefficient c. In Refs. [16–17] it was
derived that

c=�'+H�
d2

10
where ' is taken to be the elastic modulus, H the harden-
ing modulus, and d is the cell size (i.e., d=2L). It should
be said here that the plastic strain profile (Eq. 14), derived
from strain gradient plasticity, is closely related to the one
found in Ref. [6] within the context of the micromorphic
continuum; this was expected from the discussion in the
previous Section 2.2. Finally, by allowing for various val-
ues of the maximum strain pmax, and taking the material
parameters as E=140 MPa and d=0*004 as provided in

Ref. [6], while letting H be −6.8 MPa, Eq. (14) is plotted
to show the strain distribution inside a band (Fig. 2) for
various values of pmax.

Before concluding this analytic section it is of interest to
show a type of size effect that can be obtained for the strain
distribution inside bands of different widths. Integration of
the strain distribution Eq. (14) over the band width gives
the total strain that is applied on the foam as

� = 1
2L

∫ L

−L
pmax

cos�#y�−cos�#L�

1−cos�#L�
dy

⇒�=− pmax

2L#
csc

(
#L

2

)2

+#Lcos�#L�−sin�#L�,

(15a)

Equation (15a) can be solved for pmax, so as to obtain the
maximum strain within the band (pmax) as a function of the
applied strain (�) that results from the applied stress � :

pmax =− �#sin�#L/2�2

#Lcos�#L�−sin�#L�
(15b)

Inserting Eq. (15b) in Eq. (14) gives the strain distribution
within the band as a function of the total applied strain

p�y�= �#�cos�#L�−cos�#y��

2#Lcos�#L�−2sin�#L�
� for −L≤y≤L

(15c)
Equation (15c) allows us to obtain the strain distribution
within the bands, for the same applied strain but for differ-
ent band widths, as shown in Figure 3.

Finally, the applied stress in the foam can be found by
Eq. (9) which can be re-written based on Eq. (14) as

√
1+�� = R0+Hp−cp�yy

= R0+Hpmax

cos�#y�−cos�#L�

1−cos�#L�

−Hpmax

cos�#y�

1−cos�#L�

Therefore the flow stress in the foam is a constant given by
the expression:

⇒� =
(

R0−Hpmax

cos�#L�

1−cos�#L�

)/√
1+� (16)

To further understand the overall effects that deformation
has on foams the damage evolution during compression
will be modeled in the sequel.

4. STRESS–STRAIN RESPONSE
DURING COMPRESSION

4.1. Theoretical Formulation

In Figure 1 the experimental response during compression
of a Al foam is displayed. It can be seen that after the mate-
rial yields, deformation occurs at a relatively constant stress
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Fig. 1. Stress–strain response of an Al foam during compression, after
Ref. [6].

due to band formation. In the experiment this “plateau”
stress is not exactly constant but increases slowly with
some variation corresponding to the formation and satura-
tion of localization bands. In the finite element simulation
shown in Figure 1 this variation appears to be periodic; this
is due to the fact that in Ref. [6] randomness effects were
not accounted for. In the present study, we shall try to cap-
ture the slight increase of this “plateau” stress by allowing
the crushing strength of each cell in the foam to vary, i.e.,
the crushing strength will be treated as a random variable.

During the compression of porous materials, in gen-
eral, three stages can be identified: (i) elastic bending
of the walls, (ii) formation and propagation of localized
strain bands, (iii) individual cell collapse that leads to com-
paction. To capture this behavior the stress–strain response
is defined, according to Ref. [18] as

� =
{

M� for �<�c

M�c

[
e��comp��−�c��/��comp−��−�0��−�c�

]
for �>�c

(17)
where M is the elastic modulus, �c the crushing thresh-
old, and �0 the parameter determining the extension of the

y in m 

p

pmax= 0.1
pmax= 0.06
pmax= 0.03

–L L

Fig. 2. Strain profile within localization band; the constants in Eq. (14)
are taken as: 2L=d=0.004 m, E=150 MPa, H =−6*8 MPa, while pmax

is varied.

y in m

p

L = 0.002 m
L = 0.0015 m
L = 0.001 m

Fig. 3. Strain profile within band for different cell sizes (2L=d);
E=150 MPa, H =−6.8 MPa; the total applied strain for all curves is
the same �=0*004.

softening regime given as in Ref. [18]

�0=
1

�crush

+e��comp�crush�/��comp�crush−�c�−1, (18)

These parameters can be better seen in Figure 4.
It follows that as individual cells collapse, their neigh-

bors are affected, therefore an interaction stress is defined,
between adjacent cells i and j , as

�ij =Dij��i−�j� (19)

where Dij =2ij��c/�crush� and 2ij is the coupling constant
that depends on the orientation with respect to the com-
pression direction.

The quasi-static cell balance, which is the equilibrium
equation for our system is written as19

�ext−���i�−
∑

j

Dij��i−�j�=0 (20)

Coarse graining now the above equation, over a large
volume that is comparable to the cell size d, gives a
strain-gradient type equilibrium condition for the two-
dimensional case:18

�ext−����r��+	+D	��r�,=0� D=d2 �c

�c

[
2p 0
0 2n

]
(21)

where 2p and 2n denote the coupling constants at the par-
allel and normal to the compression direction, respectively.

Compressive strain

C
om

pr
es

si
ve

 st
re

ss

εc εcrush

εcomp

σc

Fig. 4. Stress–strain response of a hypothetical material.
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ε = 0.05

ε = 0.16

ε = 0.26

ε = 0.4

Fig. 5. Simulation results for an Al foam with large randomness (m=
8*9 and h=3*27) in the crushing thresholds. The left images depict the
deformation of the simulated foam, while the right images show the
particular damage in each foam cell as the strain increases; damaged
(light blue), versus undamaged (dark blue).

4.2. Simulation Results

Numerical simulations of the constitutive Eq. (20) were
performed using a cellular automaton with 50×50 cells.
The local heterogeneities in the properties of real cellu-
lar materials are taken into account in the simulations by
assigning random variations of the crushing thresholds of
the cells, i.e., the thresholds �C are considered indepen-
dent random variables obeying a Weibull distribution with
scale and shape parameters m and h respectively, leading
to specific values for the mean ��C� and variance 6�c.

The system is loaded by increasing the external strain
�ext from zero in small steps ��ext, Since experiments for
metal foams are usually performed with strain control, in
the present simulations the system is loaded by increas-
ing the external strain �ext in small steps ��ext (starting of
course with �ext = 0). In each of the cells where the local
(external plus internal) stress exceeds the local crushing
threshold, the local strain is increased by a small constant
amount 6�. Then, new internal stresses are computed for

all sites and it is checked again whether the sum of the
external and internal stresses exceeds the local crushing
threshold. The local strain at the now “damaged” sites is
again increased, etc. This is repeated until the system has
reached a new stable configuration. Then the external strain
is increased again and so on.

It should be noted that initially the “local” modulus
M is taken to be constant and equal to the modulus of
Al (70 GPa) for all n (50×50) cells. The “effective” mod-
ulus can be defined as

Meff =
n∑
n

1
Mi

(22)

providing an “effective” external stress for all cells as

�ext =Meff��ext−�p� (23)

After each run where the local strain of a “damaged” site
is increased by the small constant amount 6�, the over-
all change in the “effective” strain �p is 6�/n. Then, the
new moduli of the damaged sites are calculated as Mi =e�i ,
where �i is the new local stress of cell i.

In Figure 5 the simulation results are shown for the
case where the random variables of the Weibull distribution
assume the values measured in the experiments by Blazy
et al.:20 m=8*9 and h=3*27. These values imply a large
randomness which leads to the formation of multiple dam-
age zones that cannot be depicted individually by the sim-
ulation. It should be noted that the simulation time was
approximately 20 seconds for the case of a system with
50×50 cells, while it was approximately double for the
case of a system with 100×100 cells.

A plot of the effective stress versus the effective strain
computed in this way for the case of large randomness is
given in Figure 6. For comparison the experimental data
of Blazy et al.20 are also plotted in the same graph. The

Strain (%)

St
re

ss
 (

M
Pa

)

(a)

Fig. 6. Effective stress–strain simulation results (blue line) for an Al
foam with large randomness (m=8*9 and h=3*27) compared with
experimental Al foam data by Blazy et al.20 (red circles).
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ε = 0.05

ε = 0.16

ε = 0.26

ε = 0.4

Fig. 7. Simulation results for an Al foam with small randomness
(m=8*9 and h=8) in the crushing thresholds. The left images depict
the deformation of the simulated foam, while the right images show the
particular damage in each foam cell as the strain increases; damaged
(light blue), versus undamaged (dark blue). The evolution and propaga-
tion of single bands can be seen for small randomness.

Strain (%)

St
re

ss
 (

M
Pa

)

Fig. 8. Effective stress–strain simulation results (blue line) for an Al
foam, for relatively small randomness (m=8*9 and h=8), compared
with Al foam experimental data by Blazy et al.20 (red circles).

agreement of the simulation with the experiment is quite
remarkable and is an indication that the proposed model
captures adequately the behavior of metallic foams during
compression.

In order to compare the present numerical approach with
the finite element approach of, Ref. [6] in which random
effects were not accounted for, the cellular automaton sim-
ulation is re-run for a small randomness (e.g., m=8*9 and
h=8), which implies the formation and propagation of a
single damage zone (Fig. 7). As expected, in this case, the
simulation gives a plateau stress (Fig. 8) similar to that of
Figure 1,6 and agreement with the experimental results is
not observed.

It should be noted that the serrations observed in the
stress–strain plots (Figs. 6 and 8) result from the fact
that the cellular automaton is strain-controlled. A stress-
controlled cellular automaton simulation with high ran-
domness for the crushing threshold has also yielded to
agreement with experimental data.21

In concluding it is noted that the numerical approach
presented here can be modified to model deformation at
the nanoscale, since experimental evidence22 suggests that
deformation in nanocrystals is governed through shear band
formation. In Ref. [22] it is shown that once nanocrystalline
Fe-10% Cu alloys yield, plastic deformation is carried out
at a constant stress, i.e., a plateau stress is observed similar
to that in Figure 1 and 8. However, unlike as in Figures 1
and 8, re-hardening does not occur in nanomaterials, hence
the constitutive Eq. (20) used in the numerical approach
must be modified so as to account for perfect plasticity after
yielding. This task is currently being considered.
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