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Abstract

Three-dimensional confocal images of two materials A and B from food industry made of two constituents with highly contrasted
properties, having the same volume fraction but different morphologies, are used to estimate their effective elastic and thermal properties.
For that purpose, finite element simulations based on explicit meshing of the microstructures are performed on six samples of the mate-
rials, with different boundary conditions: kinematic uniform (KUBC), stress uniform (SUBC) and periodic boundary conditions. Direct
simulations on the entire samples show that KUBC and SUBC provide strongly different apparent properties, which rises the question of
the representativity of the samples. A numerical and statistical computational homogenization methodology first proposed for random
models of microstructures in [Kanit et al., Determination of the size of the representative volume element for random composites: sta-
tistical and numerical approach, Int. J. Solids Struct. 40 (2003) 3647–3679] is extended here to the case of real microstructures in order to
estimate the size of representative volume elements (RVE) for both materials. The samples of material A are found to be representative,
whereas at least twice as large sample volumes would be necessary to predict the properties of material B with a precision of 5%. Numer-
ical predictions of the effective properties using simulations on a large number of subdomains extracted from the samples with periodic
boundary conditions are in satisfactory agreement with available experimental results. In particular, material A is twice as stiff as mate-
rial B. This is due to a different percolation behaviour of the hard phase in the materials, which is investigated in the last section of the
article. Indicators of geometrical and mechanical percolation, especially relevant for connected microstructures, are proposed and esti-
mated using 3D image analysis.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The effective physical properties of heterogeneous materials strongly depend on the morphology of phase distribution in
space [20,40]. Such microstructural effects are more important when the contrast in the properties of the constituent is high.
Much can be done analytically, including bounding and estimation of overall properties, when the composite is made up of
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inclusions having simple geometries that are embedded in a matrix and as long as the contrast in phase properties is not too
high [4,15,39,33]. For higher contrasts, for example in the case of porous materials, the actual morphology of the micro-
structure plays a dominant role in the final effective property. Modern experimental techniques make it possible to obtain
realistic 3D representations of materials microstructures. They include 2D images acquired using electron or light micros-
copy, 3D images obtained using X-ray microtomography [36], serial sectioning, confocal imaging, or magnetic resonance
imaging. These techniques provide the opportunity of directly measuring the complex morphology of the composite mate-
rials in 3D at resolutions down to a few microns.

There now exist large-scale computational methods for calculating the properties of heterogeneous materials given a
digital representation of their morphology [1,2,14,30,29]. 3D models have also been directly reconstructed from samples
by combining digitized serial sections obtained by scanning electron microscopy [23], or using the technique of X-ray mic-
rotomography [12,37] and laser confocal microscopy [13]. The number of contributions providing direct links between 3D
images and finite element computations remains small but is increasing [26]. This is part of the current effort to develop
microstructural mechanics with a view to optimizing microstructures for wanted properties [41,7,42]. The determination
of apparent properties goes through the resolution of boundary value problems on samples of microstructures. The result-
ing apparent properties depend in fact on the choice of boundary conditions used to impose mean strain, stress, thermal
gradient or flux. Three types of boundary conditions are classically used in computational homogenization: kinematic uni-
form (KUBC), stress uniform (SUBC) and periodic boundary conditions. Periodic boundary conditions have been shown
in [21] in the case of a two-phase elastic material modeled as a Voronoi mosaics, to provide correct estimations of the effec-
tive properties for smaller volumes than KU and SU boundary conditions.

The first objective of the present work is to propose a computational strategy to estimate the RVE size in the case of real
two-phase heterogeneous materials. Contrary to the case of random models of microstructures, the number and size of
images of the microstructure of an actual engineering material are often limited. This raises additional difficulties to assess
the representativity of the samples and to estimate the physical properties, compared to the approach developed in [21].
Two materials made with the same constituents but having significantly different morphologies are studied in this work.
Both morphologies exhibit an interconnected character for both phases. The second objective of this work is then to point
out a morphological and/or mechanical parameter that makes it possible to distinguish different interconnected microstruc-
tures. The proposed parameter is called here the percolation ratio. It will appear that RVE size and percolation ratio are
correlated parameters.

In the present work, 3D confocal images of two materials from food industry are used to predict their effective physical
properties, namely linear elasticity and thermal conductivity. The two materials, labelled A and B are made of two phases,
namely a hard phase, polycrystalline ice, labelled 1, and a soft and less conductive phase, fat product close to cream,
labelled 2. Materials from food industry have gained considerable interest from materials science and mechanical engineer-
ing community because of the strong links between physical, mechanical and sensorial properties [19]. Although compu-
tational homogenization methods were already applied to polycrystalline ice [10], mechanical analyses of ice creams based
on actual morphology of microstructures are not reported in literature [6]. The contrasts in the Young�s modulus and ther-
mal conductivity between both phases are respectively 1000 and 100. The volume fraction of phase 1 in materials A and B is
similar, and close to 70%. Material processing techniques differ for both materials, resulting in strongly different micro-
structures, a rather fine microstructure for material A, and a coarser one for material B. Special care was taken during
material processing in order to avoid the presence of porosities in the mixtures. Isolated pores may exist in the sample
but they are not taken into account in the proposed simulations. Experimental tests carried out on both materials show
that the overall properties of A and B differ significantly: Young�s modulus is found to be twice as high for A as for B.
In the present work, the effective elastic and thermal properties are estimated from the available 3D confocal images using
computational homogenization techniques. In particular, we try to find out the differences in the morphology of the micro-
structures that can explain the strongly different elastic behaviour. The attention is drawn on the percolation behaviour of
the hard phase inside the mixture. To quantify the precision of the found numerical estimates, the question of the repre-
sentativity of the finite size samples must be raised and investigated in detail.

The discussion on the estimation of RVE sizes relies on a numerical and statistical approach proposed in [21]. The effec-
tive physical properties of random heterogeneous materials can be determined not only by numerical simulations on large

volume elements of composite, but also as mean values of apparent properties of rather small volumes, provided that a
sufficient number of realizations of the microstructure is considered. The size VRVE must be considered as a function of
several parameters: the physical property, the contrast of properties c, the volume fraction of the constituents, the wanted
relative precision �rel for the estimation of the effective property and the number n of realizations of the microstructure
associated with computations that one is able to carry out, and of course on the morphology of spatial phase distribution.
The size of RVE was related in [21] to the notion of integral range, denoted A3 which depends on the specific morphological
or physical property. The integral range is directly related to the scatter in apparent properties found on volumes of fixed
size but containing different realizations of the microstructure of a random material. In most cases, it can be determined
only numerically for example by finite element simulations, as done in [21] in the case of a random material model, namely
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Voronoi mosaics. The integral range is estimated numerically in the present work for the real materials A and B. For that
purpose, finite element computations on volumes with increasing sizes extracted from the available samples are performed
to determine apparent elastic and thermal properties and their dispersion as a function of domain size. For sufficiently large
domains, the mean properties converge towards a single value that is regarded as the effective one.

Section 2 is devoted to the description of the images of the microstructure of materials A and B. The experimental phys-
ical properties found for the constituents of the materials and for the materials A and B themselves are presented. Volume
fraction and covariance ranges are given for all samples. The computational methods for meshing microstructures and the
type of boundary conditions are presented in Section 3. Direct simulations of the elastic and thermal apparent properties of
all available samples are provided in Section 4 using KU and SU boundary conditions. The question of the proper RVE
size for both materials is discussed in Section 5. Section 6 aims at providing morphological and mechanical arguments jus-
tifying why microstructure A leads to stiffer elastic properties and to a more conductive material than microstructure B.
The key notion explored is that of percolation of the hard phase within the mixture. Indicators of geometrical and mechan-
ical percolation are defined and estimated using 3D image analysis.

2. Microstructure and properties of the materials

The two investigated materials A and B are made of two phases, labelled 1 (polycrystalline phase, ice) and 2 (fat polymer
phase, cream). Experimental batches of the studied composite materials are produced in blocks of 500 g which can be used
for four-point bending tests and confocal imaging. Three samples of each material (SA1, SA2, SA3) and (SB1, SB2, SB3) are
studied in the present work. Confocal images of samples SA3 and SB1 are shown in Fig. 1. The material A contains elon-
gated crystals of phase 1, whereas material B contains fairly round hard phase crystals. The volume fractions of phase 1,
called P1, are given in Table 1 for all the samples. The mean volume fraction �P 1 is 69.3% for the three samples in material A
and 72% in material B. The size of the samples is 250 · 250 · 30 lm3. The shortest dimension is called (OZ). The largest
edges are along the directions (OX) and (OY). The dimensions of the samples lead to the image size:
512 · 512 · 60 = 15,728,640 voxels, i.e. a resolution of about: 8 voxels/lm3.

2.1. Morphological description of the microstructures

It is important to account for the presence of scales, size of heterogeneities, of the components of a microstructure. The
basic morphological tools for these aspects are the covariance and covariance range L [27,20]. These parameters are given
Fig. 1. 3D confocal imaging, the phase 1 is in grey color, the phase 2 is transparent: (a) sample SA3 and (b) sample SB1.



Table 1
Volume fraction P1 of hard phase and the covariance range of materials A and B

Samples

SA1 SA2 SA3 SB1 SB2 SB3

Covariance range L (lm) 15 14 22 30 26 38
Volume fraction P1 (%) 66.76 68.64 72.43 73.01 75.19 69.05
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Fig. 2. Covariance diagram and covariance range L of sample SA3 (on the left) and sample SB1 (on the right), in direction (OX) (called horizontal) and
(OY) (called vertical).
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for samples SA3 and SB1 in Fig. 2. The covariances of the samples are practically equal in both directions of observation
(OX, OY). They reach an asymptotic value for a finite range, which measures the scale of the microstructure. A range (for
the phase 1) close to: LA = 15 lm is observed in material A and LB = 30 lm in material B (see Table 1). The fairly round
hard phase crystals in material B lead to a larger covariance range. The fact that the covariance range LB of material B is
larger than in material A, will have a major influence on the estimated values of RVE size for physical properties in these
materials. A model of random microstructure to simulate this kind of microstructures was developed in [6].

2.2. Physical properties

This work deals with the elastic and thermal properties of the investigated materials. These properties are known for the
two individual constituents and also for the composite materials. The size of the constituent and the material processing
technique is such that it is reasonable to assume that the constituents embedded in the composite material exhibit an iso-
tropic behaviour. The Young�s moduli, Poisson ratio and thermal conductivity of phases 1 and 2 are respectively

ðE1; m1;E2; m2; k1; k2Þ ¼ ð2500; 0:30; 2:5; 0:49; 2:44; 0:0244Þ ðMPa;W m�1 K�1Þ. ð1Þ
These properties correspond respectively to pure polycrystalline ice and pure cream tested at �18 �C. They were deter-
mined from four-point bending tests carried out at that temperature.

Homogenization theory provides us with bounds for the effective physical properties (elastic bulk and shear moduli and
thermal conductivity) of any mixture of components A and B. The Voigt and Reuss bounds are absolute upper and lower
bounds for given volume fraction of the constituents. The Hashin–Shtrikman bounds are used here for isotropic two-phase
materials. However, in the present case, these bounds are very far apart because of the very large contrast in the properties
of the constituents (cf. the results reported in Table 5):

cE ¼ E1=E2 ¼ 1000; ck ¼ k1=k2 ¼ 100. ð2Þ
In this work, we use the Young�s moduli based on Hashin–Shtrikman bounds for shear and bulk moduli, EHS+ and EHS�,
and given by

EHSþ ¼ 9kHSþlHSþ

3kHSþ þ lHSþ
; EHS� ¼ 9kHS�lHS�

3kHS� þ lHS�
; ð3Þ

where kHS+ and kHS� (respectively lHS+ and lHS�) are the Hashin–Shtrikman bounds for k (respectively l). The self-con-
sistent estimates are also used to compare experimental and numerical results in this work [34]. For the studied materials
(volume fraction P1 = 0.7), these predictions are
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ðESC ¼ 1024 MPa; kSC ¼ 1:36 W m�1 K�1Þ. ð4Þ
Four-point bending tests were performed to determine experimentally the elastic properties of both composite materials

A and B [9]. The results concerning the Young�s modulus and the thermal properties (kA is not available) are

ðEA ¼ 511 MPa; EB ¼ 203 MPa; kB ¼ 0:85 W m�1 K�1Þ; ð5Þ

where the thermal conductivity found experimentally for material B from other tests is also given. The isotropy of the
found properties can be attributed to the material processing which does not introduce privileged directions of mixing.
Material A is found to be significantly stiffer than material B. This difference can be explained by the difference of mor-
phology of phases in each material, since A and B have about the same volume fractions of phase 1 and 2. The self-con-
sistent estimation for elastic properties is closer to the properties of material A than B, but it overestimates it by a factor
two. The self-consistent model for thermal conductivity overestimates kB.
3. Computational homogenization tools

3.1. Field and constitutive equations

The field equations to be solved numerically in the present work concern the linearized theory of elastic solids, on the
one hand, and that of heat transfer, on the other hand. The associated governing equations for a body V are the balance of
momentum, on the one hand, and the heat equation on the other hand. They must be fulfilled at any regular material point
x 2 V

rij;j ¼ 0; qi;i ¼ 0 ð6Þ

in a Cartesian orthonormal coordinate system. The comma ,i denotes partial derivation with respect to the coordinate xi.
The components rij and qi denote the stress tensor and the heat flux vector respectively. Sources terms, such as body forces
and heat production, are not considered in this work. Dynamical effects and transient thermal conduction are excluded.
Both frameworks are considered independently. The problem of thermomechanical coupling is not addressed. The corre-
sponding variational formulations relevant for the resolution of a boundary value problem on V with a set of given bound-
ary conditions, classically readZ

V
rijvi;j dV ¼

Z
oV t

tivi dS;
Z

V
qih;i dV ¼

Z
oV q

qhdS. ð7Þ

oVt (resp. oVq) denotes the part of the boundary oV of V where the traction vector ti = rijnj (resp. heat flux qini = q) is
prescribed. The virtual displacement field vi (resp. temperature field h) with sufficient regularity must vanish on the part
of oV where displacement (resp. temperature) is prescribed. The specific boundary conditions used in this work are given
in the next section.

The constitutive equations of linear elasticity and conductivity read

rijðxÞ ¼ cijklðxÞeijðxÞ; with eij ¼ 1
2
ðui;j þ uj;iÞ; ð8Þ

qiðxÞ ¼ kijðxÞgjðxÞ; with gi ¼ T ;i; ð9Þ

where ui, T are the displacement and temperature fields. The four-rank tensor of elastic moduli and the second-rank tensor
of thermal conductivity are called cijkl and kij respectively. In the present work, the local properties are assumed to be iso-
tropic. They are random variables but can take only two possible values corresponding to phases 1 or 2. For each consid-
ered volume V of the heterogeneous material, the fields cijkl, kij are known according to the underlying microstructure
defined in Section 2.

All equations are written within the small perturbation framework, assuming small strains and small temperature
gradients.

3.2. Boundary conditions

In this work, three types of boundary conditions to be prescribed on a volume element V are considered. They corre-
spond to classical ones in computational homogenization (see the chapter by P. Suquet in the book [34], and also [21]).
They are recalled here in the case of linear elasticity:

• Kinematic uniform boundary conditions (KUBC): The displacement u is imposed at point x belonging to the boundary
oV such that
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ui ¼ Eijxj 8x 2 oV . ð10Þ
Eij are the Cartesian components of a given symmetrical second-rank tensor that does not depend on x. This implies that
the mean strain over V is

heiji ¼̂
1

V

Z
V

eij dV ¼ Eij. ð11Þ

The macroscopic stress tensor Rij is then defined by the spatial average:

Rij ¼̂ hriji ¼
1

V

Z
V

rij dV . ð12Þ

• Static uniform boundary conditions (SUBC): The traction vector is prescribed at the boundary

rijnj ¼ Rijnj 8x 2 oV ð13Þ
Rij is a given symmetrical second-rank tensor independent of x. The vector normal to oV at x is denoted by n. This im-
plies that

hriji ¼
1

V

Z
V

rij dV ¼ Rij. ð14Þ

The macroscopic strain tensor is then defined as the spatial average:

Eij ¼̂ heiji ¼
1

V

Z
V

eij dV . ð15Þ

• Periodicity boundary conditions: The displacement field over the entire volume V takes the form

ui ¼ Eijxj þ vi 8x 2 V ; ð16Þ
where the fluctuation v is periodic. It takes the same value at two homologous points on opposite faces of V. The trac-
tion vector rijnj takes opposite values at two homologous points on opposite faces of V. It is shown for instance in [5]
that these periodic conditions imply thatZ

V
rijvi;j dV ¼ 0; and heiji ¼ Eij. ð17Þ

The overall stress tensor is then computed as (12).

The three types of boundary conditions are such that the Hill–Mandel condition, that relates the local and global work
of internal forces, is automatically fulfilled:

hrijeiji ¼ hrijiheiji ¼ RijEij. ð18Þ
This condition is at the root of the energetic definition of effective mechanical properties [5].
Similar boundary conditions are used for the problem of thermal conduction in the volume V:

• The conditions of uniform gradient of temperature at the boundary (UGT), amount to prescribing the temperature at
any point x 2 oV

T ¼ Gjxj ) hT ;ii ¼ Gi; ð19Þ
where Gi is a given constant temperature gradient. The overall heat flux is then defined by

Qi ¼̂ hqii. ð20Þ
• According to the dual conditions, called uniform heat flux at the boundary (UHF), the heat flux at any point x 2 oV is

given by

qini ¼ Qini ) hqii ¼ Qi; ð21Þ
where Qi is the macroscopic heat flux.

• The periodic conditions state that the temperature field takes the form

T ¼ Gixi þ t 8x 2 V ) hT ;ii ¼ Gi. ð22Þ
The fluctuation temperature t is periodic. The heat flux qini is antiperiodic. The macroscopic heat flux is then computed
using (20).
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The three kind of boundary conditions are such that there is the following relationship relating the macro and micro
energy dissipations:

hqiT ;ii ¼ hqiihT ;ii ¼ QiGi. ð23Þ
3.3. Meshing microstructures

The so-called multiphase-element technique is used to superimpose a finite element mesh on the 3D images of the micro-
structures [25,3,44]. For each integration point of a regular finite element mesh having the size of the considered sample, the
closest voxel in the image is determined and the corresponding material property is attributed to it. The used elements are
quadratic bricks (20 nodes) with complete integration (27 Gauss points). As a result, different material properties can be
encountered inside some elements. The previous references show that this simple meshing strategy leads to correct evalu-
ations of mean stresses and strains inside the phases when compared to proper meshing of interfaces by nodes. On the other
hand, a relatively large number of elements is required to obtain the convergence of local results close to interfaces.

Bounds for the errors introduced by the use of multiphase elements and improvement methods of the quality of the inte-
gration can be found in [43]. In particular, these authors propose to increase the number of integration points up to
5 · 5 · 5 inside each multiphase elements. In the present work we keep the classical full integration by 3 · 3 · 3. Results
presented in [43] also indicate that quadratic interpolation does not significantly improve the convergence of multiphase
elements compared to linear ones. In the present work, we use quadratic elements for all homogeneous (one-phase) and
multiphase elements, which provides better convergence at least in the homogeneous elements.

Examples of the performance of theses elements in the present situations are given below, together with the strategy for
determining the suitable mesh density. Two meshes are shown in Fig. 3 together with the original image.

3.3.1. Global convergence

The studied parameter is the mesh density defined as the volume of material represented by one finite element. Fig. 4
shows the results of computations of Young�s modulus E as a function of the number of degrees of freedom used to mesh
the sample SA2. A vertical displacement is applied at the top of the sample and fixed to zero at the bottom. The ratio of the
mean axial stress component to the mean axial strain component provides the apparent modulus E for each mesh. The
material properties of the constituents are given by (1). The number of degrees of freedom was changed from 30,000 to
1,150,000. The number of finite elements was changed from 4096 to 88,200 which means that the mesh density was changed
from 458 to 20 lm3/element. The result is compared to the Voigt and Reuss bounds and also to the self-consistent estimate.
Fig. 4 shows that the apparent Young�s modulus first rapidly decreases for finer meshes and tends then to stabilize for large
numbers of degrees of freedom.

3.3.2. Local convergence

The convergence of the results at the local level must also be checked to make the proper choice for the mesh density.
The maps of the equivalent strain eeq for tension in samples SA1 and SB1 are given in Fig. 3 (mesh density 20 lm3 per ele-
ment). It is defined by the equation

eeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

11 þ e2
22 þ e2

33 þ 2e2
12 þ 2e2

23 þ 2e2
31

q
. ð24Þ

The strain field is strongly heterogeneous with maximum strain values found in the soft phase. The computation of sample
SA2 was performed for different mesh densities. A displacement component along one edge of the parallelepipedic sample
parallel to the tensile direction is plotted in Fig. 5 for different mesh densities. Convergence is not totally achieved close to
some interfaces where even finer meshes would be necessary to properly account for strong gradients.

As a result of convergence results, a mesh density of 20 lm3 per element was adopted for all simulations of this work.
The found required mesh density leads to a large number of degrees of freedom (displacement or temperature). The size of
the elasticity problems dealt with in Section 4 is of 1,200,000 degrees of freedom. To solve efficiently this linear system, a
parallel algorithm based on the FETI method was used. The reader is referred to [11,7] for a presentation of the parallel
strategy. Thirty-two processors were used for the simulations of the present work.

3.4. Apparent vs effective properties

Finite element computations on a finite size volume of heterogeneous materials provide apparent properties that can
now be defined. The tensor of apparent elastic properties Capp

ijkl relates the macroscopic strain tensor Eij and the macroscopic
stress tensor Rij by



Fig. 3. Mesh and computation with 88,200 elements (1,126,131 degrees of freedom), or 22 lm3/element and map of equivalent strain. (a) The sample SA1

and (b) the sample SB1.
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Rij ¼ hriji ¼ Capp
ijkl Ekl. ð25Þ

The tensor Eij and Rij are respectively average strain and stress values over the considered sample. Similarly, the tensor of
apparent thermal conductivity can be defined for each material volume subjected to a mean temperature gradient of mean
heat flux:

Qi ¼ hqii ¼ kijGj. ð26Þ
The apparent properties generally depend on the choice of boundary conditions applied to the considered volumes. Huet
has derived bounding relationships between the apparent properties obtained from homogeneous boundary conditions
[17,16]. Such relations are helpful for checking the validity of the computed results and to interpret the ranking of the
apparent properties found in this work for different volume sizes. Primarily, the apparent properties computed on a given
volume V based on homogeneous boundary conditions rank as follows:

Capp
SUBC 6 Capp

KUBC; kapp
UHF 6 kapp

UGT. ð27Þ
If the volume V is decomposed into p non-overlapping subvolumes Vi, the reunion of which being equal to V itself, one can
determine the apparent property Capp

i , kapp
i of each Vi for each type of homogeneous boundary conditions. The mean values

of the p apparent properties are denoted by Capp, kapp and can be compared to the apparent property Capp, kapp of the large
volume V itself:



Fig. 4. Effect of the mesh density in finite element simulations on the global convergence of the apparent Young�s modulus. c represents the contrast in the
Young�s moduli of the phases. SC stands for self-consistent model.
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Capp
KUBC ¼

1

p

X
i¼1;p

Capp
KUBC;i; Capp

SUBC ¼
1

p

X
i¼1;p

Capp
KUBC;i; ð28Þ

kapp
UGT ¼

1

p

X
i¼1;p

kapp
UGT;i; kapp

UHF ¼
1

p

X
i¼1;p

kapp
UHF;i; ð29Þ

Capp
SUBC 6 Capp

SUBC 6 Capp
KUBC 6 Capp

KUBC; ð30Þ
kapp

UHF 6 kapp
UHF 6 kapp

UGT 6 kapp
UGT. ð31Þ

If the considered volume V is large enough, its apparent properties do not depend on the choice of boundary conditions
any longer and coincide therefore with the wanted effective properties Ceff, keff [31]. As a result, we have

Capp
SUBC 6 Ceff

6 Capp
KUBC; kapp

UHF 6 keff
6 kapp

UGT. ð32Þ
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This result means that the computational homogenization method on limited volumes of heterogeneous material can be
used to bound or estimate the wanted effective properties. Finally, the previous quantities can be compared to the
Voigt–Reuss/Wiener upper and lower bounds:

CReuss
6 Capp

SUBC 6 Ceff
6 Capp

KUBC 6 CVoigt; ð33Þ
kWiener�

6 kapp
UHF 6 keff

6 kapp
UGT 6 kWienerþ. ð34Þ

These facts will be illustrated at several places in the simulations of the next sections.
These inequalities are written in the sense of quadratic forms. Similar relations can be written for elastic compliances

and heat resistivity.
Similar results are not available in the case of periodicity conditions. However, the apparent properties found using peri-

odicity conditions on volumes of different sizes will be compared systematically to the ones obtained by homogeneous
conditions.
4. Determination of apparent properties

4.1. Direct estimation of elastic and thermal properties of sample SA1 to SB3

The finite element meshes designed in Section 3.3 are used to compute elastic and thermal apparent properties of the
samples SA1, SA2, SA3, SB1, SB2, SB3 introduced in Section 2.

A matrix notation is used to represent the tensor of elastic moduli

R11

R22

R33

R12

R23

R31

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

Capp
11 Capp

12 Capp
13 Capp

14 Capp
15 Capp

16

Capp
22 Capp

23 Capp
24 Capp

25 Capp
26

Capp
33 Capp

34 Capp
35 Capp

36

Capp
44 Capp

45 Capp
46

Capp
55 Capp

56

Capp
66

0
BBBBBBBBB@

1
CCCCCCCCCA

E11

E22

E33

2E12

2E23

2E31

0
BBBBBBBBB@

1
CCCCCCCCCA

. ð35Þ

The 6 · 6 matrix of elastic moduli is symmetrical. The apparent elastic properties depend in general on the choice of
boundary conditions [18]. The apparent properties obtained by applying the KUBC boundary conditions (10) to the six
samples of the study are given in Table 2. For that purpose, six boundary value problems were solved for each sample.
In each boundary value problem, one component of the prescribed strain tensor Eij was set to one, the remaining compo-
nents being set to zero. The six components of the computed mean stress tensor then provide six coefficients of the matrix
of apparent elastic moduli. All components are given in the Cartesian coordinate frame (OX, OY, OZ) defined in Fig. 1.

The found apparent moduli depart from purely isotropic elastic tensors. The coefficients Capp
11 and Capp

22 (in the directions
(OX) and (OY)) are very close for all samples. But they are significantly different from the value Capp

33 in the direction (OZ)
which appears to be stiffer. Similarly, Capp

23 ’ Capp
31 differs from Capp

12 . To quantify more precisely the anisotropy, the follow-
ing anisotropy parameters are introduced:

a ¼ 2Y 44

Y 11 � Y 12

; with Y 44 ¼
Capp

44 þ Capp
55 þ Capp

66

3
;

Y 11 ¼
Capp

11 þ Capp
22 þ Capp

33

3
; Y 12 ¼

Capp
12 þ Capp

23 þ Capp
31

3
; ð36Þ

aXY ¼
2Capp

44

CXY
11 � Capp

12

; CXY
11 ¼

Capp
11 þ Capp

22

2
. ð37Þ

The coefficient a is equal to 1 if the elastic behaviour is isotropic. The coefficient aXY is an indicator of in-plane isotropy
within the plane (OX, OY). The values of these parameters for all the samples are given in Table 3. They show that aXY

remains very close to 1 whereas a significantly departs from 1. This confirms that the behaviour in direction (OZ) is dif-
ferent from that in the (OX, OY) plane. Since no anisotropy is observed at the macroscopic scale, it turns out that the
rather small thickness of the samples introduces a bias in the determination of effective properties of the materials. The
boundary layer associated with the KUBC boundary conditions affects a significant proportion of the thickness of the sam-
ple. The KUBC conditions are known to produce stiffer results than SUBC and periodic conditions according to [17,28,21].
This may explain why the samples are found to be stiffer in the direction (OZ). Note that for sufficiently large volumes,
KUBC, SUBC and periodic conditions provide apparent properties converging towards the effective ones [31].



Table 2
Apparent elastic moduli of the six samples of materials A and B investigated in this work

Capp
SA1
¼

904 249 315 �1 1 15

813 290 �1 5 3

1383 �4 7 24

301 3 1

363 �2

385

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Capp
SA2
¼

1152 352 415 0 0 6

1098 401 �7 5 1

1597 �1 9 12

377 3 2

444 �1

451

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Capp
SA3
¼

674 166 16 1 0 1

692 163 19 0 0

64 0 0 1

258 0 �1

228 0

228

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Capp
SAm
¼

910 256 249 0 0 7

868 285 4 3 1

1015 �2 5 12

312 2 1

345 �1

355

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Capp
SB1
¼

1197 333 416 �1 12 23

1060 384 5 20 7

1675 1 37 34

387 12 0

457 1

489

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Capp
SB2
¼

1998 958 966 13 0 11

1985 960 5 �4 �1

2215 2 �5 16

500 3 �1

537 2

545

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Capp
SB3
¼

1739 859 860 1 5 14

1661 864 �8 29 2

1846 2 25 22

401 9 13

442 1

442

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Capp
SBm
¼

1645 717 747 4 6 16

1569 736 1 15 3

1912 2 19 24

429 8 4

479 1

492

0
BBBBBBBBBB@

1
CCCCCCCCCCA

The matrix C
app

are defined as the mean value of the results obtained from three samples (KUBC boundary conditions).

Table 3
The index of anisotropy of each sample and of the mean matrix of each type

Samples

SA1 SA2 SA3 SAm SB1 SB2 SB3 SBm

a 0.934 0.950 1.316 1.010 0.952 0.954 0.966 0.956
aXY 0.988 0.975 0.998 0.988 0.973 0.968 0.954 0.964
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In-plane Young�s moduli can be deduced from the coefficients of the elasticity matrices obtained using KUBC (cf. Table
2). They read

EKUBC
SAm

¼ 821 MPa; EKUBC
SBm

¼ 1219 MPa. ð38Þ

These results strongly overestimate the experimental results (5). They even predict that material B is stiffer than A, which is
the reverse according the experiment.

The SUBC conditions have been used also to estimate directly the apparent Young�s moduli of sample SA2 and SB1 in
direction (OY). The found values

Eapp
SA2
¼ 754 MPa; Eapp

SB1
¼ 232 MPa ð39Þ

depart respectively from 45% and 14% from the experimental values (5). They represent therefore a fair estimation of the
experimental properties. In particular, the finite element simulations predict correctly that material A is more than 2.5
times stiffer than material B. The Young�s moduli computed by SUBC strongly differ from those obtained with KUBC (38).
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The overall thermal conductivity was also determined on the entire samples using UGT and UHF boundary conditions.
These tensors are found to be close to isotropic tensors with the following values of apparent thermal conductivity:

kUGT
SA2
¼ 1:234 W m�1 K�1; kUHF

SA2
¼ 1:017 W m�1 K�1; ð40Þ

kUGT
SB1
¼ 1:208 W m�1 K�1; kUHF

SB1
¼ 0:765 W m�1 K�1. ð41Þ

For the thermal conductivity, the experimental value is available only for the material B. The experimental value
kB = 0.8 W m�1 K�1 lies between the obtained bounds kUHF

SB1
and kUGT

SB1
. Simulations on the whole samples using periodic

boundary conditions could not be performed because of the huge amount of additional memory required by these
conditions.

Accordingly, direct simulations on small material samples provide fair estimates of the effective properties and predict
correctly the ranking between both materials, in the case of SUBC, UHF and UGT boundary conditions. However, the
precision of the result is difficult to assess at this stage. In particular, the found anisotropy in the matrices of elastic moduli,
and the strong difference between KUBC and SUBC conditions suggest that the considered volumes are not representative
enough of the considered materials. This motivates the subsequent developments of this work.
4.2. Quantifying the representativity of the investigated samples

The strongly different results obtained using KU or SU boundary conditions suggest that the samples SAi and SBi may
not be representative of the materials A and B. Since no larger images of the microstructures are available, the only way of
quantifying the distance of the considered samples from an actual RVE size is to work on subvolumes cut inside the
samples. The apparent properties found on smaller volumes using different boundary conditions can be compared to
the values found for the whole samples. This is part of a strategy initiated by [17,16] and continued by a statistical
approach in [21].

Fig. 6 shows the comparison of the strain field in sample SB1 for the whole sample and for a collection of 16 subvolumes
of the sample. The 16 volumes represent a regular non-overlapping partition of the entire sample, as defined in [17]: their
intersection is empty and they build up the entire volume SB1. In the computations, the same SUBC conditions are applied
to the whole volume, on the one hand, and to all individual subvolumes, on the other hand. As a result, traction vectors are
continuous between two neighboring subvolumes, while the displacement field is not compatible at the boundary between
two subvolumes. It can be clearly seen that the boundary layer effects perturb the continuity of large deformation bands
developing within the soft phase. Fig. 7 gives the mean value and the scatter of the apparent Young�s moduli in direction
(OY) for a partition of SA2 into 4 and 16 regular subvolumes, using SUBC. One can clearly notice the bias existing when
computing with smaller samples, in comparison with the obtained result on the whole specimen. It turns out that the aver-
age value of the apparent Young�s moduli computed with SUBC and with a set of smaller samples, forming a uniform
partition of the whole specimen, underestimates the apparent Young�s modulus estimated on the whole specimen with
the same boundary conditions.

The scatter of found apparent properties is also a measure of the loss of representativity when considering smaller
volumes. The 16 subvolumes provide 16 apparent Young�s moduli with a significant scatter. The difference between the
mean value for 16 subvolumes and the apparent Young�s modulus of the whole sample is 20%. This technique of regular
partition of a large volume was used in [44] as a method to reduce computation time for large-scale finite element
computations.

More general results are obtained in the next section using periodic boundary conditions.
5. Effective properties and RVE sizes

The overall physical properties are studied in this part for a large range of volume sizes V and a large number n of small
volumes taken out of the whole real specimens of microstructures SAi and SBj. Such volumes can be regular subvolumes of
the sample as shown in Section 4.2. Smaller volumes were also extracted randomly from the sample and do not represent a
partition of the original sample. To some extent, such random volumes represent different realizations of the studied ran-
dom material. The size and number of considered volumes are given in Table 4. The investigated physical properties are the
elastic moduli (bulk modulus k and shear modulus l) and the thermal conductivity k.

For each property, the dispersion of the results when increasing the volume V and the integral ranges are reported in
Section 5.1. The objective is then to estimate the apparent physical properties (kapp, lapp, Eapp and kapp), as a function
of the size of the domain V taken in these microstructures. The mathematical parameter characterizing the dispersion
of the found apparent properties, namely the integral range, is identified in the Section 5.2. Quantitative determination of
RVE sizes follows in Section 5.3.



Fig. 6. Application of SUBC on sample SB1 (applied stress R22 = 250 MPa): effect of a regular partition of the volume on the local field of equivalent
strain. The whole sample is on the left and the results found for the collection of 16 subvolumes are given on the right.
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Fig. 7. Mean values and intervals of variation on the mean value for Young�s modulus Eapp, as a function of the domain size for the specimen SA2 (regular
partition of the sample into 1, 4 and 16 subdomains).
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Table 4
Number of fields n used for all considered domain sizes, regular and random partitions

Volume of the domain V (lm3) Number of fields n

512 (random) 3662
4096 (random) 458
13,824 (random) 136
32,768 (random) 58
117,188 (regular) 16
468,750 (regular) 4
1,875,000 (the whole microstructure) 1
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5.1. Dispersion of physical properties

5.1.1. Elastic properties

The numerical simulations based on the finite element method are carried out for two different boundary conditions:
KUBC and periodicity conditions for k and l. The studied specimens are SA2 (as an example of material A) and SB1

(as an example of material B). The chosen number of fields (smaller volumes) n for each sample is such that the product
of the small volumes by the n yields the entire volume of the sample (Table 4). For example, the number n of fields for the
volume V = 512 lm3 is 3662 fields. They are obtained from regular non-overlapping or random (overlapping) subdivisions
of the whole microstructure. In the case of random distributions, the number n of considered volumes must be such that the
relative precision on the mean is below a chosen relative precision of 5%, estimated by usual sampling theory. The numbers
given in Table 4 were checked to fulfill this condition.

The apparent bulk and shear moduli are determined by applying respectively an overall strain matrix Eij = dij and Eij = 1/
2(di1dj2 + di2dj1) and computing then the elastic strain energy (see [21] for the complete procedure). Fig. 8 gives the obtained
mean values and variances of the apparent moduli kapp, lapp and Eapp as a function of the volume size V. As expected, the
dispersion of the results decreases when the size of the domain increases for all used boundary conditions. The obtained
mean values generally depend on the volume size, but also on the type of boundary conditions. For each modulus, the values
converge towards the same limit for large volumes V, that are called here keff and leff, since they are good candidates to coin-
cide with the wanted effective properties. The values keff and leff, found for large volume sizes, are reported in Table 5 and
compared to the Voigt–Reuss (upper bound and lower bound), Hashin–Shtrikman bounds (HS+ and HS�) and self-con-
sistent estimate. The self-consistent model (SC), also given in Table 5, provides a fair estimate for specimen SA2. However, it
strongly overestimates the effective properties of specimen SB1. For small volumes, the average moduli obtained by simu-
lations depend on the boundary conditions: KUBC produce results close to the upper bound. The mean value given by the
periodic boundary conditions converge more rapidly towards the constant values keff, leff, compared to the other boundary
conditions. It turns out also that for sufficiently large sizes, here around: V = 13,824 lm3, the mean value obtained with the
periodic boundary condition practically does not depend on the size of simulations. It is claimed, in several works, [38,22,21],
that the periodic boundary conditions provide the most reasonable estimates among the class of possible boundary condi-
tions for statistically homogeneous media. There is however no formal proof of this fact.

Figs. 7 and 8 also give the corresponding interval of variation ½Z � 2DZ ; Z þ 2DZ �, where Z is the apparent property, Z its
average value and D2

Z its variance of estimation for n realizations. It can be noted that the mean apparent properties
obtained with periodic boundary conditions on regular partitions of the sample or on random domains are very close.
The variance obtained with the regular partition is larger than for the random sampling. This may be due to the fact that
a random sampling does not cover the entire volume contrary to the regular partition.

5.1.2. Thermal conductivity

The specimens SA1 and SB2 are used now to estimate the apparent thermal properties. The results of numerical simu-
lations are given only for periodic boundary conditions, and compared to the results found directly on the whole samples
with homogeneous boundary conditions (UHF and UGT). Fig. 9 gives the obtained mean values and variances of the
apparent thermal conductivity found in direction (OX) as a function of the volume size. The value of keff found for large
volume sizes is reported in Table 5 and compared to the Wiener and Hashin–Shtrikman bounds. The value keff lies between
the values found using the boundary conditions UGT and UHF (Fig. 9). It can be noticed again that the self-consistent
model gives a fair estimate for SA2 but overestimates strongly SB1.

5.2. Determination of integral ranges

Following the strategy proposed in [21], the information gathered about the evolution with the volume V of the scat-
ter of simulated apparent properties is used to identify the statistical volume parameter A3 called integral range, which
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Fig. 8. Mean values and intervals of variation on the mean value for kapp and for lapp as a function of domain size for the specimen SA2.

Table 5
Values of numerical results (simulated on domains with volume V = 32,768 lm3), Voigt–Reuss or Wiener bounds (upper and lower bounds), Hashin–
Shtrikman bounds (HS+, HS�) and self-consistent estimate (SC) for elastic and thermal properties for the specimens SA2 and SB1

Property Simulation Upper bound Lower bound HS+ HS� SC

l (SA2) 345 660 0.05 514 0.11 371
l (SB1) 207 702 0.06 564 0.13 456
k (SA2) 634 1430 2.65 948 2.70 618
k (SB1) 334 1521 3.08 1058 3.14 791
k (SA2) 1.20 1.68 0.08 1.46 0.17 1.31
k (SB1) 0.77 1.79 0.09 1.58 0.20 1.47

The elastic moduli are given in MPa, the thermal conductivity in (W m�1 K�1). The experimental value of k for SB1 is 0.85 (W m�1 K�1).
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will enter the definition of a representative volume element size. This is done successively for elastic and thermal
properties.

5.2.1. Elastic moduli

The effective properties are defined from spatial averages of fields over a volume V. The fluctuations of the average val-
ues over different realizations of the real microstructures inside the volume V are considered. If the apparent property Z is
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Fig. 9. Mean values and intervals of variation on the mean value for thermal conductivity, as a function of the domain size for the specimen SA2.
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obtained by averaging an additive scalar over the volume V, it is shown in [27] that, for asymptotically large volumes, the
variance D2

ZðV Þ of Z(V) is given by

D2
ZðV Þ ¼ D2

Z

A3

V
. ð42Þ

A similar relation was proposed and tested by [8] and in [21]. In the case of a two-phase material with elastic property Z1

for phase 1 and Z2 for phase 2, the point variance D2
Z of the random variable Z is given by

D2
Z ¼ P 1ð1� P 1ÞðZ1 � Z2Þ2. ð43Þ

Since the apparent bulk and shear moduli are defined by the mean elastic strain energy for a given applied overall strain
tensor, the asymptotic relation (42) applies to these elastic properties. Using Eq. (43) and the elastic properties of the con-
stituents of the material studied in this work (1), we have: D2

k ¼ 933; 784 MPa2, D2
l ¼ 198; 988 MPa2 in the case of the spec-

imen SA2 and D2
k ¼ 855; 978 MPa2, D2

l ¼ 181; 680 MPa2 in the case of the specimen SB1. The integral range A3 remains
then to be identified by fitting our data to Eq. (42) for kapp and lapp. Such an identification is allowed only for domain
sizes such that the mean property is not biased any more. It happens to be the case for periodic boundary conditions when
V > 10,000 lm3, according to Fig. 8. The found parameter A3 (in lm3) is given in Table 6. The values were identified from
the dispersion of apparent properties in volumes with different sizes extracted randomly from the whole samples (actually
the two volumes for which no bias is observed on the mean values). The value of the integral range is comparable to the size
of the microstructural heterogeneities defined as the covariance range (Fig. 2): the elastic fields and the microstructure of
the specimen SB1 show a larger range. The largest integral range of the elastic moduli is found for the shear modulus in
both microstructures. This must be related to the fact that the contrast in shear modulus between phases 1 and 2 is higher
than for the bulk modulus.

5.2.2. Thermal conductivity

The model (42) proposed in the case of elastic properties can be used also for apparent thermal properties, since the
apparent thermal conductivity is computed as the mean value hqiGii for a prescribed vector Gi = di1. The point variance
Table 6
Values of the integral range A3 for elastic moduli k and l and thermal conductivity k in the case of periodic boundary conditions for the specimens SA2

and SB1

Physical properties Integral range A3 (lm3)

l (SA2) 1318 ± 11
l (SB1) 3156 ± 26
k (SA2) 866 ± 4
k (SB1) 2063 ± 37
k (SA2) 8510 ± 257
k (SB1) 8910 ± 331
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is D2
k ¼ 1:2560 ðW m�1 K�1Þ2 in the specimen SA2 and D2

k ¼ 1:1498 ðW m�1 K�1Þ2 for the specimen SB1. The values of the
integral range A3 identified from the simulations (periodic boundary conditions) is given in Table 6. The largest integral
range for the thermal conductivity is obtained for the specimen SB1 (as for the elasticity), but the two values are rather
similar. It is worth noting that the integral range found for thermal properties is larger than the value found for elastic
properties.

5.3. Estimating RVE sizes

The real microstructures studied here can be considered as realizations of a random set. The size of a RVE must be given
for a specific physical or morphological property, a given contrast in this property in different phases, and a given precision
in the estimation of the effective studied property. It is recalled that, in the theory of samples, the absolute error �abs and
relative error �rel on the mean value of a studied property Z, obtained with n independent (different) realizations of volume
V, are given as functions of the variance DZ(V) by

�abs ¼
2DZðV Þffiffiffi

n
p ; �rel ¼

�abs

Z
. ð44Þ

The size of the RVE can be defined formally as the volume VRVE for which n = 1 realization is necessary and sufficient to
estimate the mean (effective) property Z with a relative error �rel = 1% for instance, provided we know the function DZ(V).
On the other hand, we can estimate the effective property using smaller volumes, and consider n different realizations to
obtain the same relative error �rel. Eq. (44) gives

n ¼ 4D2
ZðV Þ

Z
2
�2

rel

; ð45Þ

where Z stands here for kapp, lapp or kapp. The exact mean value Z and its variance for a given domain size are a priori
unknown in the case of effective elastic moduli and effective thermal conductivity. The variance 2DZ(V) of the mean value
is given by Eq. (42) and can be inserted in Eq. (45). The smallest volume necessary and sufficient for the estimation of the
effective property Z with a given absolute error �abs and n simulations is then

V RVE ¼ 4

�2
abs

D2
Z

A3

n
. ð46Þ

The absolute error �abs corresponds to the estimation of the mean apparent moduli Zapp which have been found to depend
in general on domain size and do not necessarily coincide with the wanted effective property Zeff, especially for small do-
main sizes and uniform boundary conditions (KUBC and SUBC) (UGT and UHF in thermal conductivity). This corre-
sponds to a bias of the estimation. From the results of Figs. 7 and 8, the smallest domain size for which the bias can be
neglected is about V = 13,824 lm3 for kapp, lapp and kapp in the case of periodic boundary conditions for both types of
microstructures. For the uniform boundary conditions, significantly larger volumes are needed (the whole volume of
microstructure: 250 · 250 · 30 lm3 at least) to obtain unbiased mean values, i.e. mean apparent moduli Zapp that almost
coincide with the wanted effective ones Zeff.

One can now define the minimum size of the RVE, VRVE, for a given �rel and a given number n = 100 of fields (for
instance). When �rel = 1%, the values of VRVE for both types of studied microstructures and for all the physical properties
(k, l and k) are given in Table 7. For the same relative precision and number of fields, the thermal conductivity requires a
volume larger than the volume required for the shear modulus and the bulk modulus although the contrast in shear mod-
ulus is the largest one. This result holds for both specimens. One must note also that the specimen SB1 requires a volume
larger than the volume required by the specimen SA2. This is due to the values of the integral ranges and the covariance
ranges, and this result is true for k, l and k.

Finally, the estimated RVE sizes must be compared to the actual size of the samples. The representative volumes pre-
dicted by the previous model are given in Table 7. It appears clearly that the samples SAi can almost be regarded as RVEs
Table 7
The minimal size of the RVE VRVE for different physical properties obtained by the periodic boundary conditions

Sample SA2 Sample SB1

V RVE
k ¼ 93� 93� 93 lm3 V RVE

k ¼ 185� 185� 185 lm3

V RVE
l ¼ 96� 96� 96 lm3 V RVE

l ¼ 175� 175� 175 lm3

V RVE
k ¼ 162� 162� 162 lm3 V RVE

k ¼ 186� 186� 186 lm3

The results are given for n = 100 and �rel = 1%.
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for the bulk and shear moduli (but not for thermal conductivity). However, the thickness remains too small and one would
need more that three samples to ensure a precision of 5%. The samples SBi are definitely too small, so that the proposed
values for kapp, lapp and kapp remain estimations with loose precision.

6. Strain localization and percolation phenomena

The objective of this part is to understand from the morphology of the microstructures and the local fields in deformed
samples, why the samples of material A have been found to be significantly stiffer than the material B. The previous sec-
tions have drawn the attention on the fact that the covariance and integral ranges are larger for material B than for mate-
rial A. This features explain why the size of the RVE for a given precision will be larger for B than for A. But it does not
give any information on the morphological or mechanical aspects that are responsible for the significantly larger stiffness of
material A. The stiffness of the mixture of highly contrasted phases is strongly related to the way the hard phase percolates
inside the material. In the next sections, notions of geometrical and mechanical percolations are defined. The mathematical
description of the percolation is associated with the notion of percolation threshold, or critical value of the volume fraction
describing the connectivity. A more general definition is necessary in the context of the mechanics of heterogeneous media.
Contrary to the initial naive view of percolation mainly based on binary arguments (‘‘percolate or not’’), percolation can be
seen as a continuous process in the case of continuous systems, and not necessary an abrupt one. With the help of tools of
image analysis and of the morphological process called image reconstruction, such a notion is introduced and applied to
the morphology of the hard phase investigated in this paper, on the one hand, and to mechanical fields (strain) to quantify
strain localization phenomena on the other hand. A percolation ratio is defined and determined in each case. A correlation
is drawn with the corresponding mechanical properties of the microstructures.

6.1. Percolation ratio

A quantitative parameter is necessary to compare how a given phase percolates inside different heterogeneous materials.
For that purpose, we use the notion of 3D image reconstruction. Let us consider the set Y, subset of a larger set X. The
geodesic dilatation with size l of Y in X is Dl

X ðY Þ ¼ fx 2 X ; dX ðx; Y Þ 6 lg, dX(x,Y) being the smallest geodesic distance
dX(x,y) between the point x and any point y 2 Y. It is recalled that the geodesic distance dX(x,y) is the length of the shortest
path in X connecting the points x and y. We define the geodesic re-construction by successive geodesic dilatations with size
l = 1 pixel of Y in X, until the whole set X has been explored.

The volume fraction Pp of phase P percolating in direction (OX) is defined by the following procedure:

1. Determine the 3D reconstruction of the first section x = 1 (pixel) of the image of phase P in direction (OX). Call it P x
p.

2. Determine the 3D reconstruction of the last section x = 512 (pixel) of the image of phase P in direction (�OX). Call it
P�x

p . �x means that the propagation obtained from the successive dilatations is made in the opposite direction of (OX).
3. The percolating phase in (OX) direction is then defined as the intersection of P x

p and P�x
p : P p ¼ P x

p \ P�x
p .

It is clear that the volume fraction of percolating phase Pp is lower than or equal to the volume fraction of phase P

studied in the heterogeneous material. It enables us to quantify the volume of phase that ‘‘percolates’’ inside the volume
X and to compare it to the whole volume of this phase. It is then possible to define a percolation ratio Pr, as the ratio
between the volume fraction of the percolating phase to the whole volume fraction in the microstructure of this phase:

P r ¼
P p

P
. ð47Þ

It is always lower than or equal to 1. It is equal to 1 if the whole phase percolates, and equal to zero if there is no perco-
lation of this phase (physically it means that this phase is a set of separate inclusions). Fig. 10 illustrates the three steps in
the 2D image reconstruction. This procedure is used in 3D in the sequel. The proposed parameter makes it possible to
determine the inclusion character of a given phase, in a way which can be shown to be more reliable than for instance
the so-called ‘‘matricity coefficient’’ introduced in [24].

6.2. Geometrical percolation

The previous definition of percolating phase Pp substantiates the notion of geometrical percolation. In particular, we
will say that the phase P geometrically percolates in the considered volume as soon as the volume fraction of percolating
phase Pp does not vanish. Because of the size of the investigated samples SAi and SBi, especially their small thickness with
respect to the (OZ) axis, we have chosen to study the evolution of the geometrical percolation ratio for the phases 1 and 2,
as a function of the number sections (XY) added in the thickness direction (OZ). For each number m of sections included in



Fig. 10. Example of 2D image re-construction. (a) Image of the whole set X, (b) image of P x
p, (c) image of P�x

p and (d) image of Pp.
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the 3D image, the geometrical percolation ratio Pr(m) is computed in two directions of sections (OX) and (OY). The
obtained curves are given in Fig. 11. For m = 1, the performed image analysis is two-dimensional, as illustrated in Fig. 10.

6.2.1. Material A

The evolution of the geometrical percolation ratio Pr in direction (OX) with increasing thickness, is given in Fig. 11(a)
for the phase 1 in the three samples SAi. The number of sections added along the thickness is equal to 60 for a total thick-
ness of 30 lm. In the first section of sample SA2, the percolation ratio is zero, meaning that there is no path entirely con-
tained in phase 1 that links both sides of the image in direction (OX). However, for all samples, the percolation ratio rises
steeply with increasing image thickness and reaches the value 1. Such a value means that the entire phase 1 is connected
within the considered volume. There is no isolated inclusion of phase 1. A sample thickness of 5 lm is sufficient for the
percolation ratio to become larger that 0.95.

Very similar results are obtained for percolation in the direction (OY), and for the phase 2.

6.2.2. Material B

The percolation ratios for material B for a propagation in direction (OX) as functions of sample thickness are given for
both phases 1 and 2 in Fig. 11(c) and (d) respectively. Again both phases are connected in all the samples SBi. But the most
salient feature is that the percolation distance, i.e. the minimal thickness for the percolation index to be larger than 0.95, is
twice larger for phase 1 than for phase 2. A thickness of about 5 lm is necessary for the soft phase 2, whereas a value of
about 13 lm is found for the hard phase 1. Such a result can be related to the fact that the covariance and integral ranges
are about twice as large in material B as in material A. This specific morphological property of the phase 1 is in accordance
with the direct observation of the images of Fig. 1 where the heterogeneities made of the hard phase are indeed larger than
the channels made of phase 2.

Very similar results are obtained for percolation in the direction (OY).
At this stage, there is a strong correlation between this difference in the percolation behaviour of phase 1 in both mate-

rials and the found mechanical properties of materials A and B. However, it is not possible to prove a direct link between
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Fig. 11. Evolution of the geometrical percolation ratio Pr in direction (OX) as a function of sample thickness: (a) material A for the phase 1, (b) material A
for the phase 2, (c) material B for the phase 1 and (d) material B for the phase 2.
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the percolation distance of phase 1 in material A and the found high elastic moduli. To go a step further, a notion of
mechanical percolation is introduced in the next section.

6.3. Mechanical percolation

The objective is to study the geometry of zones of high strain or high stress in a microstructure submitted to a given
load. The size and morphology of strain localization zones for instance can be very different from material to material.
Strain localization bands connecting one face of the sample to the other can weaken the material considerably more than
bounded domains inside the sample. That is why the percolation behaviour of the geometrical domain where strain or
stress reach a given value is investigated.

The percolation of a mechanical field in a given direction is defined as follows: a value of a mechanical variable (eeq for
instance, defined by Eq. (24)) is attributed to each voxel of the microstructure according to the results of a finite element
computation. A threshold image is obtained by selecting the domain where the variable is greater than a given threshold.
One investigates then the geometrical percolation property of this domain. In particular the percolation ratio can be com-
puted in the same way as in the previous section.

This procedure is applied to the samples SA1 and SB1 subjected to an external loading E22 = 0.1 using KUBC. The cho-
sen local variable is the equivalent strain eeq. This local variable strongly varies in the microstructure. For a given value
ethres, the part Dethres of the image where eeq > ethres is determined. One computes then the geometrical percolation ratio
P rðDethresÞ of this domain in one specific direction, according to the definition (47). We call it the mechanical percolation
ratio of the equivalent strain field eeq(x) in a given direction and for a given threshold.

Fig. 12(a) and (b) give examples of the percolating domain of the equivalent strain for samples SA1 and SB1 respectively.
They show the domains of the microstructure where the equivalent strain is larger than ethres = 0.4 for the sample SA1 and
than ethres = 0.5 for the sample SB1, and that percolate geometrically in direction (OX). Fig. 12(a) and (b) are deduced from
the whole equivalent strain maps of Fig. 3(a) and (b) respectively. Fig. 13 shows then the mechanical percolation ratio as a
function of threshold value ethres, in direction (OX) (loading is along direction (OY)), for materials A and B respectively.
It is clear that the mechanical percolation ratio is equal to 1 for very low threshold values and vanishes for high values.



Fig. 12. Image of the percolated volume Pp for the variable eeq for the computation using the sample (a) SA1. The imposed strain tensor is E22 = 1. The
percolation is given in the direction (OX), eeq = 0.4 (Pr = 0.74). (b) Image of the percolated volume Pp for the variable eeq for the computation using the
sample SB1. The imposed strain tensor is E22 = 1. The percolation is given in the direction (OX), eeq = 0.5 (Pr = 0.95).
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Fig. 13. Evolution of the strain field percolation ratio as a function of the equivalent strain threshold: (a) example of computation of the sample SA1 with
E22 = 0.1 and (b) computation of the sample SB1 with E22 = 0.1.
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However, the way the mechanical percolation ratio decreases as a function of ethres is very different for samples SA1 and
SB1. It decreases slowly for sample SA1 and abruptly for sample SB1. It indicates that high strain domains can percolate for
a higher strain in specimen SA1, as compared to specimen SB1. It can also be related to the fact that the higher deforma-
tions develop in a more localized way in the soft phase of sample SB1. A complementary information could be obtained by
a similar approach, when considering the sets generated by eeq < ethres. This would inform us about the percolation and the
localization of domains with the lower strains.

7. Conclusions

Confocal images of two materials having the same volume fraction of hard phase 1 but different morphologies, have
been used to predict their effective elastic and thermal properties. Direct finite element simulations on the six available sam-
ples SAi and SBi show that the apparent properties obtained using KUBC and SUBC boundary conditions are significantly
different. The results obtained with SUBC are closer to the experiment. This discrepancy is due to the finite size of the sam-
ples, and especially their small thickness. A method is proposed then to estimate the size of a proper RVE for a given
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wanted precision. It is based on the computation of material volumes of increasing size extracted from the whole samples.
The finite element simulations using periodic boundary conditions provide apparent moduli that converge rapidly towards
an asymptotic value which is regarded here as the effective property for increasing volume size. A sufficiently large number
of volumes must be selected inside the whole sample to reach a given precision on the estimation of the mean. The evo-
lution of the variance in apparent moduli with increasing volume is given by Eq. (42), where the parameter A3 called inte-
gral range has been identified for elastic and thermal properties. This key-parameter makes it possible to estimate RVE
sizes for given precision and number of considered volumes, according to Eq. (45). When applied to the materials A
and B, this approach shows that the samples SAi are RVE for a precision of 5%, whereas the samples SBi are too small
to reach this precision. This feature can be related also to the values of covariance ranges which characterize the size of
heterogeneities. Such a methodology is an efficient and systematic tool to assess the representativity of the 3D images that
are produced by modern experimental techniques like X-ray tomography. The integral range can be used to compare RVE
sizes of different materials for different properties. In the considered materials A and B, the integral range for the shear
modulus is larger than for the bulk modulus. Furthermore the integral range for thermal property was found to be signif-
icantly larger than for elastic properties.

The existence of the asymptotic behaviour (42) in the scatter of apparent properties makes it possible to extrapolate
results from a finite domain of material to larger volume based on the integral range A3, and therefore to predict the
required volume size of materials needed for proper identification of effective properties. A condition for the identification
of A3 from computations on small volumes extracted from a larger one is that the computed mean apparent properties do
not vary significantly with volume size and therefore represent a fair estimate of the effective property. This prerequisite is
not fulfilled when using homogeneous boundary conditions but was found to be satisfied if periodic boundary conditions
are prescribed. The strong advantage of periodic boundary conditions even for random materials was already noticed at
several places [21,32] and is put forward in the present work for the analysis of real microstructures. However, the periodic
boundary conditions also lead to significant scatter in the found apparent properties. That is why we have proposed to
randomly select a high enough number of subvolumes inside the reference images to ensure a given precision in the esti-
mation of the mean apparent properties. This is in contrast to the alternative computation homogenization approach based
on regular and non-overlapping partitions of the reference material volume V into subvolumes subjected to homogeneous
boundary conditions, as done for instance in [44].

The finer and elongated microstructure of material A leads to stiffer elastic properties and higher thermal conductivity
than material B. The entanglement of the hard phase 1 within the material plays an important role in the resistance of both
materials. A quantitative notion of percolation is introduced in this work. The geometrical percolation ratio in a given spa-
tial direction characterizes the volume fraction of one phase that is actually connected to both faces normal to the direction
in the considered volume. It turns out that this ratio is equal to 1 for the hard phase in all available samples, which means
full percolation of phase 1 in both materials. However, geometrical percolation is a fully 3D parameter. A percolation dis-
tance could be defined that characterizes the minimum sample thickness for the percolation ratio to reach 0.95. This per-
colation distance is twice as large in material B as in material A. There seems to be a correlation between this percolation
behaviour of the hard phase and the resulting mechanical properties. In addition, a notion of mechanical percolation was
introduced in order to substantiate this correlation. The proposed analysis indicates that in a deformed sample, high strain
domains are connected for larger strains for microstructure A than for microstructure B. These are first links between mor-
phological and mechanical analyses which remain however insufficient to unambiguously distinguish microstructure A
from B. The percolation indices proposed and illustrated in this work are thought to be more efficient and systematic than
available parameters like the matricity index used for instance in [35]. Further efforts towards reconciliation of morpho-
logical and mechanical/physical approaches are necessary to really understand, classify and finally optimize 3D
microstructures.
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