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a b s t r a c t

Optimal shape design of microstructured materials has recently attracted a great deal of attention in
materials science. The shape and the topology of the microstructure have a significant impact on the
macroscopic properties. This paper presents different computational models of random microstructures,
to virtually improve the physical properties of ice cream. Several sensory properties of this heterogeneous
material issued from food industry are directly controlled by the elastic and thermal conducting ones.
The material effective elastic and thermal conducting properties are obtained through direct large scale
numerical simulations. The different formulations address the problem of finding the shape of the repre-
esign of virtual microstructures
VE
lastic and thermal properties

sentative microstructural element for random heterogeneous media that increase the elastic moduli and
thermal conductivity compared to existing products. The computational models are established using
finite element method and images of virtual microstructures. In this paper we propose a new model
of microstructures. This model is constructed with hexagonal prismatic rods and plates with volume
fractions around 0.7 for the hard phase represented by hexagons of ice. A comparison between three
two-phase elastic heterogeneous microstructures models is drawn. This illustrates the concept of design

comp
of microstructures using

. Introduction

Traditionally, materials are selected from a materials database
f physical properties. However, the paradigm is now evolv-
ng into designing materials concurrently with morphologies to

eet specific performance requirements. Material by design is
new methodology well known for structural application, see

ilormini and Bréchet (1998), Wegst and Ashby (2002), Cousin
nd Ashby (2003), Sirisalee et al. (2006) and Bouaziz et al.
2008).

The present work considers the study of the morphology
f random linear elastic and linear thermally conducting two-
hase microstructures of ice cream in order to obtain a wanted
hysical properties (elastic moduli and thermal conductivity).

t shows that the computational homogenization makes it pos-

ible to construct new morphologies that are not investigated
xperimentally. The characterization of the effective material
roperties in this setting is made through the use of the numer-

cal homogenization based on a representative volume element

∗ Corresponding author. Tel.: +33 3 20 43 42 43; fax: +33 3 20 33 70 88.
E-mail address: toufik.kanit@univ-lille1.fr (T. Kanit).
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utational homogenization tools.
© 2011 Elsevier Ltd. All rights reserved.

(RVE). Homogenization methods are used to predict the effec-
tive properties of these composite materials and to optimize the
morphology of the microstructure. The aim of this study is to
estimate the effective properties of new simulated microstruc-
tures and to compare them with real microstructures of ice
cream.

2. Materials and methods

Three different morphologies are studied, 3D real images of ice
cream obtained by confocal microscopy and two models of virtual
composites: 3D Boolean models of prismatic hexagonal rods and
plates and the Vorono mosaics, as examples of microstructures that
we expect to be stiffer and more thermally conducting than the real
samples of ice cream.

All the microstructures are considered as a two-phase linear
elastic and linear thermally conducting materials. The elastic prop-

erties (Young’s modulus E, Poisson coefficient �, bulk modulus k)
and the thermal conductivity � are: [E (MPa), �, k (MPa), � (MPa),
� (Wm−1 K−1)] = [2500, 0.3, 2083, 962, 2.44] for ice with volume
fraction P1 = 0.7 and [25, 0.49, 417, 8, 0.0244] for cream with volume
fraction P2 = 0.3.

dx.doi.org/10.1016/j.mechrescom.2011.01.005
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
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Fig. 1. Voronoï mosaics: images in 2D, 3D and finite element mesh of two-phase microstructure.
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Fig. 2. Real microstructures, sample SA (le

.1. Voronoï mosaics

The Voronoï mosaics is a good candidate to generate virtual ran-
om media. To generate such microstructures, an original method
as proposed with numerous extensions of the classical model

Decker and Jeulin, 2000), see Fig. 1.

.2. Three-dimensional real microstructures of ice cream

Experimental batches of our ice cream composite were pro-
uced in blocks which are stored at −18 ◦C, see Kanit et al.
2006). They are used for confocal imaging. Two different types of

icrostructures are studied here. The first one with additive named
A, the second without additive named SB, see Fig. 2. The additive
nly changes the morphology of the phases but does not affect the
roperties of the individual phases. The samples SB contain fairly
ound ice crystals while the samples SA have more elongated hard
hase crystals.
The mechanical test used for the determination of the effective
echanical properties is a four-point bend test, see Fig. 3. The sam-

les used in those tests are 250 �m × 250 �m × 30 �m bars, which
laced between two pairs of steel rolls used as load applicators.
he two upper rolls are immobile while the two lower ones are

Fig. 3. The four-point bend test used to estimate the
d sample SB (right): images in 2D and 3D.

able to apply a vertical displacement on the sample. The different
values of the load F and the displacement of the lower rolls ı are the
output of this test. The bending tests were performed over a large
range of the volume fractions of phase P1. The results are reported
in Fig. 3. Note that for all volume fractions, SA is found to be signif-
icantly stiffer than SB. This difference can be explained by the role
of morphology of phases in each material. The samples with addi-
tive SA give a higher value of Young’s modulus by comparison with
samples without additive SB for the same value of volume fraction,
which can be explained by the role of more elongated hard phase
crystals in samples with additive.

2.3. Boolean models with hexagonal prismatic grains

A good generic model to reproduce the morphology of the ice
cream microstructure is the Boolean model (Matheron, 1967). The
Boolean model is generated in two steps: random germs are given
by points of a Poisson point process with intensity � points per unit

volume. In a second step, random grains are located on the random
germs, with permitted overlaps of the grains. It is known that for
this model the percolation threshold is lower for anisotropic grains,
such as cylindrical fibres (Jeulin and Moreaud, 2006). In the stud-
ied microstructures here, we propose to use hexagonal prismatic

Young modulus and the experimental results.
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Fig. 4. Geometry and dimensions of the used primary grains in hexagonal mic

rimary grain for the ice phase, in order to reproduce the
ell-known morphology of ice crystals. The geometry and the
imensions of the used prismatic hexagons are shown in Fig. 4. Two
ifferent types of geometry were studied: one is based on hexag-
nal plates (microstructures named P50 and P70) and the second
ne is based on hexagonal rods (R50 and R70). Two volume frac-
ions P1 of the hard phase, represented by hexagonal prisms, were
enerated: 0.5 (P50 and R50) and 0.7 (P70 and R70).

. Results

The same methodology as for the direct computations of the
pparent properties for the real microstructures (Kanit et al., 2006),
nd for the Vorono mosaics (Kanit et al., 2003), is used here to find
he apparent elastic moduli for the Boolean models with hexagonal
rismatic grains. Values of the elastic properties of the two phases
sed for the real microstructures are also the same used in this
ase. The different apparent coefficients of the elasticity matrix are
omputed with kinematic uniform boundary conditions (KUBC),
ee Kanit et al. (2003) for more details about this type of boundary
onditions. To study the mechanical anisotropy of our materials,
e compute and provide the apparent elasticity moduli matrices.

he matrices can be anisotropic if the size of the samples is not
arge enough to represent a deterministic size of RVE. The apparent
lastic matrix Capp is related to the macroscopic strain tensor E and
he average microscopic stress tensor 〈�〉 by:

�〉 = Capp : E

To compute the apparent elastic coefficients Capp
ij

, we impose a
oading strain tensor E and with the volume average local stress
ensor 〈�〉 we compute the coefficients Capp

ij
. The apparent elastic

oefficients are given by the following matrices:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1152 352 415 0 0 6
1098 401 7 5 1

1597 1 9 12
377 3 2

444 1
451

⎞
⎟⎟⎟⎟⎟⎟⎠
SB =

⎛
⎜⎜⎜⎜⎜⎜⎝

1197 333 416 1 12 23
1060 384 5 20 7

1675 1 37 34
387 12 0

457 1
489

⎞
⎟⎟⎟⎟⎟⎟⎠
ctures and Boolean model (P50 at left and R50 at right): images in 2D and 3D.

R50 =

⎛
⎜⎜⎜⎜⎜⎜⎝

886 284 283 6 2 4
783 273 5 3 1

654 0 4 1
260 3 2

240 3
259

⎞
⎟⎟⎟⎟⎟⎟⎠

R70 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1520 574 574 3 2 1
1670 601 5 3 7

1653 3 4 3
492 8 2

514 2
492

⎞
⎟⎟⎟⎟⎟⎟⎠

P50 =

⎛
⎜⎜⎜⎜⎜⎜⎝

527 200 199 5 2 2
668 220 5 1 6

653 7 2 3
185 5 2

208 2
181

⎞
⎟⎟⎟⎟⎟⎟⎠

P70 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1487 494 493 4 2 1
1339 476 2 5 1

1357 1 8 1
447 1 3

422 1
447

⎞
⎟⎟⎟⎟⎟⎟⎠

One can notice some anisotropy of the obtained apparent
elastic matrices computed for each sample. The values of the
apparent elastic coefficients of the ice cream microstructures are
in general not very different in the two large directions of the
3D confocal image. In the thickness direction it is not the case.
As a result, the real samples of ice cream exhibit a significant
anisotropy in the thickness direction. Physically, the elastic mod-
ulus value along the thickness of the sample is smaller than
along the two other directions. The small thickness of the sam-
ples is responsible for this anisotropy. To quantify the anisotropy
of these apparent elastic matrices, we give here the anisotropic
index a for each microstructure. In the case of a matrix with
a cubic symmetry, this index is given by: a = 2C44/(C11 − C12).
In our case, we take: C44 = (Capp

44 + Capp
55 + Capp

66 )/3, C11 = (Capp
11 +

Capp
22 + Capp

33 )/3 and C12 = (Capp
12 + Capp

23 + Capp
31 )/3. We can also look

at the anisotropy in the plane (XY) for the real microstructures,
for example. The in-plane anisotropy index aXY is defined as:
aXY = 2Capp

44 /(CXY
11 − Capp

12 ), with: CXY
11 = (Capp

11 + Capp
22 )/2. The values
of the retained anisotropy index for each microstructure are
given in Table 1. The apparent matrices of elasticity found are
quasi isotropic. The results of Table 1 suggest that the size of
our microstructures is representative, as far as the isotropy is
concerned. In Table 1, a comparison of values of the effective prop-
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Table 1
Results of numerical simulations and index of elastic anisotropy. Notations: (S): numerical simulations, (E): experimental results, VM: Vorono mosaics. An index close to 1
corresponds to an isotropic elastic behaviour.

Microstructure R50 R70 P50 P70 SA SB VM

a 1.02 0.97 0.93 0.97 0.95 0.95
aXY 0.975 0.973
�eff (MPa) (S) 253 449 191 439 345 207 433
keff (MPa) (S) 449 916 333 781 634 334 1198
Eeff (MPa) (S) 639 1158 481 1109 876 515 1159
Eepp (MPa) (E) 384 151
�eff (W/mK) (S) 1.2 0.77 1.346
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ig. 5. Comparison of effective Young’s modulus and effective thermal conductivity
function of ice volume fraction P1.

rties is given. Microstructures with hexagonal rods are stiffer than
hose with hexagonal plates. It can be explained by the fact that the
ard phase in the microstructure with rod hexagons is more con-
ected than in the other case, because of the anisotropic geometry
f primary grains. The effect is more pronounced for microstruc-
ures with P1 = 0.5. One can remark also that the effective Young’s

odulus Eeff of ice cream, obtained by homogenization method, is
reater than the experimental one Eapp, which can be explained by
he fact that the size of the used specimens is not large enough by
omparison with the RVE size.

. Discussion and conclusion

A general conclusion concerning the physical properties can be
rawn from the comparison between three types of random two-
hase materials. The comparison is limited to the effective Young’s
odulus and the effective thermal conductivity, but can be gener-

lized to other physical properties, see Table 1. The only difference
etween the three types of microstructures is the morphology of
hases. Results of the comparison are given in Fig. 5. In this figure, a
omparison of the effective Young’s moduli of different microstruc-
ures is given by one hand and a comparison between the effective
oung’s modulus and the apparent (experimental) one of ice cream
y the other hand. Fig. 5 gives also a comparison of the effective
hermal conductivity of ice cream and Vorono mosaics. Because of
he strong contrast in properties of phases, the Hashin–Shtrikman’s
HS) upper and lower bounds are very far apart. The self consistent
stimate (SCM), based on a spherical geometry, cannot properly
ake into account the effect of the morphology on the effective
roperties, since it is well known that when this model is applied
o a porous medium, the effective Young’s modulus vanishes. For

he considered virtual microstructures models, the self consistent

odel underestimates the effective elastic properties, but gives a
ood estimation of the effective thermal conductivity. For the real
icrostructures, it overestimates these effective properties. This

ifference between the estimation of the self consistent model and
P1

ree types of random two-phase elastic and linear thermal conducting materials, as

numerical simulations results becomes more important for volume
fractions P1 close to 0.5. One finds no direct relation between the
relevance of the self consistent estimate and a specific morphology.
The two virtual microstructures give higher effective properties
than those given by the real microstructures. It is due to the more
elongated shape of grains of the existing hard phase in the vir-
tual models, as compared to the real microstructures. The Vorono
mosaics and the hexagonal microstructures give similar effective
properties. A higher stiffness for the hexagonal microstructures
with rod-like hard phase is found for volume fractions around 0.5.

The present work can be considered as a first step towards a
computational approach of the design of microstructures. As shown
in this study, in the case of products from food industry, the compu-
tation homogenization approach makes it possible to explore new
morphologies that are currently not investigated experimentally,
and possibly discover new products with improved properties.

As conclusion of this work, and for the sake of brevity, two
important conclusions are noted:

– the effective elastic moduli and the effective thermal conductiv-
ity given by virtual models are higher than those given by the real
materials.

– The Boolean microstructures with rod hexagons are stiffer than
with plate hexagons.

Finally, one notes that corresponding process conditions to
obtain real microstructures close to these Boolean models must
be found for practical applications.
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