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Serrated yielding and propagation of localized bands of plastic strain rate are the apparent phenomena of
the Portevin–Le Chatelier (PLC) effect. The finite element modeling of this effect is investigated, using a
model proposed by Zhang et al. [74] describing dynamic strain aging, and material parameters for a
Nickel based superalloy at 500 �C. This work presents: (1) an efficient implicit integration scheme of
the constitutive equations in the presence of instabilities; (2) a numerical tool to determine the type
of plastic strain rate localization bands based on results of simulations; and (3) a mesh and time discret-
ization sensitivity analysis of the model regarding the characteristics of PLC bands. This analysis is carried
out in 2D and 3D for axisymmetric smooth and notched specimens.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Portevin–Le Chatelier (PLC) effect is associated with serra-
tions on the macroscopic load/displacement tensile curve and with
the repeated propagation of bands of localized plastic strain rate in
test specimens [46,45,8]. These effects are due to dynamic strain
ageing (DSA). DSA can be associated with a negative strain rate
sensitivity (SRS) [58] of the material in some range of strain rate
and temperature, which can be evidenced by performing tensile
tests at various constant strain rates or various temperatures. At
a microscopic scale, DSA is related to dynamic interactions be-
tween mobile dislocations and diffusion processes of solute atoms
[23,72]. Depending on strain rate, the PLC effect starts at a more or
less high strain value, which constitutes the critical strain between
stable and unstable behavior [16]. In order to understand and to
simulate the PLC effect in various structures and to prevent unex-
pected failure associated with localized phenomena, many studies
have been performed dealing with experimental observations,
models, and simulations of DSA.

Many observations of the PLC effect are available in the litera-
ture since it has been discovered one century ago [46,59]. It has
been mainly observed in aluminium alloys since PLC effect occurs
in this kind of material at room temperature. This effect has then
been observed and analyzed in AlMg alloys [26,71,44,47,74,21,
9,43,48,50,42,7,39,2,24,20,38,40,18,8,1,66]; AlCu alloys [35,61,
41,62]; or in some other aluminium alloys [59,33,22,36], and even
ll rights reserved.
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in metal matrix composites [57,24,34]. It has also been detected at
higher temperatures (around 200 �C) in iron or steels [46,49,35].
Finally, more recently, the PLC effect has been evidenced around
500 �C in some Nickel based superalloys for aeronautical and nu-
clear applications [25,63,28,32,51,31,52].

Two main theoretical models for dynamic strain ageing have
been developed about twenty years ago to reproduce the serrated
yielding and strain rate band localization. The first one, denoted
KE model, presented in [45], is based on an explicit mathematical
description of negative SRS. It has been used for numerous theoret-
ical studies of PLC effect [58,73,29], and also for some finite element
modeling simulations [71,43,7]. The second one, denoted MC model,
proposed in [55], and improved by [56] is a macroscopic model
based on a microscopic description of the DSA introducing an inter-
nal variable ta called ageing time. It has been used in almost all re-
cent numerical simulations of the PLC effect [74,35,36,39,24,41,
40,8]. A more recent model, based on a thermodynamical approach
is presented in [37,65]. It has not been implemented yet for finite
element modeling of DSA. Another model, based on the addition of
different stresses, proposed in [19] has been used to carry out 1D
numerical simulations of tensile tests. Finally a micro-mechanical
model based on interactions between dislocations and solute
dynamics has been proposed in [30]. This model should be useful
for simulation of PLC effect at a smaller length scale than that of
the simulated tensile specimens considered in this work.

The finite element method has been applied in the case of DSA
to accurately reproduce experimental tensile tests and to validate
material models and parameters. Some simulations have been
performed in 2D [71,35,36,7,24,40], some in 3D [74,43,39,51,8].
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Different geometries of tensile specimens have been tested like
smooth flat [71,74,43,40,24]; smooth round [74,7,39,51,8]; smooth
prismatic [8]; U-notched flat [35,8]; U-notched round [7,51]; V-
notched flat [36]. Application to CT specimens for the PLC effect
at the crack tip can be found in [36,6].

All these simulations were performed with the finite element
method, using different element types and sizes, and different inte-
gration methods for the constitutive equations, in order to accu-
rately reproduce the serration on the global strain/stress curve,
but also propagation of bands in specimens. Three main questions
arise when performing such finite element simulations of the PLC
effect: (i) how to develop an efficient method to locally integrate
the material model constitutive equations in the presence of severe
instabilities, (ii) how to characterize the type of bands and com-
pare experiment with simulations, and (iii) how do finite element
results depend on mesh size.

(i) The simulation of the PLC effect in test specimens using the
KE or MC models mentioned previously requires to solve a
quasi-static non-linear rate-dependent mechanical problem.
In the framework of FEM, this problem can be solved using
incremental procedures based on an explicit solver [7,40,8]
or implicit (Newton–Raphson methods) formulation
[74,43,35,36,16,13]. In both cases the constitutive equations
are integrated at each Gauss point in order to evaluate the
state variables at the end of each time step, and an estimate
of the tangent stiffness matrix. Constitutive equations can be
integrated using methods depending on the specific form of
the flow rule or yield criterion [8]. Some generalized methods
can also be used such as Runge–Kutta methods [60,70], or a
modified mid-point scheme called H-method [68,3,17,27],
that leads to more tedious mathematical developments.
The latter method provides a better convergence of the global
algorithm and requires the determination of the consistent
tangent matrix. Integration of constitutive equations may
become numerically difficult if large increments of internal
variables occur for small time increments. Both methods
have to be improved by a combination of automatic stepping
and error correction. In the MC strain ageing model, both
internal variables (i.e. the cumulated plastic strain p and
the ageing time ta) can undergo large local increments, that
can slow down or even stop the global solution convergence.
Two mixed algorithms combining Runge–Kutta and H-meth-
ods, associated with an automatic control of time steps, are
presented here for the particular case of the MC model.
Results of simulations of a plate in tension performed with
these algorithms have been compared with results obtained
using a Runge–Kutta local integration, and an approximate
consistent tangent matrix equal to the elasticity tensor.

(ii) The main difficulty while modeling PLC effect is to accu-
rately reproduce the load/displacement curve and plastic
strain rate localization bands. The simulated load/displace-
ment curve can be directly compared with experiments.
The comparison of band characteristics is more difficult.
Characteristics and kinetic parameters of bands such as type,
spatial evolution, velocity, width, amount of plastic strain
carried by each band, and maximum plastic strain rate, have
been evaluated experimentally using different methods. The
type of serrations and the motion of bands can change sig-
nificantly from a given strain rate, temperature, or strain
level to another. Serrations have been classified in three
main types (A, B, and C), depending on their shape [47].
These types are associated with three different kinematic
behaviors of plastic strain rate localization bands. It is first
possible to estimate the type of bands from temporal analy-
sis of the global stress/strain curve using multifractal analy-
sis [48], recurrence analysis [66], or Markov processes [18].
Band characteristics may also be obtained based on spatial
observations using thermal fields measured with a fast
multi-detector infrared camera [49,61,50,62,1]; using opti-
cal observations associated with digital image correlation
analysis [42,2,41,38,8]; or using acoustic emission (AE) and
laser extensometry measures [21,20]. Finally some results
on band behavior can be obtained by analyzing failure of
specimens [33,28,42,38,40,31] or from tensile tests at a con-
stant stress rate [26,44,20]. In order to accurately simulate
the type of bands for each strain rate and temperature, a
numerical tool that can easily evaluate band characteristics
and kinematic parameters is proposed in this work. This tool
mimics the measurement techniques of band location per-
formed using laser extensometry or infrared pyrometry
and provides most of band characteristics.

(iii) It is well-known in the framework of finite element model-
ing that simulations of strain localization phenomena
induced by softening mechanisms can be mesh dependent
[13], i.e. the size of localization bands decreases with ele-
ment size. The mesh objectivity of DSA models has not been
systematically studied in literature. An evolution of the band
size with respect to the element size is given in [74]. Con-
trary to the results that we will present here, Zhang found
a convergence of the band width with increasing the number
of elements. However, Zhang does not focus on the mesh
dependence of the other band characteristics such as band
type, velocity, and amount of carried strain. These variables
are estimated in several experimental studies [33,49,50,
61,62,8], and in some simulations [7,8]. A comprehensive
mesh sensitivity analysis of band types and parameters is
then performed in this work. A formula relating the different
parameters is proposed from the simulation results.

This work is divided into four parts. In the first one (Section 2),
the different local integration methods of MC model are compared
regarding simulation precision and computation time. In the sec-
ond part (Section 3), the kinematic behavior of A, B, and C bands
is reviewed. An original numerical tool to detect the type and kine-
matic parameters of a localization band is provided: the Band Loca-
tion Indicator (BLI). BLI is suitable to perform a strain rate
sensitivity analysis of the MC model for the simulation of a plate
in tension. It is also useful to perform the detailed analysis of the
mesh sensitivity of localization carried out in the third part (Sec-
tion 4). The influence of element size on the critical plastic strain,
serrations, band type, and kinematic band parameters, is investi-
gated in a systematic way. Finally in Section 5, some large scale
simulations on 3D smooth and notched round specimens are pre-
sented as an extension of 2D results presented in Section 4.

2. Numerical integration of MC constitutive equations

2.1. Finite element formulation

The incremental finite element resolution of non-linear
mechanical problems consists in solving at each step i the follow-
ing equation:

Assuming at time t¼ ti; FintðuiÞ¼Fext
i;

Find the displacement field at time tiþ1; uiþ1¼uiþDui such as :;

Fintðuiþ1Þ¼Fext
iþ1:

8><
>:

ð1Þ

where ui denotes the vector of nodal displacements at step i, and
FintðuiÞ and Fext

i the corresponding internal and external forces act-
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ing on the discretized system. The value of external forces at step
iþ 1; Fext

iþ1 is deduced from boundary conditions and loading path.
This non-linear problem can be solved at each step using itera-

tive procedures [68,13] such as Newton–Raphson implicit meth-
ods. Introducing the shape function derivative matrix B, for each
calculation iteration k:

(a) The displacement field is updated Dui
kþ1 ¼ Dui

k þ dui
k.

(b) The strain tensor increment at each Gauss point De
�

i
kþ1 ¼

BDui
kþ1 is computed.

(c) The constitutive equations are integrated to provide the
internal/state variable increments, in particular the stress
tensor increment Dr

�
i
kþ1; and the consistent tangent operator

@Dr
�

i
kþ1

@De
�

i
kþ1

.

(d) Internal forces Fintðui þ Dui
kþ1Þ are computed.

(e) Residual forces Ri
kþ1 ¼ FintðuiþDui

kþ1Þ�Fext
iþ1 are computed.

(f) The new displacement increment dui
kþ1 ¼ �½K

i
kþ1�

�1Ri
kþ1 is

computed.

This procedure ends when a given norm of residual vector Ri
kþ1

becomes smaller than a given value r called the global convergence
ratio. The stiffness matrix used in the Newton–Raphson method is:

Ki
kþ1 ¼

@Fint

@u
ðui

kþ1Þ ¼
Z

v
Bt L
�

Bdv ; ð2Þ

where L
�

is an estimate of the actual tangent operator L
�

i
kþ1. This esti-

mate can be the tensor of elastic moduli E
�

, the elastoplastic tangent
operator L

�ep ¼
@ _r
�

@ _e
�
, or the consistent tangent operator L

�c ¼
@D r
�

@D e
�

pro-
vided by step (c). This operator is updated for each iteration (classi-
cal Newton method), or only for the first or for the first two
iterations (modified Newton method).

Step (c) of the Newton–Raphson procedure requires to integrate
the elastoviscoplastic constitutive equations at each Gauss point.
This integration can be performed using either Runge–Kutta or
H-method. Using a Runge–Kutta method, the tensor of elastic
moduli E

�
is usually chosen for L

�
in the calculation of matrix Ki

k

(see Eq. (2)). The H-method requires the calculation of a Jacobian
matrix that provides the consistent tangent operator L

�c. The use
of this estimate instead of the tensor of elastic moduli for L

�
in step

(f) of the global procedure induces a better global convergence and
decreases the number of local iterations for each global calculation
increment. However, for the elastoviscoplastic MC model used in
this work, the H-method can fail to integrate constitutive equa-
tions (divergence of the local procedure), in particular when large
increments of internal variables occur.

2.2. Constitutive equations

The finite strain formulation for isotropic non-linear material
behavior adopted in this work is based on the use of a local objec-
tive frame as proposed in [67,11,13]. Observer invariant stress and
strain rate measures r

�
and _e

�
are defined by transport of the Cauchy

stress T
�

and strain rate D
�

into the corotational frame characterized
by the rotation Q

�
ðx; tÞ. This change of frame takes place at each

material point:

r
�
¼ Q
�
�T
�
�Q � T;

_e
�
¼ Q
�
�D
�
�Q � T;

Q
�

such as _Q � T � Q
�
¼ X
�
ðcorotationalÞ;

8>>>><
>>>>:

ð3Þ

where X
�

is the skew-symmetric part of the gradient L
�

of the veloc-
ity field [67,13]. The strain rate tensor _e

�
is split into elastic and plas-

tic contributions, the evolution of the latter being given by the
plastic flow rule.
_e
�
¼ _e
�e þ _e

�p; ð4Þ

r
�
¼ E
�

: e
�e; ð5Þ

f ðr
�
; p; taÞ ¼ J2ðr�Þ � RðpÞ � P1Csðp; taÞ; ð6Þ

RðpÞ ¼ R0 þ Qð1� e�bpÞ; ð7Þ
_e
�p ¼ _p n

�
; ð8Þ

n
�
¼ @f
@ r
�

¼ 3
2

s
�

J2ðr�Þ
; ð9Þ

where J2ðr�Þ is the von Mises invariant of the stress tensor, s
�

is the
deviatoric part of the stress tensor r

�
;RðpÞ is the non-linear harden-

ing law, and P1Csðp; taÞ is the extra-hardening induced by strain age-
ing [74,35]. The over-concentration Cs of solute atoms around
dislocations is estimated as a function of both internal variables
of the model, the cumulated plastic strain p and the ageing time ta:

Csðp; taÞ ¼ Cmð1� e�P2patn
a Þ: ð10Þ

The maximal over-concentration is Cm. P2 characterizes the rate of
saturation of solute atoms around dislocations. Effect of ageing on
the flow stress is given by parameter P1 (units MPa). In fact, only
the product P1Cm can be identified based on mechanical tests. The
cumulated plastic strain rate _p is computed from the following
viscoplastic hyperbolic flow rule.

_p ¼ gðf Þ ¼ _p0 sinh
hf i
K

� �
; hf i ¼ jf j þ f

2
: ð11Þ

The ageing time increment is computed from an evolution law in
which the cumulated plastic strain rate _p intervenes:

_ta ¼ 1� ta

w
_p; ð12Þ

where w is the increment of the plastic strain which is produced
when all stopped dislocations overcome their obstacles. Such a
model has already been used for finite element simulations in
[74,35,36,39,24,40,8].

These constitutive equations can be put together in the follow-
ing form:

_Z ¼ FðZ; _e
�
Þ; ð13Þ

where Z contains the scalar and tensorial internal/state variables of
the model:

Z ¼ ðe
�e;p; taÞ: ð14Þ

Eq. (13) can be integrated using either Runge–Kutta or H-method.

2.3. Runge–Kutta method

In the Runge–Kutta method, the updated variables at the end of
the increment ðt þ DtÞ are evaluated from variables and rates of
variables at time t. This method relies on Taylor developments of
ZtþDt . The first order developments of ZtþDt gives the Euler method.
Function F in (13) is assumed to be constant and equal to its initial
value (i.e. at t) over the whole time increment Dt. This method be-
comes obviously inaccurate when increasing the global time incre-
ment Dt, and consequently the total strain increment De

�
t .

However the method can be improved by a combination of Tay-
lor developments at higher orders, automatic stepping, and error
correction. This combination constitutes the Runge–Kutta method
of integration [60,70,13]. The global time increment Dt is divided in
sub-steps dtk such as Dt ¼

P
kdtk. The local time step dtk is con-

trolled by an error correction. In this way, large local time incre-
ments are used when _Z is rather constant with respect to time,
and small ones when _Z varies a lot. A development at higher order



Table 1
Material model parameters identified for a nickel based superalloy, Udimet 720 at
500 �C [51].

Elasticity Hardening Viscosity Ageing

E ¼ 200 GPa R0 ¼ 1046 MPa K ¼ 1:55 MPa P1Cm ¼ 96 MPa
m ¼ 0:3 Q ¼ 2200 MPa _p0 ¼ 10�4 s�1 P2 ¼ 4:1 s�n

b ¼ 1:88 a ¼ 0:77
n ¼ 0:33

w ¼ 10�4
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of ZtþDt is also acceptable, if it allows larger sub-steps dtk for the
same precision. In the present work, a fourth order Runge–Kutta
method was used. This method provides high confidence in the
quality of integration, but can be quite expensive during calcula-
tion [13].

2.4. H-method

The evaluation of the increment of state variables DZ according
to the H-method is performed using unknown values of rate of
state variables _Z at an intermediate point in the increment:

DZ ¼ _ZtþHDtDt ¼ FðZtþHDt;De
�

tþHDtÞDt; ð15Þ

ZtþHDt ¼ Zt þHDZ; ð16Þ

where H 2 ½0; 1� characterizes the time where variables are evalu-
ated. H ¼ 0 corresponds to the Euler scheme, and H ¼ 1 to a fully
implicit integration. The increment DZ is then evaluated by solving
the following non-linear system with respect to DZ:

R ¼ DZ� DtFðZt þHDZ;De
�

tþHDtÞ ¼ 0; ð17Þ

where R is called the local residual. In the case of the MC model pre-
sented previously the local residual is:

R
� e
�e ¼ De

�e þ De
�p � D e

�
¼ De

�e þ Dp n
�
�D e

�
; ð18Þ

Rp ¼ Dp� gðf ÞDt; ð19Þ

Rta ¼ Dta � Dt þ ta

w
Dp: ð20Þ

A Newton–Raphson algorithm is used to solve the non-linear sys-
tem. It requires the calculation of the Jacobian matrix associated
to system (17).

J ¼ @R
@DZ

¼ 1� Dt
@F
@DZ

����
tþHDt

: ð21Þ

The Jacobian matrix for the dynamic strain ageing MC model is:

@Re
�e

@DZ

@R e�e

@De
�e
¼ I
�
þHDpðN

�
: E
�
Þ;

@Re�e

@Dp ¼ n
�
;

@Re�e

@Dta
¼ 0
�
:

8>>>>><
>>>>>:

ð22Þ

@Rp

@DZ

@Rp

@De
�e
¼ �Hg0ðN

�
: E
�
ÞDt;

@Rp

@Dp ¼ 1þHg0ðH þ CpÞDt;
@Rp

@Dta
¼ Hg0CtaDt:

8>>><
>>>:

ð23Þ

@Rta

@DZ

@Rta
@De
�e
¼ 0
�
;

@Rta
@Dp ¼

ta
w ;

@Rta
@Dta
¼ 1þH Dp

w :

8>>><
>>>:

ð24Þ

where n
�
¼ @f

@ r
�
;N
�
¼

@ n
�

@ r
�
;E
�

is the fourth order elasticity tensor,

g0 ¼ dg
df ; H ¼ @R

@p ; Cp ¼ P1
@Cs
@p ; Cta ¼ P1

@Cs
@ta

.

2.5. Proposed t-method and rkt-method

Three numerical methods for the integration of constitutive
equations are compared in this work. Two of them (‘‘rkt-method”
and ‘‘t-method”) are original integration methods based on combi-
nation of Runge–Kutta method and H-method. The main objective
of such combined methods is to avoid local divergence and pre-
serve fast global convergence.

� The first integration method denoted ‘‘rk-method” is an explicit
fourth order Runge–Kutta method with automatic time step-
ping, associated with the tensor of elastic moduli E
�

as an esti-
mate of the actual tangent operator.

� The second method denoted ‘‘rkt-method” evaluates the incre-
ments of state variables using the Runge–Kutta method at each
Gauss point. The consistent tangent operator L

�c is then calcu-
lated using the converged variable increments, and used as the
estimate of the actual tangent operator.

� The third method denoted ‘‘t-method” tries to evaluate the
state/internal variable increments using the H-method. If the
H-method fails, increments of variables are evaluated using a
fourth order Runge–Kutta method. Then, the consistent tangent
operator L

�c is calculated at each Gauss point using the converged
variable increments, even if they were calculated using the Run-
ge–Kutta method. The ‘‘t-method” therefore corresponds to an
automatic switch from H-method to a Runge–Kutta method.
2.6. Example – comparison of different methods

In order to compare the three different methods of constitutive
equations integration presented in (2.5), the simulation of a plate
in tension is performed. All simulations presented in this work
have been carried out using the Zset finite element program
[14,27]. The specimen geometry is a 12:5 mm� 2:5 mm plate,
meshed with 2D 8 nodes plane stress elements with reduced inte-
gration (4 Gauss points). The material parameters used here are ta-
ken from [52] and are recalled in Table 1. They correspond to the
Nickel based superalloy Udimet 720. The numerical solution of this
problem, solved using the ‘‘t-method”, for a constant applied global
strain rate equal to 10�4 s�1 is shown in Fig. 1. The critical plastic
strain pc is defined as the plastic strain for which serrations starts.
An analytical value of this critical plastic strain can be obtained
from a stability analysis as performed in [52]. The value pc is indi-
cated on the stress/strain curve. The maps of cumulated plastic
strain rate _p and of ageing time ta are drawn on the structure for
a global applied strain e ¼ 5%. In the literature, most of finite ele-
ment simulations dealing with material instabilities on smooth
specimens require numerical tricks such as thickness [40] or mate-
rial properties variations [15] in order to trigger instabilities. Such
defects are useful when a precise location of the band along the
specimen is wanted. For propagating bands, there is not such a
need so that no defect is introduced in the simulation. In all simu-
lations presented in this work, material instabilities are only trig-
gered by the numerical noise.

Many simulations have been performed on the plate in tension
in order to compare these three different methods. The efficiency
of all methods is evaluated regarding computation time (CPU time
using an AMD Opteron 248 2.2 GHz) for a given precision ratio, for
tensile tests up to e ¼ 5%. Precision is defined either as the global
convergence ratio r (see (2.1)), or by calculating the relative differ-
ence between the analytical critical plastic strain pth

c and the corre-
sponding numerical values provided by simulations pnum

c . Three
different global ratio r have been prescribed in this study:
10�4; 10�5; 10�6. All simulations have been performed at the same
prescribed constant strain rate _e ¼ 10�4 s�1.
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On Fig. 2, computation time of simulations for r ¼ 10�4 and
r ¼ 10�6 are plotted with respect to the relative error performed
on the critical plastic strain. This error is equal to jpnum

c � pth
c j=pth

c .
Using ‘‘rk-method”, the precision of the critical plastic strain pre-
diction can be increased prescribing a smaller global ratio, that im-
plies a larger computation time. However this precision remains
above 10% even for a one day long simulation. The prediction pre-
cision given by the ‘‘rkt-method” does not increase with computa-
tional time, but remains better for the same CPU time than the ‘‘rk-
method” one. Finally, the more efficient method is the ‘‘t-method”
that provides accurate and fast results for both global ratio r.

On Fig. 3, the computation time of each simulation is plotted
with respect to the prescribed global ratio r. The ‘‘rk-method”
and ‘‘rkt-method” lead to similar values for r ¼ 10�4 and
r ¼ 10�5. Indeed, the time earned improving global convergence
with the consistent tangent operator L

�c in ‘‘rkt-method” is bal-
anced by the time spent for the calculation of this operator. With
‘‘rk-method”, global convergence is weak but the tensor of elastic
moduli E

�
is just calculated once. When r becomes smaller

ðr ¼ 10�6Þ, the global convergence of ‘‘rk-method” is so weak that
the computation time increases dramatically. On the contrary, be-
cause of the consistent tangent operator, the computation time of
‘‘rkt-method” keeps increasing as a linear function of the global ra-
tio r. With ‘‘t-method”, the CPU time is almost not affected by a
global ratio reduction. One can then get a better precision for al-
most the same calculation time. From both figures, it is clear that
the ‘‘t-method” is more efficient than the two other evaluated
methods for simulation of the Portevin–Le Chatelier effect using
the MC model. A validation on local fields remains to be done.

3. Band nomenclature and band location indicator

In this section, the PLC band nomenclature is reviewed. Then, an
original numerical tool that helps to determine the type of bands



Fig. 5. Spatio-temporal pattern (STP) associated with randomly nucleated bands
(type C) [62].
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that form during finite element simulations is presented. This tool
is used to evaluate the strain rate sensitivity of localized phenom-
ena in a plate in tension. Simulations have been performed with
constitutive equations of MC model presented in the previous sec-
tion, and parameters for Udimet 720 at 500 �C given in Table 1.

3.1. Band nomenclature

The localization band type can be described either by the type
of serration on the global stress/strain curve [47,48,66], or by the
spatio-temporal organization of bands at the surface of specimens
[61,50,2,38,20,62]. In the present work, spatio-temporal aspects of
localization are mainly considered, but the shape of serration is
also sometimes used to confirm the type of bands. Type A and type
B bands are associated with propagation along the specimen in the
same direction. Type A propagation is continuous while type B
bands are characterized by hopping propagation. Type C bands
are characterized by random nucleation anywhere in the specimen
without propagation. The nomenclature of bands A, B, C is based on
ideal pure types, while in most experimental works and finite ele-
ment analysis one get mostly some behaviors located in the
smooth transition domains (denoted here A–B and B–C) existing
between two of these pure types.

The spatio-temporal organization of bands can be determined
using advanced experimental techniques such as laser extensome-
try [21,20], or infrared pyrometry [61,62]. Typical results provided
by this method are spatio-temporal patterns (STP) given in Figs. 4
and 5. STP describe the location of bands at different stages of
experiments, for given spatial and temporal resolutions. These pat-
terns are useful to make the difference between propagating (A–B)
and non propagating (B–C) bands. STP associated with propagating
bands, at least on the last part of experiments, are given on Fig. 4
for three different types of propagation. Short propagation type is
denoted A–B 1, propagation along the whole specimen with reflec-
tions at its end is denoted A–B 2, and propagation along the whole
specimen with bands nucleating always at the same end is denoted
A–B 3. An experimental STP associated with a random nucleated (C
type) is presented on Fig. 5. Moreover, the band types are relevant
for steady regimes of material deformation. The beginning of the
curve corresponds to a transient regime that we call T in the se-
quel. It cannot be attributed to A–B or C types. Most of experimen-
tal and numerical patterns show after this transitory behavior,
either A–B or/and B–C types. Indeed, this type of bands detected
during experiments depends on strain and strain rate.

At small strain rates, C type bands are mainly observed, while at
higher strain rates, A type bands appear. For intermediate strain
rates, B type bands are obtained [21,20,61,62].

The evolution of band type with strain level is more controver-
sial. In some articles, band type seems not to vary with strain level
for a given prescribed strain rate [50,2,38,1]. But in some others,
band type changes for increasing tensile deformation at a given
Fig. 4. Spatio-temporal patterns (STP) associated with passing of propagat
strain rate. The evolutions that can be found in the literature for
increasing deformation are A followed by B [20,62], C followed
by B [21], B followed by C [61]; and even mixed forms A + B and
B + C are observed in [48].

3.2. Numerical detection of bands – the BLI tool

An original numerical method that helps to detect the band
propagating behaviors (A–B 1,2,3 or B–C) in a finite element sim-
ulation is proposed here. The aim of this method is to mimic, from
a numerical point of view, the spatio-temporal patterns (STP) ob-
tained either experimentally in [21,20] using laser extensometry,
and in [61,62] using infrared pyrometry, or from theoretical analy-
sis [47,37].

At a given point of the structure, the passing of a band is related
to a large value of the plastic strain rate in the zone where it is de-
tected. A simple numerical tool, called Band Location Indicator
(BLI), has been implemented in the finite element program Zset
[14]. At each time step of the non-linear simulation, the program
checks at each integration point if the cumulated plastic strain rate
_p is larger than a given value _p1 ¼ c� _e where c is called the BLI
factor and _e is the external strain rate applied on the whole struc-
ture. If this condition is fulfilled, i.e. if the integration point is lo-
cated ‘‘ inside a localization band ”, the program returns the time
step value and the axial location y of this integration point. This
method of analysis has been tested on a plate in tension at a con-
stant global strain rate equal to 10�2 s�1 for the nickel based super-
alloy considered in this work. The 12:5� 2:5 mm plate is meshed
ing bands (type A–B), at least on the last part of experiments [21,20].



Fig. 6. Simulation of types A–B propagating bands for a plate in tension at a constant strain rate equal to 10�2 s�1. First line shows the location of bands as a function of time
provided by the Band Location Indicator (BLI). The second line shows three zooms at first line where the three types of propagation appear. Third line contains the
corresponding serrations. The fourth line gives the global stress/strain curve of this simulation.
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with 80 2D 8 nodes plane stress square elements with reduced
integration. The cutting value of the cumulated plastic strain rate
for the BLI is _p1 ¼ 5� 10�2 s�1ðc ¼ 5Þ. This value of 5 for the BLI
factor has been empirically determined from both following obser-
vations: A smaller value (close to 1) leads to too many integration
points inside bands, a larger value (larger than 10) may exclude all
points even though a band actually exists.

Results are outlined in Fig. 6. This simulation reveals the three
types of STP associated with propagating types presented on
Fig. 4, depending on the overall deformation level. First, for low
deformation values, the short propagation A–B 1 type is evidenced.
Then for intermediate deformation values, the reflecting at bound-
ary propagation A–B 2 type appears. Finally for high deformation
values, the repetitive propagation A–B 3 type is observed. Observ-
ing the shape of serrations on the deformation curve, it seems that
bands are from A type at the middle of the test and from B type at
its end. This point is of particular interest, since a reflecting A–B 2
propagation is sometimes associated with B type bands, while a
repetitive A–B 3 propagation appears mostly for A type bands.
However, some exceptions to this empirical rule can be found in
[21,62] where B type bands are associated with a repetitive A–B
3 propagation.

Even, if it is not the case in this Section, the BLI tool is able to
distinguish the continuous propagation of type A from hopping
propagation from type B. Hooping propagations can be observed
if the time and space resolutions are fine enough to detect discon-
tinuities in the STP, like at the end of this work on Fig. 20.

3.3. Evaluation of band width and velocity from the BLI tool

This method is also accurate to evaluate the width Lb and the
velocity Vb of bands. Fig. 7 gives a schematic representation of a
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Fig. 7. Measures of band velocity Vb and band width Lb using BLI plot. A schematic
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plate width and Lt the width measured on the BLI curve at t ¼ ti . The true width of a
band is then Lb ¼ Lt � l tanðaÞ.

Fig. 8. Spatio-temporal patterns along a plate in ten
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band and its corresponding BLI curve. a denotes the band inclina-
tion angle. For all calculations of Lb carried out during 2D analysis
(i.e. in Sections 3 and 4), this angle is assumed to be equal to 34.5�.
This theoretical value provided by a linear perturbation analysis
[7,51] is very close to those found during finite element simula-
tions. l is the current plate width, and the BLI plot width at t ¼ ti

is denoted Lt . The true width of a band is then Lb ¼ Lt � l tanðaÞ.
The velocity Vb of bands is given by the average slope of BLI

plots (see Fig. 7). One can observe on Fig. 6 that this velocity is
rather constant during the whole simulation, whatever the band
type. This velocity given by the slope of the linear segments of
BLI plots, is actually found to decrease slightly with strain in mea-
surements performed by [50,61,62]. The model is perhaps unable
to reproduce this effect or the precision of BLI tool is insufficient.
The band width is related to the thickness of curves and conse-
quently to the BLI factor c. Since the BLI detects points in the whole
sion for three different prescribed strain rates.
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width of specimens, the inclination of bands have to be taken into
account to calculate the true width of bands (see Fig. 7).

3.4. Application: strain rate sensitivity

The BLI is useful to compare different simulations at different
global applied strain rates. On Fig. 8, band location is plotted as a
function of time for three different strain rates: 10�2 s�1;

10�4 s�1; 10�6 s�1. Simulations have been performed on the same
mesh. The corresponding global stress/time curves are plotted on
Fig. 9. The critical plastic strain, serrations, and type of bands are
highly sensitive to strain rate.

The type of bands is determined from spatio-temporal patterns
(STP) associated with observation of serration shapes. For all three
simulations a transitory (T) behavior is firstly observed. Then, for
higher strain rates (10�2 s�1 and 10�4 s�1), propagating bands are
found, while for the lower one ð10�6 s�1Þ, randomly nucleated
bands appear. Observing the shape of serrations of the deformation
curve, it seems that C type bands appear for the lower strain rate
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Fig. 9. Global engineering stress vs. time curve for a plate
ð10�6 s�1Þ, B type bands appear for the intermediate strain rate
ð10�4 s�1Þ, and A type bands appear for the higher strain rate
ð10�2 s�1Þ. These results are in good agreement with experimental
observations made in [21,20] on a different material. Another find-
ing is that the critical plastic strain decreases when the strain rate
decreases as in [51]. That is not the case in some other works
[21,24], but some other prescribed strain rate should be investi-
gated to confirm this monotonous behavior. The frequency (with
respect to global strain) and amplitude of serrations on the tensile
curve increase, evolving from type A to type C as in [24].

The influence of strain rate on the velocity of bands Vb, and on
the amount of plastic strain rate carried by the band Dp are inves-
tigated. Are Vb and Dp intrinsic properties of the model parameters
or are they functions of global strain rate _e? Some measures of the
band velocity Vb presented Table 2 have been obtained from Fig. 8
for _e ¼ 10�2 s�1; _e ¼ 10�4 s�1; _e ¼ 10�6 s�1. The average amount
of plastic strain rate Dp carried by a band is also measured for
the three prescribed strain rates. This quantity is estimated at an
integration point at the center of the plate, measuring height of
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in tension for three different prescribed strain rates.
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Fig. 10. Numerical global serrated stress minus homogeneous stress
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for a tensile plate at a constant strain rate of 10�4 s�1. Simulations
have been performed for five different meshes, for the same boundary value
problem and material parameters.

Table 2
Estimates of the velocity ðVbÞ, and of the average plastic increment carried by the
band ðDpÞ, for different prescribed strain rates at e ¼ 17%.

Prescribed strain rate _e ðs�1Þ Vb ðmm s�1Þ Dp

10�2 35 0.005

10�4 3.5 0.005

10�6 0.35 0.005
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3394 D.O.F.
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Fig. 11. Numerical global serrated stress for a tensile plate at a constant stress rate.
Simulations have been performed for five different meshes, for the same boundary
value problem and material parameters.
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steps on the temporal plastic strain evolution at this point. On the
one hand, the velocity seems to be linearly related to the pre-
scribed strain rate. The amount of plastic strain rate appears to
be an intrinsic property of the model, since at 17%, Dp is identical
for the three strain rates, even if it varies between 0.003 and 0.007
during simulations. for any prescribed strain rate, any strain level,
and any mesh (see Section 4). Experimental results on the variation
of Dp with strain and strain rate differ. In [62], Dp is mainly related
with the nominal strain and does not actually depend on the pre-
scribed strain rate. On the contrary in [50], Dp is found to increase
with the nominal strain for A type bands but is quite constant for B
types ones. The influence of prescribed strain rate on band kine-
matics characteristics is also investigated using a theoretical ap-
proach in [37]. The band velocity Vb is found to increase with
respect to strain rate, like in this work. The band plastic strain Dp
also increases, which follows some experimental trends [50], but
differs from finite element results presented here or from some
other experimental trends [62].

4. Mesh sensitivity of PLC localization phenomena

A mesh sensitivity analysis of the MC model is performed con-
sidering the effect of the element size on the global load/displace-
ment curve and the characteristics of localization bands. Six
different meshes of a 12:5� 2:5 mm plate have been used, the
number of degrees of freedom (DOF) varies from 250 to 116354.
The simulation of a tensile test has been performed for each mesh
using the same material parameters, at two prescribed strain rates
equal to 10�2 s�1 and 10�4 s�1. Serrations and the type and shape
of bands are first studied from a qualitative point of view. Some
characteristic parameters of A-B type bands appearing for
10�2 s�1 simulations are then evaluated for each mesh, to provide
a quantitative analysis of the mesh sensitivity of the MC model.

4.1. Qualitative analysis

4.1.1. Serrations
An homogeneous solution for a uniaxial tensile load can be cal-

culated for the MC model assuming that _p remains constant [52]:

rHomogeneous ¼ K arcsinh
_p
_p0

� �
þR0þQð1� e�bpÞþP1Cm 1� e�P2patn

a
� �

:

ð25Þ

The corresponding finite element solution coincides with this solu-
tion before the critical plastic strain, and oscillates around it after
when serrations begin (see Fig. 1).

The difference between the average stress for different mesh
densities and the corresponding analytical homogeneous solution
is plotted on Fig. 10 as a function of the cumulated plastic strain p:

Dr ¼ F
S
� rHomogeneous: ð26Þ

The critical plastic strain does not significantly depend on mesh
size. The shape of serrations seems also to be rather mesh indepen-
dent. The frequency and the amplitude of oscillations are about the
same for all meshes, but solutions do not coincide. The reasons for
these differences lie in the impact of the mesh density on the de-
tailed behavior of bands. This behavior can be observed with the
band location indicator (BLI) presented in Section 3.2 to locate the
position of bands at each step of the simulations.

The same analysis has been performed at a constant stress rate
for five different meshes (cf. Fig. 11). Typical steps are observed on
the overall curves, as reported in experiments for steel in [69]. The
critical strain for which the typical steps appear remains mesh
independent. For a given level of the nominal strain, the plastic
strain carried in each band seems to be also mesh independent
since the shape of steps does not depend on the mesh size. The dif-
ference between each curve is due to a difference in the shape and
location of bands as for simulations at a constant strain rate.

4.1.2. Band location
The spatio-temporal patterns (STP) provided by the BLI are gi-

ven on Fig. 12 for four different meshes. One can first observe that
the STP spatial resolution is mesh dependent, but this aspect does
not actually affect the determination of propagation type, neither
the measuring process of band kinematic properties. For each
STP, propagating behaviors associated with A–B bands are ob-
served after the transition behavior. However, the propagation
type (A–B 1, A–B 2, A–B 3, see Section 3.2) is found to be mesh
dependent. This the propagation type seems to be A–B 31 (type 3
then 1) for the coarse mesh (250 DOF), A–B 123 for the reference
one (898 DOF) used for the strain rate sensitivity analysis, A–B
13 for the fine one (3394 DOF), and A–B 131 for the very fine
one (13186 DOF). The quantitative analysis of kinematic parame-
ters of such bands developed in the next section will provide fur-
ther information about mesh sensitivity of bands. Indeed, looking



Fig. 12. Spatio-temporal patterns (STP) of bands for a plate in tension for four different mesh densities at a constant strain rate of 10�2 s�1.
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at STP, the velocity of such bands appears for example to be mesh
independent.

4.1.3. Band shapes
The distribution of bands on the sample surface is represented

for the four different meshes in Fig. 13. The cumulated plastic
strain rate _p and the ageing time ta are drawn for the same defor-
mation value. The total strain is e ¼ 9%. When the mesh is refined,
the number of bands increases and the band width decreases,
while the maximum plastic strain increases.

4.2. Quantitative analysis

The quantitative analysis of the mesh sensitivity performed
here is based on the measure of kinematic parameters of a single
propagating band (type A–B 2 or 3). This analysis is carried out



Fig. 13. Cumulated plastic strain rate and ageing time for four meshes for a plate in tension at a constant strain rate _e ¼ 10�2 s�1, and for a global strain of e ¼ 9%ðt ¼ 9sÞ.
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for simulations of plates in tension at a constant strain rate
_e ¼ 10�2 s�1. The amount of plastic strain carried by the band is
Dp ¼ p2 � p1, where p1 is the plastic strain before the band passing
and p2 after it. The maximal value of the plastic strain rate in the
band is denoted _pmax. All these kinematics parameters are schemat-
ically shown in Fig. 14.

Neglecting the elastic strain rate contribution, a relation be-
tween the global prescribed strain rate _e, the maximum strain rate
in the band _pmax, the band width Lb, and the total length of the plate
L can be derived [33,2]:

_e � h _pi ¼ Lb

L
1
2

_pmax: ð27Þ

This relation actually holds for a band with a triangular shape, but
can be extended to bands with a different shape changing the
expression of the average of _p along the plate h _pi. We propose an-
other relation between the global prescribed strain rate _e, the time
for the band to propagate from one edge of the specimen to the
other Dt, the amount of plastic strain carried by the band is Dp,
and the total length of the plate L:

_e � Dp
Dt
¼ DpVb

L
: ð28Þ
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ṗ ṗmax

Fig. 14. Kinematic simplified model of a band, based on numerical results.
Then

) DpVb �
1
2

Lb _pmax � L _e; ð29Þ

where L _e is the prescribed displacement rate. Neglecting the elastic
strain rate, this quantity is equivalent to the permanent plastic
elongation rate associated with the passing of a single band.

Numerical measurements of the kinematic parameters of bands
have been performed for the 6 meshes, for a single propagating
band (type A–B 2 or 3) after the initial transition behavior has dis-
appeared. The prescribed strain rate is 10�2 s�1 and the global
strain e ¼ 17%ðt ¼ 17 sÞ, in a range of deformation where single
bands are propagating for all meshes. Results are presented in Ta-
ble 3 and in Fig. 15.

On Fig. 15, the element sizes are normalized by the value for
minimum element size (0.052 mm for 116354 DOF). Parameters
are also normalized by their value for the minimum element size.
Then the plotted values are normalized by the corresponding value
obtained for mesh with 116354 DOF. The amount of plastic strain
Dp and the velocity of bands Vb are found to be mesh independent.
The band width Lb and the inverse of the maximum plastic strain
rate ð _pmaxÞ�1 are linear function of mesh size.

The evolutions of Dp; ð _pmaxÞ�1, and Vb with respect to mesh den-
sity is less regular than Lb ones. This imperfection in numerical re-
sults arises from the fact that ð _pmaxÞ�1 is actually not constant in a
band during the whole propagation from one edge to the other.
Moreover, values measured for ð _pmaxÞ�1 and Dp are affected by
the presence of the edges of the plate. However, even with such
rough measures for Dp and ð _pmaxÞ�1, the relation (29) can be veri-
fied. In the case of the finest mesh, we get DpVb ¼ 0:149 mm=s
and 1=2Lb _pmax ¼ 0:138 mm=s, while L _e ¼ 0:125 mm=s. These
Table 3
Estimates of the band velocity ðVbÞ and band width ðLbÞ, of the plastic increment
carried by the band ðDpÞ, of the maximum plastic strain rate ð _pmaxÞ for different
meshes.

Element size (mm) DOF Vb ðmm s�1Þ Lb ðmmÞ Dp _pmax ðs�1Þ

1.25 250 0.398 1.635 0.0038 0.13
0.625 898 0.358 0.808 0.004 0.21
0.3125 3394 0.313 0.388 0.0039 0.54
0.15625 13,186 0.305 0.212 0.0057 0.85
0.078125 51,970 0.284 0.10 0.0052 1.8
0.05208 116,354 0.254 0.0737 0.0059 3.75



( ṗmax)− 1
Δp
Lb

Vb

Normedel ement size

N
or

m
ed

 b
an

d 
pa

ra
m

et
er

s

302520151050

30

25

20

15

10

5

0

Fig. 15. Evolution of the band velocity ðVbÞ and band width ðLbÞ, of the plastic
increment carried by the band ðDpÞ, of the maximum plastic strain rate ð _pmaxÞ for
different element sizes. Values are normalized with respect to values at the
minimum element size. DOF number goes from 250 to 116354.

Fig. 16. Mesh and boundary conditions of smooth and notched (NT4) axisymmetric
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quantities are rather constant for all different mesh densities. This
relation was also checked for different prescribed velocities.

A parallel can be drawn between the propagation of bands of
plastic deformation and wall painting. The band width Lb is equiv-
alent to the number of hair in the brush (proportional to the width
of the brush), the amount of plastic strain Dp to the quantity of
paint spread out per hair per coat, the maximum plastic strain rate
_pmax to the quantity of paint laid per second per hair, and the rate of
plastic elongation

R
_pdy � L _e to the flux of paint between the paint-

brush and the wall. The band velocity Vb is equivalent to the appar-
ent axial brush velocity. After each run the brush moves across the
specimens.

Fig. 17. Orientation and shape of bands for different strain rates in a smooth axisymmetric specimen. Bands are plotted on the central cross-section.
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specimen in the axial direction to paint a new strip. A move of sev-
eral hairs is equivalent to A type bands, while B type bands would
be equivalent to a displacement of at least the size of the brush.
The effect of a mesh refinement is like using a smaller brush (with
less hair on it), and pressing stronger on it to increase the flux per
hair, the axial speed of the brush and paint quantity in a coat yet
Fig. 18. Global engineering stress/strain curve, location of bands as a function of time, z
axisymmetric specimen at a prescribed strain rate _e ¼ 10�2 s�1.
remain the same. During the propagation of a band of plastic strain
rate (respectively, in wall painting), whatever the mesh (respec-
tively, brush) size, the rate of plastic elongation (respectively, the
flux of paint) remains constant. Then, depending on which quanti-
ties need to be accurately reproduced, the mesh will have to be re-
fined or not.
oom on serrations and plastic strain rate in the specimen at e ¼ 8:25% for a smooth
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The MC model presented in this article is efficient to simulate,
irrespective of the mesh size, the global behavior, the strain carried
in the band, and the band velocity. If one needs to simulate the
maximum of plastic strain rate or the band width, a non-local or
dynamic model may well be necessary.
Fig. 19. Global engineering stress/strain curve, location of bands as a function of time,
axisymmetric specimen at a prescribed strain rate _e ¼ 10�4 s�1.
5. Smooth and notched 3D tensile specimens

5.1. Numerical models

In the literature, most finite element simulations of the PLC ef-
fect have been performed on 2D geometries [71,35,36,24,40]. 2D
zoom on serrations and plastic strain rate in the specimen at e ¼ 2% for a smooth
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axisymmetric meshes have been used by [7] on smooth and
notched tensile specimens. The maximum number of degrees of
freedom (DOF) for these simulations is 27,960 for smooth tensile
(ST) specimens and 9618 for notched tensile (NT) specimens, with
one-point integration elements. Simulation with 3D meshes can be
found in [74] on smooth flat and axisymmetric specimens, with
Fig. 20. Global engineering stress/strain curve, location of bands as a function of time, z
axisymmetric specimen at a prescribed strain rate _e ¼ 10�6 s�1.
respectively 7783 and 7011 DOF and 8 nodes incompatible mode
elements. In [43], simulations of 3D flat specimens are performed
with 5970 DOF using a model for polycrystalline plasticity. Finally,
in [39], simulations of 3D smooth tensile specimens are performed
with 81,855 DOF and one-point integration elements, like in [8]
with almost 75,000 DOF.
oom on serrations and plastic strain rate in the specimen at e ¼ 1:26% for a smooth



Table 4
Angle between the tensile axis and the band normal, maximal amplitude of serration, critical plastic strain, and celerity of bands for the six different applied strain rates.

Strain rate 10�6 s�1 10�5 s�1 10�4 s�1 10�3 s�1 10�2 s�1 10�1 s�1

Orientation of bands (�) 41 40 39 36 34.5 –
Maximum amplitude of serrations (MPa) – 15 12 10 10 8
Critical plastic strain pc (%) – – 0.18 .81 2.2 6.2
Band velocity Vbðmm s�1Þ 0.023 0.15 1.3 8.5 80 790

Fig. 21. Shape of bands inside a notched axisymmetric specimen for different strain
rates.

750 M. Mazière et al. / Comput. Methods Appl. Mech. Engrg. 199 (2010) 734–754
The objective of this last section is to show the robustness of the
proposed numerical approach for 3D finite elements computations.
For that purpose, 3D fine meshes of a smooth and a notched tensile
specimen have been drawn. Both meshes are built-up from 20-
nodes brick elements with reduced integration. The gauge part of
the smooth tensile specimen is 30 mm long with a diameter equal
to 5 mm. The diameter of the notched tensile specimen is 6 mm in
the ligament and 10.8 mm out of the notch. The notch radius is
2.4 mm. Simulations have been performed using a total number
of 192,708 DOF for the smooth specimen, and 160,788 DOF for
the notched one. Indeed, fine meshes are necessary to determine
the type of bands using the BLI. Theses meshes are drawn in
Fig. 16 together with the boundary conditions used for simulations.

Finite element simulations have been performed on smooth axi-
symmetric specimens in order to validate the following trends de-
duced from experimental results [51]: when the prescribed strain
rate decreases, (i) the critical strain decreases, (ii) the frequency
of oscillations increases, (iii) the amplitude of oscillations in-
creases. The material model parameter a has been slightly de-
creased from 0.77 to 0.55 in order to fit more accurately the
experimental critical plastic strain [52]. The other parameters re-
main the same as in Table 1. Six different prescribed strain rates
have been simulated ( _e ¼ 10�6 s�1 to _e ¼ 10�1 s�1). The effect of
the machine stiffness is not taken into account in this work. Band
type and orientation with respect to the prescribed strain rate have
also been determined.

5.2. Band orientation: symmetry breaking in axisymmetric test
samples

Simulations of axisymmetric specimens have been performed
by [7] using 2D axisymmetric meshes and by [74,39,8] using 3D
meshes. In these studies, bands have generally a conical shape.
Sometimes two intersecting bands are observed [39]. To our
knowledge there is no simulation available in literature with a full
symmetry breaking of band pattern in axisymmetric samples, i.e. a
single band propagating like in plates in tension. For small strain
rates (below 10�4 s�1), this phenomenon has been observed during
simulations of smooth axisymmetric specimens.

Angles between band normal and tensile direction have been
measured for all simulations. Results of these measures are plotted
in Fig. 17. They are found to be equal to the angle predicted form a
bifurcation analysis for a purely plastic material, that is close to 42�
[64,10].

This value is accurately recovered for _e ¼ 10�6 s�1 and _e ¼ 10�5

s�1, when a single band propagates in the structure. But as soon as
twin bands propagate ( _e ¼ 10�4 s�1 and _e ¼ 10�3 s�1), this value
decreases and seems to tend towards 35� ð _e ¼ 10�2 s�1Þ, which is
the theoretical angle value for a bi-dimensional simple tension. Fi-
nally when _e ¼ 10�1 s�1 no direction can be evaluated because a
infinite number of bands are propagating together forming a con-
ical shape. The same type of shape has been observed in [7] on
2D axisymmetric models.

One shall wonder if the orientation of such bands is directly re-
lated to the strain rate, or if the angle varies because of band
shapes. The explanation proposed in this work is that when the
material tends to a purely plastic behavior (for lower strain rates),
the model gives less diffuse deformation bands that tend to local-
ize within a unique axial but also radial orientation. Axisymmetry
of bands is broken. The theoretical orientation of localization for a
tri-dimensional simple tension is valid (42�). For higher strain rates
viscosity stabilizes the solution which tends then to localize only
with a given axial orientation but with no preferential radial posi-
tion. Then several bands are propagating together, rotating around
the tensile axis. The orientation of bands is deviated and the angle
with respect to the tensile axis is reduced. This hypothesis has to
be validated for other materials.

5.3. Band type and serration shape

The critical plastic strain for each simulation is evaluated in this
section. Frequencies (with respect to global strain) and amplitude
of serrations are compared between different prescribed strain
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rates. Finally the band type for each simulation is determined using
the band location indicator.

The numerical critical plastic strain in simulations is provided
from a global stability criterion as in [53]. The maximum ampli-
tudes 2�Max F

S � rHomogeneous
�� ��� �

of serrations for different strain
rates are taken from plots of the average stress minus the corre-
sponding analytic homogeneous solution, as in Fig. 10. Finally,
Fig. 22. Global engineering stress/strain curve, location of bands as a function of time, z
axisymmetric specimen at a prescribed strain rate _e ¼ 10�3 s�1.
measurements of the band velocity are made on the graphs of band
location plotted for example in Figs. 18–20. The results of these
measurements are summarized in Table 4. When the prescribed
strain rate increases, the orientation changes (see Section 5.2),
the average frequency (with respect to global strain) and the max-
imum amplitude decrease, the critical plastic strain increases, the
velocity of bands increases linearly.
oom on serrations and plastic strain rate in the specimen at t ¼ 176 s for a notched
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Figs. 18–20 show for each strain rate ð10�2 s�1; 10�4 s�1;

10�6 s�1Þ: The global stress/strain curve with a zoom on serrations,
a view of finite element solutions of the cumulated plastic strain
rate _p, and the band location as a function of time provided by
the band location indicator (BLI). Two plots for _p are provided for
each strain rate, the first is an external view of the whole specimen,
the second one is a cross section view of half of the specimen in or-
der to observe the internal band shapes. The type and shape of
bands observed for each simulation can then be compared.

Band type A is observed for high strain rate values. In Fig. 18
ð _e ¼ 10�2 s�1Þ, two type A bands are propagating simultaneously,
implying irregularities on their shapes and on serrations. Then
for lower strain rates, type B bands begin to appear. Their shape
is no longer regular like in Fig. 19 ð _e ¼ 10�4 s�1Þ. The corresponding
serrations are still quite regular. On Fig. 20 ð _e ¼ 10�6 s�1Þ, bands
hesitate between type B and C with short hopping propagation.
They can nucleate at any time anywhere in the specimen.

5.4. Notch tensile specimens

Tensile tests on notched specimens are useful to investigate the
influence of stress triaxiality on the mechanical behavior of a given
material. Associated with tensile tests on smooth specimens, such
experiments provide valuable information on the yield surface [54]
or on the fracture behavior [12]. One can define the sharpness of
the notch using the non-dimensional notch parameter n0. If R0 de-
notes the notch radius and d the ligament width (flat specimens) or
diameter (cylindrical specimens), the notch parameter is
n0 ¼ 10R0=d. Specimens with smooth notches have a large notch
parameter and sharp specimens a small one. In this work, the
notch parameter of the simulated specimen is n0 ¼ 4.

Only few simulations of PLC effect on notched specimens are
available in the literature. In [35], tensile tests on two flat speci-
mens with smooth ðn0 ¼ 20Þ and sharp ðn0 ¼ 0:5Þ notches are sim-
ulated using 2D meshes and compared with experimental results.
For the first specimen, serrations appear on both experimental
and numerical stress versus radial deformation curves. Localization
bands escape from the notch but remain close to it. For the sharp
specimen, neither experimental or numerical stress versus radial
deformation curves are serrated but one can observe during simu-
lation the initiation and propagation of bands in the notch over
short distances. In [8], two flat notched specimens are considered,
one with n0 ¼ 30 and the other with n0 ¼ 5. Simulations are per-
formed using 3D meshes. For both specimens, serrations are ob-
served on experimental and numerical stress versus radial
deformation curves. Simulations suggest that localization bands
propagate out of the notch (especially for n0 ¼ 5) and in the whole
specimens, while bands based on the experimental data always
seem to propagate inside the notch. Finally, in [7] cylindrical spec-
imens with three notch shapes corresponding to n0 ¼ 3:33;n0 ¼
1:33, and n0 ¼ 0:66 are investigated. Simulations are carried out
using 2D axisymmetrical meshes and compared with experimental
results. Serrations are found on all experimental and numerical
curves. Simulations result that localization bands stay in the notch
for the smoother specimen ðn0 ¼ 3:33Þ, whereas for sharper ones
(n0 ¼ 1:33, and n0 ¼ 0:66) bands seems to leave the notch and to
propagate out of it.

In this work, containment of localization bands in the notch is
investigated with respect to the global prescribed strain rate (cross
head velocity divided by twice the initial notch radius). For that
purpose, five simulations are carried out prescribing five different
global strain rates: _e ¼ 10�2 s�1; 10�3 s�1; 10�4 s�1; 10�5 s�1;

10�6 s�1. Simulations are performed using full 3D meshes to model
the cylindrical specimen defined in Section 5.1. Serrations arise on
every stress versus radial deformation curves, and bands of local-
ized plastic strain rate are observed for the five prescribed strain
rates. The critical plastic strain, and the amplitude of serrations
seem to follow the same evolution as for smooth specimens: The
first one increases and the latter decreases when the prescribed
strain rate increases. Band shapes inside specimens are drawn in
Fig. 21 for each prescribed strain rate. One can observe that for
low strain rates, bands are confined in the notch or just near it.
For higher strain rates, they nucleate in the notch but can propa-
gate away from it. For all prescribed strain rates, one can observe
a full symmetry breaking of band pattern.

The global stress versus radial deformation curve and the BLI re-
sponse of the simulation performed at _e ¼ 10�3 s�1 are plotted on
Fig. 22. The amplitude of serrations is almost the same than for
smooth specimens. The BLI response suggests that the band nucle-
ates at one side of the notch and propagate to its other edge. Then,
the band tries to escape from the notch, but does not succeed to do
so, and comes back into the notch as if it was fixed by a spring to
the center of the notch. The notch holds the band captive. Results
found in the literature and those presented in this work suggest
that this containment of bands in the notch for cylindrical speci-
mens is accentuated by low strain rates and sharp notches.
6. Conclusions

This work shows that the MC model can be used for reliable
simulations of PLC phenomena in complex sample geometries.
Typical features of the PLC effect are recovered in a reliable and ro-
bust way. For that purpose, a specific integration method has been
proposed that switches from implicit to explicit local integration
when severe instabilities are encountered. A new numerical tool
to estimate the position of band with respect to time was intro-
duced. A detailed mesh sensitivity analysis was performed, and
some large scale simulations were performed. Four main new re-
sults were obtained in this work:

(1) Constitutive equations can be integrated using a mixed
implicit/explicit formulation. Equations are mainly inte-
grated using the H-method and sometimes using Runge–
Kutta method, when the internal variables are subjected to
too large variations. This method is actually faster than a
pure explicit method to accurately simulate serrations of
the Portevin–Le Chatelier effect.

(2) The BLI tool is accurate to locate at each time step the position
of PLC bands. The type of bands in simulations has been deter-
mined drawing numerical spatio-temporal patterns (STP)
reproducing those experimentally drawn using laser extens-
ometry or infrared pyrometry. Some kinematics parameters
of bands have also been estimated using this tool.

(3) The simulation results are found to be mesh dependent, but
not for all variables. The width of bands and the maximal
plastic strain rate are found to be mesh dependent, whereas
their velocity or the amount of plastic strain carried are
mesh insensitive. A non-local model, based on some experi-
mental measures of bands width [62], would be however an
interesting improvement for the MC model.

(4) The model implementation is robust enough to carry out
large scale 3D simulations on smooth and notched tensile
specimens for several strain rates. The type and shape of
bands is found to be rate-dependent for both geometries. A
lonely inclined band has been simulated for the first time
in a 3D axisymmetric smooth specimen.

Many examples of PLC effect on tensile curves are available in
the literature for several materials and specimens types. The com-
parison of band shape and type between experiment and simula-
tions has not been performed yet, especially for 3D specimens.
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Moreover, it has been shown that experimental shape and type of
bands are not the same for flat smooth as for cylindrical smooth
specimens [6]. Using the numerical tools developed in this work,
a comparison of the shape and type of bands between experiments
on flat specimens, experiments on cylindrical specimens, 2D simu-
lations, and 3D flat and cylindrical simulations should be carried
out in the future on other materials.

The mesh dependency of the PLC simulations has been evi-
denced in this work. Some regularization methods have to be
investigated in order to limit this dependency. Simulation account-
ing for thermal effect or implicit dynamic calculation can be con-
sidered to solve this problem. The development of a non-local
gradient model based on the MC one would be another solution.

The purely phenomenological approach of the simulation of
strain ageing phenomena envisaged in the present work should
be enriched in order to incorporate some aspects of their multi-
scale nature. The underlying dislocation avalanches can be related
to the evolution of dislocation densities treated as internal vari-
ables. It would enable us to link strain ageing and material work-
hardening. An attempt to introduce such physically based constitu-
tive equations for static strain ageing can be found in [5,4].

On the other hand, characteristic lengths related to grain size or
typical intragranular strain localization patterns should be intro-
duced in future versions of the model.

Finally, some experimental and numerical results present a link
between the PLC effect and early fracture of specimens. In [40]
simulations suggest that the PLC effect leads to significant reduc-
tions in the strain to necking. In [6], necking appears in a propagat-
ing band that stops at a given position in the steel specimen. Then,
the simulation of rupture of material submitted to the PLC effect
should be investigated to evaluate which part is due to strain age-
ing. Such an analysis would require a non-local finite strain elast-
oviscoplastic with damage model, in order to account for softening
and rupture of specimens [12].
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