
International Journal of Solids and Structures 106–107 (2017) 305–314 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

Experimental and numerical analysis of the Lüders phenomenon in 

simple shear 

M. Mazière 

a , ∗, C. Luis b , A. Marais a , S. Forest a , M. Gaspérini b 

a Mines ParisTech, Centre des Matériaux, CNRS UMR7633, BP 87, 91003 Evry cedex, France 
b Université Paris 13, Sorbonne Paris Cité, Laboratoire des Sciences des Procédés et des Matériaux (LSPM), CNRS(UPR3407), 99 av. J.B. Clément, F-93430 

Villetaneuse, France 

a r t i c l e i n f o 

Article history: 

Received 2 September 2015 

Revised 4 July 2016 

Available online 3 September 2016 

Keywords: 

Lüders phenomenon 

Shear experiment 

Static-strain ageing 

Strain gradient plasticity model 

a b s t r a c t 

The Lüders phenomenon is investigated in a low carbon ferritic steel under simple shear loading. Ten- 

sile and shear experiments are carried out associated with digital image correlation (DIC) measurements 

of the local strain field. An elastoviscoplastic constitutive law is identified with special attention paid to 

the choice of the equivalent stress measure in the yield function. It is then used to simulate the shear 

experiment using finite element analyses. Several mesh types and sizes are used to illustrate some mesh 

sensitivity observed in the finite element results. A regularized model based on strain gradient plasticity 

is then proposed to ensure fully mesh insensitive simulations and properly describe the finite thickness 

of the Lüders band front. The additional internal length introduced in the regularized model is identified 

from the DIC strain measurements. Finally, the boundary conditions best–suited for an accurate descrip- 

tion of the shear experiment are discussed. 
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. Introduction 

The well known peak stress and Lüders plateau that are ob-

erved on the tensile curves of some metallic materials at the elas-

ic to plastic transition have been experimentally evidenced in the

9th century by Piobert (1842) and Lüders (1860) . These particular

henomena have been attributed by Cottrell and Bilby (1949) to

he pinning of mobile dislocations by solute atoms in the metal

rystal lattice. This interaction of dislocations with solute atoms

s called strain ageing. If an ageing thermal treatment is carried

ut on a metallic specimen, solute atoms can diffuse close to

islocations. Compared with a non-aged material, a higher stress

evel is required to trigger plastic deformation. This phenomenon

as been mainly studied under tensile loading conditions ( Ballarin

t al., 2009; Hallai and Kyriakides, 2013; Kyriakides and Miller,

0 0 0; Lomer, 1952; Marais et al., 2012 ), but also in the case

f bending of tubes ( Aguirre et al., 2004; Hallai and Kyriakides,

011a; 2011b; Kyriakides et al., 2008 ), torsion of cylindrical speci-

ens ( Elliot et al., 2004 ), or combined tension/torsion ( Zhang and

iang, 2005 ). Its influence on brittle and ductile failure of steels

as been investigated using CT ( Amar and Pineau, 1985; Wenman

nd Chard-Tuckey, 2010 ) or Charpy specimens ( Marais et al., 2015 ).

ore recently Lüders and Portevin - Le Chatelier phenomena have
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lso been investigated from an experimental and numerical point

f view during a shear test on flat specimens in the case of a Al-Mg

lloy ( Coer et al., 2013; Manach et al., 2014 ). For all these loading

onditions, when the peak force stress is reached, the unpinning

rocess of dislocations induces a softening of the material followed

y the propagation of one or several bands of plastic deformation

ll along the specimen’s gauge length. 

Coer et al. (2013) experimentally evidenced strain hetero-

eneities development during simple shear at room temperature

f an AA5754 aluminum alloy using the DIC technique. Strain

nd strain rate mapping in the sample gauge length permitted

o characterize the strain banding responsible for the Piobert-

üders plateau at the beginning of the test and for strain-rate de-

endent PLC phenomena with serrations on the tensile curves at

arger strains. The observed phenomena were qualitatively consis-

ent with strain ageing phenomena during tensile testing, how-

ver it can be noticed that the so-called Piobert-Lüders plateau

n this alloy was not preceded by a peak stress, contrary to the

ell-known tensile curves for low carbon steels ( Marais et al.,

012 ). In a more recent paper ( Manach et al., 2014 ), the kine-

atics of the PLC bands in simple shear at different tempera-

ures and strain-rates was studied experimentally and finite el-

ment (FE) simulations of the test were presented. Models by

cCormick (1988) and Johnson and Cook (1985) were used in the

imulations. The von Mises yield potential was used despite the

bserved discrepancy between model and experiment when com-

http://dx.doi.org/10.1016/j.ijsolstr.2016.07.026
http://www.ScienceDirect.com
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Fig. 1. Evolution of the equivalent stress vs. equivalent strain for tensile and shear 

experiments at room temperature. The equivalent stress and strain are calculated 

from the stress and strain tensors using the usual von Mises norms. DIC measure- 

ments have been performed at the points indicated by markers. 
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f  
paring the tensile and shear responses. Moreover, as FE mesh sen-

sitivity in the simulations of strain localization phenomena was

noticed by Manach et al. (2014) , only qualitative agreement with

experiment could be reaching, pointing out the need for regular-

ization methods to improve the reliability of the simulations. 

The issue of mesh sensitivity of finite element simulation re-

sults of Lüders banding has been discussed in some recent publi-

cations ( Liu et al., 2015; Manach et al., 2014; Mazière et al., 2010;

Mazière and Forest, 2015 ). Even though reliable results can be ob-

tained in many situations of Lüders banding simulations, as illus-

trated for instance by the recent simulations in the latter refer-

ence, spurious effects are observed in the worst case, i.e. for a

regular mesh and when the band front is parallel to the element

edges ( Marais et al., 2012; Mazière and Forest, 2015 ). In this par-

ticular case it has been observed for 2D ( Marais et al., 2012 ) and

3D ( Mazière and Forest, 2015 ) simulations that the band front size

reduces to one single row of elements and is consequently highly

mesh dependent. There are essentially two methods of regulariz-

ing the problem: In method I, it is achieved by the introduction

of some rate dependence to the problem. In method II regular-

ization is obtained by the introduction of higher order gradients

to the formulation. The choice of the method depends in fact on

the available experimental information. For the steel considered by

Marais et al. (2012) in the present work, the actual viscosity pa-

rameters are identified from tests at various strain rates. The vis-

cosity was found in Marais et al. (2012) to be not sufficient to reg-

ularize the problem. It follows that the method I cannot be used

any more because the viscosity is known and the corresponding

parameters cannot be modified. Strain gradient plasticity was used

by Marais et al. (2012) and Mazière and Forest (2015) in the case

of Lüders band formation and propagation in tension. This requires

the introduction of a characteristic length that can be identified

using DIC field measurements. Indeed, the recent developments

of strain fields measurements by DIC permit to characterize ac-

curately the local features of Lüders and Portevin - Le Chatelier

bands ( Marais et al., 2012; Nogueira de Codes et al., 2011; Wat-

trisse et al., 2001 ). The introduction of strain gradient plasticity

then serves two objectives: (i) to ensure strictly mesh–independent

finite element results and (ii) to account for the physical reality of

finite size Lüders band fronts. 

In this context, the aim of the present study is to develop an ex-

perimental and numerical analysis of the Lüders phenomenon dur-

ing simple shear, based on experimental investigations on a thin

sheet of ultra-low carbon steel. Special attention is paid to the

choice of the plasticity yield potential, and a strain gradient plas-

ticity model is used to overcome the inherent mesh sensitivity of

localized strain fields in finite element simulations. The determina-

tion of the characteristic length is based on experimental results of

mechanical testing and strain fields measurements. 

The paper is organized as follows. In Section 2 , the experimen-

tal results are presented including shear and tensile curves and DIC

strain field measures. In Section 3 , the material model proposed to

simulate experimental results is described, together with the ma-

terial parameter identification procedure. In Section 4 , the simula-

tions of shear test are detailed in three steps: (i) evidence of some

mesh sensitivity of the FE results, (ii) regularisation of the model

and identification of the internal length using DIC experimental

measurements, (iii) improvement of the boundary conditions for

more realistic simulations. 

2. Experimental observations 

2.1. Material 

Ultra low carbon ( 1 . 9 × 10 −3 C wt% ) ferritic steel for packaging

was used for the study. The material was provided as thin sheets,
btained by cold-rolling and annealing, followed by 2.5% thickness

eduction by temper-rolling and final ageing treatment at 200 °C
or 20 mn. The sheet thickness was t = 0 . 24 mm. 

.2. Tensile and shear tests 

Simple (planar) shear testing along the rolling direction was

erformed on a home-made device mounted on a conventional

ensile machine ( Bouvier et al., 2006 ). Rectangular samples of

ength L = 30 mm, width w = 18 mm and thickness t were cut

rom the sheet, the dimensions of the sheared zone being L × b

t with b = 2 mm to ensure quasi-uniform straining in the ab-

ence of strain ageing phenomena. The tests were conducted un-

er constant shear strain rate ˙ γ = 

√ 

3 × 10 −3 s −1 thanks to the con-

rol by video-extensometry of the average inclination of a black

ine initially drawn on the sample surface at the center of the

heared zone perpendicularly to the shear direction. One face of

he sample was covered by a thin speckle obtained by airbrush,

ermitting to get the strain fields in the narrow sheared zone by

IC method using Aramis© system. For DIC measurements, pic-

ures with size 2448 × 2050 pixels were taken by the camera of

he non-contact measuring system (Aramis 5M, Gom, Germany)

t 0.8 pictures/s. Due to the large aspect ratio of the sheared

one (30:2) compared to the recorded pictures, the width of the

hear zone was about 140 pixels, i.e. 70 px/mm. DIC measure-

ents were made with a virtual grid 15 × 15 px and a 7 px

tep. The shear stress τ was computed as τ = F / (Lt) , where F

s the cell load acting on the shear sample. The shear strain γ -

hear stress τ curve was converted into equivalent von Mises stress

 equivalent strain curve with σ = 

√ 

3 τ and ε = γ / 
√ 

3 . Compar-

son with standard tensile test is shown on Fig. 1 . As expected,

ue to the absence of necking, larger strains are reached during

hear tests. The discrepancy between the two curves shows that

he von Mises yield potential is not appropriate to describe the

aterial behaviour along both loading paths. More complex plas-

ic potentials have been developed for anisotropic rolled sheets, as

eviewed in Rabahallah et al. (2009) . However, they may involve

 huge number of parameters and are sensitive to the identifica-

ion procedure. In the present case, for the sake of simplicity, as

he stress-strain curves and the observed Lüders phenomena are

ot significantly dependent on the direction of testing (see Luis,

011; Luis et al., 2009 ), only the consistency of plastic yielding

or shear and tensile tests is accounting for, using a Hosford cri-
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Fig. 2. Map of the shear strain ε 12 (blue 0%, red 5%) given by digital image cor- 

relation method on the experiment presented on Fig. 1 . The vertical straight line 

is used to extract the evolution of shear strain along the vertical axis as plotted 

on Fig. 3 . (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 3. Evolution of the shear strain ε 12 along a line located at the centre of the 

specimen (see Fig. 2 ) for the six strain levels marked on the shear curve of Fig. 1 . 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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erion ( Hosford, 1972 ) needing only one extra parameter to adjust

he yield surface shape. 

.3. Lüders bands 

Lüders bands are observed during the shear test at the begin-

ing of plastic yielding, in the approximate range 0.3% - 6% for the

verage shear strain γ , as illustrated by the measured map of ε 12 

 = γ / 2 ) component in Fig. 2 . Two symmetric bands are clearly visi-

le along the sample grips in a large part of the sheared zone, pro-

ressing towards the sample center with increasing overall strain,

nd remain parallel to the direction of shear. The bands join to-

ether close to the sample free ends, where the band fronts deviate

rom the direction of shear, consistently with compressive stress

cting in this zone. The mechanism is quite different than the one

bserved by Coer et al. (2013) in a Al-Mg alloy where a single band

ucleates at one side of the specimen and propagates all along. 

The Fig. 3 shows the ε 12 shear strain profile evolution in the

iddle of the sheared zone, along a virtual line initially perpen-

icular to the shear direction. The correspondence between pro-

les and overall strain on the shear curve is indicated by mark-

rs on Fig. 1 . Once the strain becomes homogeneous throughout
he sheared zone (except unavoidable free end effects), the stress-

train curve displays the usual strain-hardening behavior. 

. Material model 

.1. Constitutive equations 

The simulation of strain ageing requires a suitable elasto-

iscoplasticity model including the physical mechanisms of pin-

ing and unpinning of dislocations. The model retained in this

ork and initially proposed by Kubin and Estrin (1985) and

cCormick (1988) and modified by Graff et al. (2004) is based

n the introduction of an internal variable t a called ageing time

ith an evolution law coupled with plastic flow. It has been im-

lemented in the finite element code Zset and used in several pre-

ious studies ( Belotteau et al., 2009; Mazière et al., 2010; Maz-

ère and Dierke, 2012; Wang et al., 2012 ). For more details about

he model, its implementation and the identification process, the

eader is referred to Marais et al. (2012) . 

A finite strain formulation for isotropic nonlinear material be-

avior is adopted in this work based on the concept of lo-

al objective frame as proposed in Sidoroff and Dogui (2001) ,

ertram (2005) and Besson et al. (2009) . Observer invariant stress

nd strain rate measures σ∼ and 

˙ ε ∼ are defined by transport of the

auchy stress tensor T ∼ and the strain rate tensor D ∼ into the coro-

ational frame characterized by the rotation 

Q ∼( x , t) . This change of

rame takes place at each material point : 
 

σ∼ = 

Q ∼. T ∼. Q ∼
T 

˙ ε ∼ = 

Q ∼. D ∼. Q ∼
T 

Q ∼ such that ˙ Q ∼
T 
. Q ∼ = 

�∼ (corotational) 

(1) 

here �∼ is the skew-symmetric part of the gradient L ∼ of the ve-

ocity field, and 

D ∼ its symmetric part ( Besson et al., 2009; Sidoroff

nd Dogui, 2001 ). 

The strain rate tensor ˙ ε ∼ is split into elastic and plastic con-

ributions, the evolution of the latter being given by the plastic

ow rule. The stress is computed from the elastic strain 

ε ∼e through

ooke’s law: 

˙ ε = 

˙ ε ∼e + 

˙ ε ∼p , 
σ∼ = �

≈
: ε ∼e (2) 

here �≈ is the fourth order tensor of elastic moduli. The plastic

train is computed from the normality rule 

˙ ε 
p = 

˙ p 

n ∼, n ∼ = 

∂ f 

∂ σ∼
(3) 

nd the equivalent plastic strain rate ˙ p obeys a thermal activation

aw defined as: 

˙ p = 

˙ p 0 sinh 

( 〈 f 〉 
K 

)
(4) 

The function f in Eq. (3) is the yield function which is based on

 Hosford criterion ( Hosford, 1972 ) with isotropic hardening: 

f ( σ∼, ρ, t a ) = σeq ( σ∼) − R (ρ) − R a (t a ) (5) 

 (ρ) = σ0 + αμb 
√ 

ρ, ˙ ρ = A 

(
1 − ρ

B 

)
˙ p , ρ(t = 0) = ρ0 (6) 

here σeq ( σ∼) is the Hosford equivalent stress. 

eq = 

[
(σI − σII ) 

m + (σII − σI I I ) 
m + (σI − σI I I ) 

m 

2 

]1 /m 

(7) 

here σ I > σ II > σ III are the eigen-values of the stress tensor. 

The parameter m in this equivalent stress definition can be

hosen to describe either von Mises surface ( m = 2 or m = 4 ), ei-

her Tresca one ( m = 1 or m = ∞ ), or intermediate surfaces. The
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Table 1 

Constitutive parameters describing elasticity, plasticity, hardening and ageing. 

E ν m σ 0 α A B P 1 t 0 n w 

(GPa) (MPa) (m 

−2 ) (m 

−2 ) (MPa) (s) 

210 0 .3 20 185 0 .35 8 .92 × 10 15 1 .6 × 10 15 175 10 30 0 .06 5 × 10 -4 
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Fig. 4. Experimental shear and tensile curves and the corresponding model re- 

sponses on a material point for different levels of the Hosford parameter m . The ex- 

perimental curve is a global stress (force divided by the section) vs. strain (relative 

displacement divided by the gauge length) response of the shear specimen, while 

the simulated ones (denoted material point) are the local responses of the mate- 

rial behaviour to pure tensile and pure shear loadings. The adequate value m = 20 

corresponds to an equivalent stress measure close to Tresca equivalent stress. 
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dislocation density ρ is introduced in the model with the initial

value ρ0 = 10 −13 m 

−2 . The classical strain hardening is given by

the term R ( ρ) which follows the evolution law defined in Eq. (6) ,

the multiplication and dynamic recovery parameters characteriz-

ing the dislocation evolution law being A and B , respectively. The

dislocation density evolution rule is driven by the cumulative plas-

tic strain rate ˙ p , as done for instance in Fressengeas et al. (2005) .

The yield stress R 0 = σ0 + αμ
√ 

ρ0 is the “virtual” initial yield stress

that would be measured in the same steel in the absence of static

strain ageing. 

The second contribution to the yield stress, R a ( t a ), is due to

strain ageing, following Zhang et al. (2001) , Graff et al. (2004) ,

Mazière et al. (2010) and Klusemann et al. (2015) . It depends on

an additional internal variable t a called the ageing time, and takes

the form 

R a (t a ) = P 1 C s (t a ) , with C s = 1 − exp 

[
−
(

t a 

t 0 

)n 
]

(8)

˙ 
 a = 1 − t a ˙ p 

ω 

, t a (t = 0) = t a 0 (9)

The strain ageing term R a is proportional to the variable C s that

is related to the over–concentration of solute atoms around pinned

dislocations. This variable increases with the ageing time t a , the

condition corresponding to fully pinned dislocations being given

by C s = 1 . The unpinned state corresponds to C s = 0 . The parameter

P 1 corresponds to the maximal additional stress needed to switch

from unpinned to pinned states. The parameter t 0 and the power

n control the kinetics of the pinning and unpinning processes. An-

other parameter labeled ω appears in the evolution law of the age-

ing time. It is related to the incremental strain resulting from the

freeing of unpinned dislocations. The inital pinning is driven by the

initial values if the ageing time t a 0 . In this study a fully anchored

initial state is assumed, taking t a 0 = 10 30 s. 

3.2. Identification of material parameters 

The identification of this model was carried out using the ten-

sile experiment as described in Marais et al. (2012) . In the absence

of tensile tests at different strain rates, the values of the parame-

ters in the flow rule Eq. (4) are directly taken from the latter arti-

cle: K = 2 . 55 MPa and ˙ p 0 = 3 . 5 × 10 −10 s −1 . These values lead to al-

most no strain rate sensitivity, which is generally the case at room

temperature for such steels. The identification procedure which

takes into account the characteristics of the Lüders phenomenon

is not recalled. The parameters are given in Table 1 . 

The experimental evolution of the shear stress as a function of

shear strain is plotted on Fig. 4 together with the corresponding

model response for different values of the Hosford parameter m . It

can be seen that the von Mises criterion (i.e. m = 4 ) overestimates

the shear stress level, while an accurate prediction of the post-

Lüders behavior is obtained for m = 20 . This value is then used in

all the simulations presented in the following. It can also be seen

from Fig. 4 that the stress peak level for the shear test is inaccu-

rately described for all values of the Hosford parameter. The am-

plitude of the peak stress was accurately identified for the tensile

test. The one predicted for the shear stress is overestimated. This

is probably due to the imperfect experimental boundary conditions

compared with the simulated ones. 
This set of parameters is used to simulate the response of

he whole tensile specimen by the finite element model. A two-

imensional simulation has been carried out using the finite el-

ment software Zset ( Besson and Foerch, 1997; Z–set package,

013 ). The global size of the considered dogbone tensile specimen

nder plane stress conditions is 64 mm length and 14 mm width.

he gauge length area has 36 mm length and 6 mm width. The

pecimen is meshed using 8 node quadratic elements with reduced

ntegration. 

It can be seen on Fig. 5 that the main features of the Lüders

henomenon (yield peak level, length and level of the plateau,... )

re correctly described by the finite element simulation. However a

mall difference with the experimental curve appears just after the

ield peak. This part of the stress strain curve (i.e. when the finite

lement curve departs from the material point one) corresponds to

he nucleation of the Lüders band and is highly dependent on the

xperimental conditions such as the alignment of the testing de-

ice. Because of imperfect experimental conditions the nucleation

sually occurs quite early, i.e. at yield peak. On the contrary, due

o perfect boundary conditions in the finite element model, the nu-

leation occurs approximately at 0.5% strain after the yield peak. 

. Numerical simulations of shear tests 

The material model identified in Section 3.2 is used in the

resent section to simulate the shear test presented in Section 2 .

he mesh sensitivity of the finite element simulations is firstly in-

estigated. A strain gradient plasticity modified model is then pro-

osed to overcome the found mesh–dependence, calibrated, and

sed for the full simulation of the shear experiment. 
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Fig. 5. Experimental tensile stress vs. strain curve and the corresponding simulated 

response on a material point and on a finite element plate. The Lüders plateau (and 

the associated propagation of a plastic band) occurs in the finite element plate sim- 

ulation and in the experiment. In the finite element results, an increasing stress is 

found instead of a plateau. This is due to the fact that the true stress is plotted 

instead of the engineering one. The latter would give a flat plateau. 
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Fig. 6. Orientation of the coordinate axes and the 8 different meshes (4 free and 4 

regular) used for the mesh sensitivity analysis the shear test. The specimen size is 

10 mm × 2 mm × 0 . 5 mm. 
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.1. Mesh sensitivity evidence 

The mesh sensitivity of the finite element simulations of Lüders

and formation and propagation under shear testing conditions is

long the following guidelines: 

• It is well–known that 2D finite element simulations promote

artificially strain localisation and mesh sensitivity of the re-

sults. 3D simulations on very thin geometries also are in gen-

eral mesh sensitive (see Mazière and Forest (2015) for more

details). In the present section, finite element simulations are

consequently carried out on 3D meshes of rather thick plates

( 0 . 5 mm) with enough elements in the thickness (2 to 8). This

thickness differs from the experimental one for the purpose of

illustration. 

• A mesh sensitivity analysis is valid if carried out on sufficiently

fine meshes and on a large enough range of element sizes. Four

different element sizes are used in this study, the number of

integration points in the thickness of the plate varying from 4

to 16, the element size from 0.25 to 0.0625 mm. 

• The element type is known to influence the strain localisation

phenomena. In particular when a regular mesh whose elements

are aligned with the most favourable stain localisation direction

– 0/90 ° for shear test – is used. Two types of meshes are used

in this study – free (randomly distributed) and regular – with

reduced integration quadratic elements. 

The 8 meshes used for this study are plotted in Fig. 6 . The

oundary conditions are such that the bottom surface is clamped,

hile the top surface is fixed along X 1 direction and homoge-

eously displaced along X 2 direction to apply the shear loading

see Fig. 6 for the definition of the coordinate axes). 

Fig. 7 summarizes the results obtained for the finite ele-

ent simulations on regular meshes. On the top figure the shear

tress/strain evolution is plotted for the different meshes. Some os-

illations appear for the finer meshes with an apparent link be-

ween the oscillation period and the mesh size. This phenomenon

as related in some previous articles ( Ballarin et al., 2009; Marais

t al., 2012; Mazière and Forest, 2015 ) –for tensile loadings only–

o a mesh dependency of the results. It must be noted that the

ell known localisation analysis proposed by Rice (1976) , predicts

 preferential angle for the localisation of bands of ± 45 ° in the
rincipal stresses frame. It means that the regular elements used

re then aligned with this favourable direction and localisation

henomena should be promoted. 

In the middle picture of Fig. 7 , the evolution of the shear strain

 12 is plotted for the 4 different regular meshes along a line paral-

el to X 1 axis at the centre of the specimen (see the meshes REG4

nd FRE4 in Fig. 6 for the location of this line). These profiles are

lotted at a strain level corresponding to point C on the shear

tress vs. strain curve. For all meshes it can be observed that the

and front –the transition area between the plastically deformed

nd the undeformed material– is located between two consecutive

ntegration points. The band front width is then equal to the dis-

ance between two integration points: 0 . 125 mm for REG4 mesh,

 . 0625 mm for REG8 mesh, etc. These results are in agreement

ith previous observations in tension made by Marais et al. (2012) .

The bottom picture of Fig. 7 gives the plot of the derivative of

he shear strain component ε 12 with respect to X 1 coordinate. It

ppears again that the band front is systematically distributed on

oth sides of one single integration point. The maximum value of

his gradient component increases almost linearly with the inverse

f the element size. 

The same three pictures are plotted on Fig. 8 for the simula-

ions carried out on the 4 different free meshes. The oscillations

uring the Lüders plateau are no longer observed on the stress

s. strain curves. The evolution of the shear strain ε 12 along X 1 

s smoother than for the corresponding regular meshes. The con-

ergence of the results is reached for the two finest meshes in

ost places of the sample, except within the band front zone. The

and front thickness becomes smaller and smaller when the ele-

ent size decreases. It is even more visible in the plot of the strain

radient component (bottom figure) where the maximal value in-

reases quasi–linearly with the inverse of the element size. 

The maps of the shear strain ε 12 are plotted for the 4 regular

eshes and the 4 free meshes on Fig. 9 for a strain level corre-

ponding to point C . The main bands aligned with the horizontal
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Fig. 7. (top) Global shear stress vs. strain finite element curves for the 4 3D regular 

meshes of Fig. 6 . (center) Evolution of the shear strain ε 12 along a line oriented 

in the X 1 direction at the centre of the specimen for a given global deformation 

corresponding to point C . (bottom) Evolution of the gradient of the shear strain 

with respect to X 1 coordinate ∂ ε 12 / ∂ X 1 (mm 

−1 ) along the same line at the same 

point C . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. (top) Global shear stress vs. strain finite element curves for the 4 3D free 

meshes of Fig. 6 . (center) Evolution of the shear strain ε 12 along a line oriented 

along X 1 at the centre of the specimen for a given global deformation corresponding 

to point C . (bottom) Evolution of the gradient of the shear strain with respect to X 1 
coordinate ∂ ε 12 / ∂ X 1 (mm 

−1 ) along the same line at the same point. 
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X 2 direction are accompanied by several secondary bands aligned

along X 1 in the case of regular meshes. These bands appear mainly

far from the center of the specimen due to boundary layer effects

associated with left and right free surfaces. The vertical and hor-

izontal orientations for bands are in agreement with the localisa-

tion analysis by Rice and were also observed in former studies on

the simulation of Portevin - Le Chatelier effect during shearing of

square plates ( Graff et al., 2008; Mazière, 2007 ). In contrast, such

secondary bands are not observed in the simulations carried out

on the free meshes. 

Based on the analysis presented in this section, the following

conclusions can be proposed about the mesh sensitivity of finite

element simulations of the Lüders band propagation under shear: 

• The yield peak and the average level of the plateau are two

mesh–independent quantities. 

• The evolution of the stress on the Lüders plateau is almost

mesh insensitive provided that a free mesh is used. If a regular

mesh is used with elements aligned along the most favourable

localisation direction, serrations appear along the plateau with

a frequency proportional to the inverse of the element size.

This is due to the fact that in this case the problem becomes a

quadi–1D deformation problem, and that the band propagates

step by step controlled by the element boundary. 

• For any given strain level selected during the band propaga-

tion (i.e. in the middle part of the plateau), the evolution of the
shear strain in the band front region is mesh–dependent for any

type of mesh. The band front width is linearly proportional to

the inverse of the element size and can be estimated to about

1 element for the regular meshes and to about 2 elements for

the free meshes. 

Taking into accound the fact that the viscosity parameters are

xed in the analysis, a regularisation procedure using a strain gra-

ient plasticity model is then required to overcome the latter mesh

ependence. 

.2. Strain gradient plasticity model and simulations 

The classical non regularized model is the previous elastovis-

oplastic material behaviour characterized by the tensor of elas-

ic moduli Λ∼∼, the non-linear hardening variable R ( ρ), the strain-

geing hardening R a ( t a ) and the flow rule. In the micromorphic ex-

ension of this model, a new degree of freedom, p χ is introduced

hich has the physical meaning of a plastic microdeformation (see

orest (2009) for a more detailed presentation of the model). It has

o be compared to the accumulative plastic strain p . Under homo-

eneous loading conditions, we have p χ = p, whereas the plastic

icrodeformation can differ from p in the presence of strain gra-

ients. Two additional material parameters are introduced, namely,

he coupling modulus H χ (unit MPa) and the second rank tensor of

igher order moduli A ∼ (unit MPa.m 

2 ). 

σ = 

Λ∼ : ε e ∼ (10)
∼



M. Mazière et al. / International Journal of Solids and Structures 106–107 (2017) 305–314 311 

4ERF4GER

8ERF8GER

21ERF21GER

61ERF61GER

REG8 GRAD FRE8 GRAD

Fig. 9. Maps of shear deformation ε 12 at a strain level corresponding to point C for 

the 8 3D simulation carried out using the 4 regular and 4 free meshes of Fig. 6 . For 

comparison, the same maps are plotted at the bottom for the strain gradient model 

using the meshes REG8 and FRE8 and the value of the internal length l c = 0 . 35 mm 

identified in Section 4.2 . 
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 = −H χ (p − p χ ) (11)

 = 

A ∼. ∇p χ (12) 

 = R (ρ) + H χ (p − p χ ) (13)

here a and b represent generalized stresses conjugate to the

lastic microdeformation and its gradient, respectively, in the gen-

ralized work of internal forces. The classical and generalized

tress tensors must fulfill two balance equations in the form of di-

ergence equations: 

iv σ∼ = 0 , div b − a = 0 (14)

n the absence of body forces and in the static case. 

When inserted in the additional balance equation (14) 2 , the

tate laws lead to the following partial differential equation 

p χ − 1 

H χ
div ( A ∼. ∇p χ ) = p (15) 

Let us specialize this equation to the case of isotropic materi-

ls, for which the second order tensor of micromorphic stiffness

educes to A ∼ = A 

1 ∼ which involves a single additional material pa-

ameter. Eq. (15) then becomes 

p χ − l 2 c �p χ = p, with l 2 c = 

A 

H χ
(16) 

here l c is the characteristic length of the model. 

As a result, the hardening function can also be written 

 = R (ρ) − A �p χ (17)

The material parameter H χ can also be seen as a penalty coef-

cient that forces the relative plastic strain e = p − p χ to remain

mall. It can be shown that a high value of H χ keeps e close to

ero. In that case, the plastic microdeformation p χ in the harden-

ng law (17) can be replaced by p itself: 

 = R (ρ) − A �p (18)
hich is exactly Aifantis strain gradient plasticity model with R ( ρ)

nstead of R ( p ). In that case, there is one single new material pa-

ameter, namely A . In the following, a high enough value of H χ is

xed at 10 4 , and the value of the characteristic length l c (or indi-

ectly of parameter A ) must be identified. 

The question of parameter identification from strain field mea-

urements for nonlinear models is still open. Various cost functions

ave been proposed including average or local values. The question

s all the more important for strain gradient models since inhomo-

eneous strain fields are necessary for their calibration. This has

een discussed for instance by Geers et al. (1998) . In the case of

lastic strain localization, the localization band width is the usual

ocal quantity used for the identification of the internal length (see

orest et al., 2005; Mühlhaus and Vardoulakis, 1987 ). For a prop-

gating band, the band width is not characteristic of the inter-

al length. Instead, the diffuse band front is thought to be the

ost sensitive zone for strain gradient parameter identification.

he maximum plastic strain gradient value is reached inside the

and front and is a good candidate for identification. This is the

hoice made in the present work. It has the disadvantage that sig-

ificant scatter exists for this variable when computed from the

xperimental data. However it will be shown that it provides an

ccurate estimate of the internal length. The characteristic length,

 c , can be identified using the local strain measurements given by

he digital image correlation method and presented on Fig. 3 . This

dentification is a rather long process since: 

• It must be done on the full structure to evaluate the influence

of l c on the localisation pattern. 

• In all the structural computations used for the identification,

the mesh size must be small enough compared to l c to ensure

convergence of the solution. 

• A specific variable must be chosen to compare experimental

and numerical results and perform the identification. The se-

lected variable is the maximum value of the gradient along di-

rection X 1 of the shear strain ε 12 for a given global deformation

corresponding to point C (see Figs. 1 , 2 , 3,7,8 ). 

This last quantity has been estimated from the experiments us-

ng DIC measures to be close to 0 . 073 mm 

−1 . In the simulations

arried out using the model without strain gradient and the reg-

lar meshes (see Section 4.1 and Fig. 7 ), this maximum value is

qual to 0 . 28 mm 

−1 for the coarser mesh and 1 . 08 mm 

−1 for

he finest one. For the simulations carried out using the model

ithout strain gradient and the free meshes (see Section 4.1 and

ig. 8 ), this maximum value is equal to 0 . 08 mm 

−1 for the coarser

esh and 0 . 30 mm 

−1 for the finest one. The maximal value of

he gradient of ε 12 is then in agreement with experimental value

0.073 mm 

−1 ) only for the coarser free mesh. 

Five different regular meshes with different element sizes have

een used with the regularized micromorphic model with five dif-

erent values of the internal length (25 simulations have been car-

ied out). For a better comparison with experimental results, the

hole specimen area has been meshed i.e. 30 × 2 mm using el-

ment sizes from 0 . 2 mm to 0 . 0125 mm. This analysis has been

arried out using 2D plane stress formulation for the sake of com-

utational efficiency. For each simulation, the maximal value of the

radient of ε 12 was estimated for a given global deformation corre-

ponding to point C . As in the experiment, this value is calculated

rom the evolution of ε 12 along a vertical line located at the centre

f the specimen. The evolution of this quantity with respect to the

esh size and the internal length is plotted on Fig. 10 . It can be

een that: 

• The micromorphic model provides indeed mesh objective re-

sults, at least if the element size is small enough and/or if the

internal length is large enough; 
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Fig. 10. Evolution of the maximum value of the gradient along direction X 1 of 

the shear strain ε 12 for a given global deformation corresponding to point C in 

Figs. 7 and 8 for 5 different meshes using the micromorphic model with 5 dif- 

ferent internal lengths. Comparison with the experimental value provided by DIC 

measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Experimental shear stress vs. strain curve and the corresponding finite el- 

ement curve for the 2D meshes and the micromorphic model with l c = 0 . 35 mm. 

Evolution of the shear strain along a line oriented along X 1 at the centre of the 

specimen for a given global deformation corresponding to point C . Maps of the 

shear strain ε 12 (blue 0%, red 5%) at the same point for the different meshes. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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• The value l c = 0 . 35 mm seems to be the most adequate among

the values tested in order to fit the experimental field measure-

ments. 

It must be noted that the 2D simulations carried out with the

strain gradient model presented in this section have been validated

by a comparison with the 3D ones presented at the bottom of

Fig. 9 . In particular, the maximal value of the gradient of ε 12 is

not modified by changing the mesh dimension (2D/3D) and type

(free or regular) but is only controlled by the value of the internal

length l c = 0 . 35 mm. 

It must be outlined that the experimental value of the maxi-

mal gradient of ε 12 at point C (0.073 mm 

−1 ) is probably sensitive

to the features of the digital image correlation process. The size of

the grid used in DIC and the method used to compute ε 12 from

displacement field could lower the experimental precision on this

quantity. In the present study, the maximal value of the gradient of

ε 12 is calculated from a point by point differentiation on the evo-

lution of ε 12 along a vertical line at the centre of the specimen as

plotted on Fig. 3 . Using this method, it is almost the same at points

B and C (see Fig. 3 ). This is also the case for numerical estimates

of this quantity that remain almost constant during simulations, at

least in the middle part of the plateau. The maximal value of the

gradient of ε 12 can be regarded as an original and simple quantity

to use for the identification of the internal length l c . However, a

more complete study on the influence of DIC features on the eval-

uation of this quantity would be required for a more accurate and

robust identification. 

The stress vs. strain curves for 2D meshes using l c = 0 . 35 mm

are plotted on Fig. 11 , together with the variation of the shear

strain ε 12 along X 1 at the centre of the specimen for a given global

deformation corresponding to point C , and the corresponding ex-

perimental and simulated (using the intermediate mesh) shear

strain maps. It can be seen on the second figure that the strain

evolution is no longer mesh sensitive and is very similar to the

experimental one provided by DIC on Fig. 3 . 

However three main differences between the experiment and

the simulation must be outlined: 

1. The shear strain level before the band passing (i.e. in the mid-

dle area of the line along X 1 ) is close to 0 in the experiment

while it reaches almost 0.6% in the simulation due to an ini-

tial homogeneous yielding in the specimen before or during the
nucleation of the band. The shear strain level after the band

passing (i.e. in the extreme area of the line along X 1 ) is conse-

quently also slightly smaller in the simulation than in the ex-

periment, since the total strain level has to be the same. 

2. The yield peak and the level of the plateau are almost 10 MPa

higher in the simulation than in the experiment. However, as

already mentioned in Section 3.2 the strain ageing parameter

controlling the Lüders peak and plateau have only been identi-

fied using the tensile experiment. The simulation of shear test

is a prediction that is not adjusted afterwards. 

3. The DIC image of shear strain at point C extracted from

Fig. 2 shows a non symmetrical deformation pattern, while the

corresponding simulation map drawn at the bottom of Fig. 11 is

fully symmetric. 

ased on these three observations another simulation is pro-

osed in the following part introducing more realistic boundary

onditions. 

.3. Influence of boundary conditions 

The finite element simulations presented in Section 4.2 have

een carried out assuming some perfect boundary conditions. The

ower side of the 30 × 2 × 0 . 24 mm sheared zone was assumed to

emain fixed along all directions, while the upper side was shifted
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Fig. 12. Mesh used for the simulation of the shear test accounting for the grip sys- 

tem. The sheared zone is painted in red. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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Fig. 13. Experimental shear stress vs. strain curve and the corresponding finite ele- 

ment curve for the 3D full mesh without (FEM-0%) and including (FEM-0.5%) grips 

and the micromorphic model with l c = 0 . 35 mm. Maps of the shear strain ε 12 (blue 

0%, red 5%) for a given global deformation corresponding to point C . (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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long the X 2 direction with a uniform translation. The influence

f the grip system is consequently not accounted for using such

oundary conditions. In particular, the metal sheet is compressed

etween grips and then deformed along X 3 direction outside the

heared zone before applying the shear displacement ( Fig. 12 ).

 simulation accounting for this deformation is proposed in this

ection: 

• The whole 30 × 18 × 0 . 24 mm plate is meshed using 3D 20

nodes quadratic reduced elements, with three elements in the

thickness. 

• The mesh is divided in 3 groups of elements, the upper grip,

the lower grip, and the sheared zone. 

• The loading path is prescribed in 2 stages. During the first one

the upper and lower grips are compressed along X 3 direction

up to 0.5% strain. During the second stage the upper grip is dis-

placed along X 2 direction to shear the central zone of the spec-

imen. The sample and the grips are assumed to be perfectly

glued in the simulation, this latter is maybe not totally realistic

especially in the corners. 

The stress vs. strain curve resulting from this simulation and

he corresponding map of the shear strain ε 12 are plotted on

ig. 13 . Accounting for the grips in the simulation reduces the

evel of the stress peak which becomes closer to the experimental

ne. Furthermore, the deformation map given by the simulation at

oint C does not display the previous mirror symmetry but shows

 twisted pattern (point symmetry around the center) similar to

he one observed using DIC. Accounting for the whole specimen

nd the modelling of the grip system seems to be a way of im-

roving the simulation of the shear test in presence of a Lüders

and. 

. Conclusion 

The main contributions of the present work are the following: 
1. An elastoviscoplastic model accounting for static strain ageing

is identified in order to simulate the Lüders band propaga-

tion in a low carbon ferritic steel under simple tension and

simple shear. The parameters of the model are identified on

the tensile experiment following the procedure proposed by

Marais et al. (2012) . The von Mises plasticity criterion is found

to be inadequate to model simultaneously the tensile and shear

experiments. Instead, the Hosford equivalent stress measure

was introduced in the model with an exponent m equal to 20. 

2. The material model is introduced in a finite element analysis

to simulate shear testing using various mesh sizes and types

(free and regular), always in 3D. The global shear stress vs.

shear strain curve is mesh independent for the free meshes, but

slightly mesh dependent for the regular ones. On the contrary,

some mesh sensitivity of Lüders band simulation in shear was

evidenced for both type of mesh regarding the localization pat-

terns and the values of shear strain gradient. In particular the

band front is reduced to one or two lines of elements for all

the meshes. 

3. A micromorphic model is then proposed based on the introduc-

tion of an additional degree of freedom and an additional mate-

rial parameter l c called the characteristic or internal length. The

micromorphic model was tested on 5 2D regular mesh for 5 dif-

ferent internal lengths. The determination of the suitable value

for the internal length l c = 0 . 35 mm has been carried out by

a comparison with experimental results provided by DIC strain

field measurements, based on the detection of the maximum

shear strain gradient value. 

4. A more realistic simulation of the boundary conditions has

been proposed accounting for grip tightening. This modification

attempts to explain the relatively small Lüders peak observed

during the shear experiment and the central symmetric pattern

of the deformation observed using DIC measurements. 

The value of the internal length l c has been identified using

acroscopic observations. The relation to intrinsic material lengths

for example grain size – remains an open question. The value

f 0 . 35 mm is ten times smaller than the value proposed in a

ormer study on another ferritic steel ( Marais et al., 2012 ). How-
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ever in the present study the grain size is around 15 μ m while

in Marais et al. (2012) this latter is around 25 μ m. Furthermore,

it is derived in Mazière and Dierke (2012) that the band front

width is a function of this internal length and also of the slope

of the local law in the softening and hardening parts (see Fig. 5 ).

Consequently two different internal lengths can lead to the same

band front width if the local laws are also different. It would con-

sequently be very interesting to investigate more systematically

the influence of grain size and pre-straining on the Lüders band

features and on l c . Finally, the importance of proper modeling of

Lüders banding phenomena under complex loading paths in steels

should be underlined in particular regarding fracture processes in

such industrial alloys, as illustrated in the analysis of Charpy tests

by Marais et al. (2015) . 
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