
Chapter XI

LOCALIZATION PHENOMENA AND REGULARIZATION
METHODS

by S. Forest and E. Lorentz

1 STRAIN LOCALIZATION CRITERIA IN ELASTOVISCOPLASTIC SOLIDS

The modeling of damage processes at the material point scale through a specific
constitutive law addresses a wide variety of constitutive behaviors, for instance
brittle elasticity where the evolution of damage degrades the elastic stiffness, or
ductile plasticity where both dissipative mechanisms (plasticity and damage) are
intimately coupled. In spite of their obvious differences, all these laws possess a
common feature: beyond some load level, the domain of reversibility expressed in
the stress space shrinks. This phenomenon is called strain-softening. This essential
property, characteristic of damage mechanisms, is responsible for the localization
of the mechanical fields (strain, damage, plastic strain, . . . ) inside narrow bands,
an experimental fact observed on many degrading materials such as soils, concrete,
metals, etc., see for instance Desrues and Chambon (1985).

Despite twenty years of intensive research, numerical modeling of the localization
phenomenon remains a challenging objective which has not yet been given a fully
satisfactory answer. This is in contrast with the great progresses that have been
achieved regarding the local description of damage mechanisms for various materials,
on the basis of micro–macro derivations as well as phenomenological intuitions.
Unfortunately, localization partially hinders predictive computations of propagating
damaged zones in real-life structures submitted to a given load history.

The difficulty originates from the fact that the equations that describe the structural
behavior (including not only the constitutive law but also the equilibrium and compat-
ibility equations) result in an ill-posed problem which manifests itself by a spurious
mesh-dependency when making use of finite element solutions.

After a first insight into the localization phenomena, the problem of loss of
uniqueness and loss of ellipticity is addressed for elastoplastic solids. General (diffuse)
and localized bifurcation modes are distinguished. The existence of jumps of the
velocity gradient is explored in the dynamic (acceleration waves) and static cases
(stationary waves). Critical values of hardening moduli for loss of uniqueness or loss of
ellipticity are derived. A link between the notion of material stability and acceleration
waves is also presented. The collected strain localization criteria are summarized in
section 1.2.6.

Note that the derivations and formula are presented in the case of elastoplastic ma-
terials. However the results can be extended to damaging materials in a straightforward

311



312 Local approach to fracture

manner. In fact it deals with all incremental models involving a fourth–rank tangent
operator L

∼∼
.

1.1 THE LOCALIZATION PHENOMENON: A FIRST INSIGHT

1.1.1 One–dimensional example

The afore-mentioned spurious mesh-dependency is easily observed through the analy-
sis of a rod of length L which obeys a brittle elastic law, see figure XI.1. Due to the
1D character of the structure, the strain and stress fields are scalar, respectively ε and
σ. Moreover, the equilibrium equation states that the stress is homogeneous:

∂σ

∂x
= 0 (1)

The rod is clamped at one end and submitted to an increasing displacement U at the
other end: as we restrict our attention to a rate-independent behavior, the physical time
does not play any role so that U is the only loading parameter. Thanks again to the 1D
character, the compatibility equation on the strain field simply reads:

L∫

0

ε dx = U (2)

Finally, the constitutive law has to be stated. While the strain remains smaller than a
critical value εy, the stress – strain relation is linear elastic with stiffness E:

σ = E ε if ε ≤ εy (3)

Above the critical value, the stress is a decreasing affine function of the strain, with
slope−H , up to a vanishing stress that corresponds to the complete fracture of the rod:

σ = E εy −H (ε− εy) if ε > εy (4)

The law should also include a description of elastic unloading branches but, as a
monotonous load history is only considered, they are ignored in the present example.
Such a law indeed exhibits strain-softening since the threshold stress (4) decreases with
the load history.

At this stage, the set of equations (1) to (4) totally describes the problem. A solution
can be built by distinguishing two successive regimes.

First, while the load parameter is small enough, the behavior remains elastic, thus
obeying (3), and therefore, thanks to the equilibrium equation (1), the strain field is
homogeneous too. The compatibility equation (2) finally provides the strain value and
the constitutive law (3) the stress value:

∀ x ε(x) =
U

L
σ(x) =

E U

L
(5)

As an elastic behavior has been assumed, the strain should remain lower than εy, so
that this regime is licit while U ≤ Lεy.

When this critical load is reached, the (homogeneous) stress cannot increase
anymore. At each material point, there are two possible branches for its decrease.
A damaging unloading obeying law (4) which takes place in a region ΩD of length l



XI. Localization and regularization 313

σ

ε

σ

ε

equilibrium

L

l

U

σ

U/L
decreasing l

Global response

Figure XI.1: Localization in a 1D rod specimen

and an elastic unloading (3) in a region ΩE of length L− l. As the stress field is still
homogeneous, thanks to the equilibrium equation (1), the strain values in the damaging
area and in the elastic area are respectively given by:







∀ x ∈ ΩD ε(x) = εy +
E εy − σ

H
∀ x ∈ ΩE ε(x) =

σ

E

(6)

The compatibility equation then allows the determination of the stress:

l

(

εy +
Eεy − σ

H

)

+ (L− l) σ
E

= U ⇒ σ

Eεy
=

U

Lεy
− l

L

(

1 +
E

H

)

1− l

L

(

1 +
E

H

) (7)

The global response of the rod is plotted on figure XI.1 in terms of the homogeneous
stress versus the applied displacement. It appears that the response depends on the
length of the damaged zone and may even exhibit a snap-back. Actually, the essential
point is that the length of the damaged zone remains undetermined: there exists an
infinity of linearly independent solutions, hence the problem is ill-posed.

When considering the solution of the problem using finite elements, say linear finite
elements, the strain field is approximated by piecewise constant functions, that is the
length of the damaged zone is necessarily a multiple of the size of a single element.
Because of round-off errors or stress concentrations due to geometrical imperfections
(cross-section of the rod), one finite element reaches the threshold slightly before the
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others: the damaged zone then coincides with a single finite element. Therefore, it
means that damage localizes in a narrow band of width the size of one finite element.
The global response depends spuriously on the size of the finite elements and tends to
a pure elastic unloading when the size goes to zero: at the limit, the computation would
even predict that the rod breaks without dissipating energy, an aberrant result.

1.1.2 Consequences on the modeling of real-life structures

In the previous example, a spurious mesh dependency has been exhibited for a 1D
structure made of an academic strain-softening material: the damage and the strain
fields tend to localize in a single finite element, although the constitutive law is well
defined. The bifurcation from the homogeneous solution to the localized one is in
agreement with experimental observations. But the extreme dependence of the solution
on the size of the finite elements dramatically raises the question of the ability to predict
the response of a damaging structure through finite element computations. This is
even more critical in the context of 2D or 3D simulations since the numerical solution
depends not only on the size but also on the orientation of the finite elements (actually,
it depends on all the mesh characteristics).

To illustrate the question of mesh-dependency related to the inception and the
propagation of damaged zones in 2D structures, the perforated plate depicted in figure
XI.2 is considered. The upper and lower sides are subjected to a prescribed vertical
displacement (opposite on both sides, thus symmetric). The numerical simulations
are performed under the assumption of plane strain. Traction stresses are expected to
concentrate in the vicinity of the hole on th right and left handside, so that damage
will be triggered in this area before propagating in mode I toward the closest free side
of the specimen (right) then toward the other one (left), up to final fracture of the
specimen. The constitutive law is one of the simplest that includes strain-softening. It
appears as a 3D extension of the law used in the previous section since its response still
corresponds to a linear softening when submitted to a proportional load. In addition
to the usual elastic characteristics (isotropic Hooke’s tensor E

∼∼
, with Young modulusE

and Poisson ratio ν), two parameters describe the local response of a material point: the
maximal stress σy that the material can sustain (or equivalently the peak strain εy) and
the (volume) energy dissipated when a material point is fully fractured (or equivalently
the normalized softening slope γ), see figure XI.3.

More precisely, the material state is characterized by the strain tensor ε∼ and a

scalar damage internal variable d ranging from 0 (sound material) to 1 (totally damaged
material, i.e. with zero residual stiffness). The stress – strain relation is elastic ; the
stiffness is a linear decreasing function of the damage:

σ∼ = (1− d)E
∼∼

: ε∼ (8)

The increasing damage evolution is governed by the following threshold function
and the corresponding consistency condition, expressed in terms of the volumetric
dissipated energy k and the normalized softening slope γ:

g
(

ε
∼
, d
)

=
1

2
ε
∼

: E
∼∼

: ε
∼
− wy (d) where wy (d) =

k γ (1 + γ)

(1 + γ − d)2
(9)

g
(

ε∼, d
)

≤ 0 ḋ ≥ 0 ḋ g
(

ε∼, d
)

= 0 (10)
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In spite of its simplicity (namely, there is no distinction between compressive and
tensile states and brittle damage is the only dissipative mechanism), the law includes
strain-softening (shrinkage of the elastic domain in the stress-space), the essential
feature that will induce spurious damage localization:

g
(

ε∼, d
)

≤ 0 ⇒ 1

2
σ∼ : E

∼∼

−1: σ∼ ≤ k γ (1 + γ) (1− d)2

(1 + γ − d)2
︸ ︷︷ ︸

decreasing function of d

(11)

The material parameters are given in table XI.1. Numerical simulations have been
conducted with two different meshes, see figure XI.4: the first one is an unstructured
mesh based on linear triangles, the second one includes an oriented band of quadrangles
dived into unstructured triangles. It can be noticed that the second one is more refined
than the first one. We just mention that because of the instabilities that have already
been exhibited with the 1D example (snap-backs), a monotonous increase of the load
does not allow to capture the solution, so that specific arc-length techniques have to
be applied, see for instance Lorentz and Badel (2003). This is a quite classical feature
of brittle behavior. The results are presented in figure XI.4 in terms of the damage
distribution. Two conclusions can be drawn:

• The damage concentrates in a band of width equal to the size of a single finite
element, as already noticed in the 1D example. As the total energy dissipated
by the structure is proportional to the area of the damaged zone, it also depends
on the mesh size: the finer the mesh, the smaller the dissipated energy. This
is unacceptable. Worse, if the size of the finite elements goes to zero, so does
the energy: the computation would predict a fracture of the specimen without
dissipation, as in the rod case.

• The orientation of the band is not controlled by the loading mode, as would have
been expected (a mode I propagation, normal to the tensile direction). It is set
by the mesh orientation. This is another aspect of spurious mesh-dependency. It
should be noticed that the dependence on the mesh orientation appears as a severe
limitation of solution strategies that set the mesh size as a material parameter
to control the localization phenomenon since the numerical results are still not
predictive.

Elasticity Damage
E = 20 GPa σy = 3 MPa H = 5000 MPa
ν = 0.2 k1.125 10−3 MPa γ = 0.25

Table XI.1: Material parameters for the brittle law.

1.2 BIFURCATION MODES IN ELASTOPLASTIC SOLIDS

The formulation of the elastoplastic constitutive framework including one single
inelastic mechanism is recalled first and used in the subsequent bifurcation analysis.
For more elaborate plasticity models including multiple mechanisms of inelastic
deformation, the reader is referred to Petryk (2000). The notions of uniqueness,
stability and localization are presented briefly here. More details can be found in
(Petryk, 1997; Besson et al., 2001a; Nguyen, 2002).



XI. Localization and regularization 317

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Figure XI.4: Two different spatial discretizations of the perforated plate: damage
distribution



318 Local approach to fracture

1.2.1 Formulation of the boundary value problem

Linear incremental formulation

Under small strain conditions, the total strain rate can be decomposed into an elastic
and a plastic part

ε̇∼ = ε̇∼
e + ε̇∼

p (12)

The constitutive behavior of an elastoplastic solid is then described by

• the elastic law
σ
∼

= E
∼∼

: ε
∼

e (13)

where E
∼∼

is the four-rank elasticity tensor;

• the yield function g(σ∼, α), where α represents the set of hardening variables;

• the plastic flow rule
ε̇∼

p = λ̇ P∼ (14)

• the evolution equations of the hardening variables that are assumed to have the
form

α̇ = λ̇h (15)

The plastic loading condition reads

λ̇ > 0 (16)

The consistency conditions are: g = 0 and ġ = 0. It follows that

ġ = N∼ : σ̇∼− λ̇H, with N∼ =
∂g

∂ σ∼
, H = − ∂g

∂α
.h (17)

where H is the hardening modulus. Non-associated plasticity, meaning that P∼ 6= N∼ , is

taken into account. As a result

λ̇ =
N∼ : σ̇∼

H
(18)

If the material has a hardening behavior (H > 0), the plastic loading condition can be
written as: N

∼
: σ̇
∼
> 0. This does not hold for strain-softening materials for which we

must express the plastic loading conditions in terms of ε̇∼ instead σ̇∼. From (12), (13)

and (17), we derive that

λ̇ =
N∼ : E

∼∼
: ε̇∼

H + N∼ : E
∼∼

: P∼
(19)

Provided that
H + N∼ : E

∼∼
: P∼ > 0 (20)

(no “snap-back” behavior for the material point), the plastic loading condition (16)
becomes

N∼ : E
∼∼

: ε̇∼ > 0 (21)
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which is valid for softening materials as well as hardening ones. The constitutive
equations take then the incremental form:

σ̇∼ = L
∼∼

: ε̇∼ (22)

where

L
∼∼

= E
∼∼

if g < 0 or (g = 0 and N∼ : E
∼∼

: ε̇∼ ≤ 0) (23)

L
∼∼

= D
∼∼

if g = 0 and N∼ : E
∼∼

: ε̇∼ > 0 (24)

with

D
∼∼

= E
∼∼
−

(E
∼∼

: P∼)
⊗

(N∼ : E
∼∼
)

H + N∼ : E
∼∼

: P∼
(25)

Formulation of the rate problem

The solid domain is denoted Ω and its boundary ∂Ω. ∂Ω is separated in two parts: ∂1Ω
where forces are prescribed and ∂2Ω where displacements are prescribed (∂1Ω∪∂2Ω =

∂Ω and ∂1Ω∩∂2Ω = ∅). For given fields of the rates of body forces ~̇f , surfaces forces
~̇T on the part ∂1Ω of the boundary of the domain Ω, and velocity ~V on ∂2Ω, the rate
problem consists in finding the displacement rates ~v in Ω satisfying:







ε̇∼ = 1
2 (∇~v +∇t~v)

div σ̇∼ + ~̇f = 0, σ̇∼ = L
∼∼

: ε̇∼

σ̇∼ . ~n = ~̇T on ∂Ω1, ~v = ~V on ∂Ω2

(P)

The problem (P) is non-linear because of relations (23) and (24).

1.2.2 Loss of uniqueness; general bifurcation modes

Hill’s condition

Let (σ̇
∼A, ε̇∼A) and (σ̇

∼B , ε̇∼B) be two distinct solutions of the boundary value problem

for a continuous system and let us consider the differences ∆ σ̇∼ = σ̇∼A− σ̇∼B and ∆ ε̇∼ =

ε̇∼A − ε̇∼B . The associated velocity field ∆~v vanishes on the part of the boundary of

the solid Ω where the velocity is prescribed and is therefore a kinematically admissible
velocity field in the expression of the principle of virtual power. Applying the principle
of virtual power successively to solutions A and B on body Ω, Hill (cf. Hill (1958))
gets a necessary condition for loss of uniqueness:

∫

Ω

∆ σ̇∼ : ∆ ε̇∼ dV = 0 (26)

A local sufficient condition for uniqueness (in fact for the linear comparison solid) is
then

σ̇∼ : ε̇∼ > 0 (27)

for all kinematically admissible velocity fields. This condition is called positiveness of
the local second-order work. When a linear incremental formulation of the constitutive
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equations like (22) exists, the positiveness of the local second-order work is equivalent
to the definite positiveness of the four-rank tensor D

∼∼

s, where s denotes symmetrization

(Ds
ijkl = (Dijkl +Dklij )/2). A necessary condition for the local loss of uniqueness is

then
det D

∼∼

s = 0 (28)

When uniqueness is lost, general bifurcation modes (like necking ...) become possible.
These modes can be diffuse or localized deformation modes. However bifurcation
modes associated with strain rate jumps at the boundary of the bifurcated zone may
occur only later. The corresponding bifurcation criteria will be derived in section 1.2.3.

General bifurcation modes in non-associated elastoplasticity

A spectral analysis of the elastoplastic tangent tensors D
∼∼

and D
∼∼

s is necessary in order to

obtain explicit criteria for the possible loss of uniqueness and the associated bifurcation
modes. D

∼∼

s has six symmetric eigentensors Neilsen and Schreyer (1993). This amounts

to solving the system of equations

D
∼∼

s : x∼ = ω x∼ (29)

The determinant of this homogeneous system must be zero if non-trivial solutions xij

are to be found. This condition gives a relation between the hardening modulus and
ω. The critical hardening modulus Hu associated with possible loss of uniqueness,
is then obtained for ω = 0. The complete analysis has been carried out by Raniecki
and Bruhns (1981) and Runesson and Mróz (1989). They give the following sufficient
condition for uniqueness

H > Hu =
1

2
(
√

N∼ : E
∼∼

: N∼

√

P∼ : E
∼∼

: P∼ −N∼ : E
∼∼

: P∼) (30)

The fundamental bifurcation mode is

x∼ =
P∼

√

P∼ : E
∼∼

: P∼
+

N∼
√

N∼ : E
∼∼

: N∼
(31)

For associated plasticity P∼ = N∼ and the critical hardening modulus is then

Hu = 0 (32)

Well-posedness of the rate boundary value problem for the linear
comparison solid

The linear comparison solid introduced in Hill (1958) is obtained when unloading is
excluded, so that

L
∼∼

= D
∼∼

(33)

In that linear case, necessary and sufficient conditions can be worked out for the well-
posedness of the rate problem. Following Benallal et al. (1989), the rate boundary
problem is said to be well-posed if it admits a finite number of linearly independent
solutions which depend continuously on the data, and which constitute diffuse modes
of deformation. The linear rate problem for a solid with boundary and possible
interfaces is then well-posed if and only if the following conditions are met:
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(i) the ellipticity condition;
(ii) the boundary complementing condition;
(iii) the interfacial complementing condition.

Condition (i) states that the rate equilibrium equations must remain an elliptic set of
partial differential equations in the body Ω. The condition (ii) deals with possible
bifurcation close to the boundary of Ω. In that case the boundary conditions must
be fulfilled and represent therefore an additional or complementing condition. In the
case of bifurcation close to an interface separating two materials, the compatibility and
equilibrium requirements at the interface must be taken into account. This corresponds
to the additional condition (iii). The conditions (i) to (iii) can be shown to be
equivalent to the follwing ones Besson et al. (2001a):

(i)′ det ~n.D
∼∼
.~n 6= 0 ∀~n 6= 0 and ∀M ∈ Ω;

(i)′′ bifurcation modes involving jumps of the velocity gradient are precluded;
(i)′′′ stationary acceleration waves are precluded.

The meaning of conditions (i)′, (i)′′ and (i)′′′ will be given in the next section. The
equivalence between (i)′ and (i)′′ is established for instance in Ottosen and Runesson
(1991b). The link between the existence of discontinuous bifurcation modes and of
stationary acceleration waves has been seen by Mandel (cf. Mandel (1966) and section
1.2.3) and is summarized in Ottosen and Runesson (1991a).

The boundary value problem written for finite bodies can become ill-posed while
the incremental field equations remain elliptic, as a consequence of the failure of the
complementary condition at the boundaries or interfaces. The failure of the boundary
complementing condition is equivalent to the existence of Rayleigh surface waves. This
can be investigated by looking for wave solutions:

~v = ~w exp(i~k.~x) (34)

Body waves correspond to solutions with real components of ~k. If the solid extends
over the half-space x1 ≥ 0, the boundary being free of traction, solutions with k1

complex leading to Rayleigh free surface waves, will decay exponentially into the body,
according to Needleman and Ortiz (1991), if:

=m k1 ≥ 0 (35)

Similar conditions exist for the existence of Stoneley stationary interfacial waves, that
are deformation modes localized at each side of an interface. The interface can be
perfect or described by a constitutive equation like in Suo et al. (1992).

If no length scales are introduced in the constitutive equations, the wave length
of body, surface or interfacial waves, remains arbitrary. The mismatch in mechanical
properties at an interface can induce stress and strain concentrations that may act as
initiation sites for localization. Conversely, grain boundaries can act as barriers to
localization that originates in the bulk of the material.

1.2.3 Existence of velocity gradient discontinuities

Acceleration waves; acoustic tensor

Following Mandel (1962) and Ottosen and Runesson (1991a), we investigate the
possibility of emergence of deformation modes involving jumps of the acceleration,
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of the velocity gradient and of the stress rate across a moving surface S with normal ~n
(where [[·]] denotes a jump across the interface):

[[~̈u]] 6= ~0, [[∇~̇u]] 6= 0∼ and [[σ̇∼]] 6= 0∼ (36)

The symbol [[f ]] denotes the difference between the values taken by f on both sides of
the surface S. But it is assumed that

[[~u]] = [[~̇u]] = 0 and [[σ∼]] = 0 (37)

The discontinuity surface, S, propagates with the normal speedU = ~̇x.~n where ~x ∈ S.
According to Hadamard’s compatibility conditions, the jump of the velocity gradient
at the interface must have the form

∃~g/ [[∇~̇u]] = ~g ⊗ ~n (38)

A detailed description of singular surfaces can be found in Truesdell and Toupin (1960)
and Thomas (1961). Similarly

∃ g
∼
/ [[∇ σ

∼
]] = g

∼
⊗ ~n (39)

Furthermore the conditions (37) must hold at each time t, so that

[[~̈u]] + U~g = ~0, [[σ̇
∼
]] + U g

∼
= 0

∼
(40)

Applying the previous relation to vector ~n, one gets

[[σ̇∼]].~n+ U [[div σ∼]] = ~0 (41)

On the other hand, continuing equilibrium implies

[[div σ∼]] = ρ[[~̈u]] (42)

provided that the body forces are the same on each side of S. Combining the two last
equations gives

[[σ̇∼]].~n = ρU2~g (43)

If the constitutive equations have the linear incremental form (22), and assuming that
[[L
∼∼
]] = 0, one gets

Q
∼
.~g = ρU2~g (44)

where
Qij = nkDikljnl (45)

under plastic loading conditions on each side of S. Q
∼

is called the acoustic tensor. The

previous relation will be written

Q
∼

= ~n.D
∼∼
.~n (46)

in the sequel. As a result, the existence of discontinuity surfaces of the type (36)
depends on the solutions of the eigenvalue problem (44). The above assumption
[[L
∼∼
]] = 0 is met when one starts from a homogeneous solution and one investigates

the occurrence of a possible bifurcation mode. Before a bifurcated solution develops
on one side of S, the tangent moduli of the material points on both sides of S coincide.
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Discontinuous bifurcation modes in the static case

We consider now the following jump conditions across a surface S which is not moving

[[∇~̇u]] 6= 0∼ and [[~̇u]] = Cst (47)

Condition (38) must still hold and we make use of the linear incremental form (22). We
investigate plastic/plastic bifurcations for which [[L

∼∼
]] = 0. Elastic/plastic bifurcation

modes will be considered in the next section. The equilibrium condition at the surface
S reads in the static case

[[σ̇∼]] .~n = ~0 (48)

Combining (38) and (48) leads to the condition

Q
∼
. ~g = ~0 (49)

where the acoustic tensor is still defined by (45). Non trivial solutions require the
acoustic tensor to become singular. These discontinuous bifurcation modes can be
regarded as stationary plastic waves.

The general character of the governing partial differential equations and its
dependency on the current value of the stress and tangent moduli is investigated in Hill
and Hutchinson (1975). Ellipticity can be lost and bifurcation modes may then develop.
There is an equivalence between the loss of ellipticity of the governing equations and
the existence of discontinuous bifurcation modes.

Conditions for plastic/plastic and elastic/plastic bifurcations

If plastic loading occurs on each side of S, the bifurcation modes are called plas-
tic/plastic localization modes. Necessary and sufficient conditions for such modes to
become possible inside the body have been worked out by Rice (1976):

det Q
∼

= det ~n.D
∼∼
.~n = 0 and ~n.E

∼∼
: P∼ 6= ~0 (50)

If elastic unloading occurs on one side of S, the associated bifurcation modes are
called elastic/plastic localization modes. A necessary and sufficient condition for the
onset of elastic/plastic localization modes inside the body is:

det Q
∼

= det ~n.D
∼∼
.~n < 0 and ~n.E

∼∼
: P∼ 6= ~0 (51)

It means that in the case of usual elastoplastic materials for which the work-hardening
rate decreases with strain, an elastic/plastic localization mode involving elastic un-
loading cannot occur before the condition for plastic/plastic bifurcation modes (50) is
fulfilled. However it does not exclude the fact that elastic unloading occurs on one side
just after plastic/plastic bifurcation.

The reader is referred to Benallal et al. (1989) for bifurcation conditions for a
discontinuity surface S to appear at or to reach the boundary of a solid.

1.2.4 Bifurcation analysis in elastoplasticity

Critical hardening modulus for a given normal ~n

Rice has determined the critical hardening modulus for which a plastic/plastic bifur-
cation becomes possible across a surface S of given normal ~n. One starts from the
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equilibrium equation at the interface

D
∼∼

: [[ ε̇∼ ]] .~n = ~0 (52)

where the linear incremental form (22) has been used. Taking (38) and (25) into
account, one obtains

(

~n.E
∼∼
.~n − 1

A
(~n.E

∼∼
: P∼)⊗ (N∼ : E

∼∼
.~n)

)

.~g = ~0, A = H + N∼ : E
∼∼

: P∼ (53)

It can be checked that

H(~n) = −N∼ : E
∼∼

: P∼ + (N∼ : E
∼∼
.~n).(~n.E

∼∼
.~n)

−1
.(~n.E

∼∼
: P∼) (54)

~g ∝ (~n.E
∼∼
.~n)

−1
.(~n.E

∼∼
: P∼) (55)

are solutions of the previous equations. The uniqueness of this solution is proved
in (Ottosen and Runesson, 1991b; Besson et al., 2001a) who investigated both
plastic/plastic and elastic/plastic bifurcation modes.

Critical hardening modulus and orientation of the first possible shear
band

For materials with decreasing hardening modulus, the critical hardening modulus for
which the first discontinuous bifurcation mode becomes possible is:

Hcr = max
‖~n‖=1

H(~n) (56)

where H(~n) is given by equation (54).
The orientation of the first possible band of localized deformation is given by the

values of ~n for which Hcr is reached.

Three-dimensional case

The problem reduces to maximizing the Lagrangian function:

L(~n, λ) = H(~n)− λ(‖~n‖2 − 1). (57)

For isotropic elasticity,

H(~n) = 2µ(2(~n.P∼).(N∼ .~n)− (~n.P∼.~n)(~n.N∼ .~n)−P∼ : N∼

− ν

1− ν (~n.P∼.~n− traceP∼)(~n.N∼ .~n− traceN∼)) (58)

The associated vector ~g is

~g = 2P∼.~n−
1

1− ν (~n.P∼.~n)(~n.N∼ .~n) ~n+
ν

1− ν (traceP∼) ~n (59)

We refer to the method developed in Bigoni and Hueckel (1991) to solve this
maximization problem for general non-associated elastoplasticity. But the present
analysis is restricted to associated plasticity: P∼ = N∼ . Furthermore, in this subsection,
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incompressible behavior is considered for simplicity: traceP∼ = 0. Equation (57)

combined with (54) and written in the principal axes of P∼ then becomes:

L(~n, λ) = 2µ

(

2 n2
iP

2
i −

3∑

i=1

P 2
i −

1

1− ν (n2
iPi)

2

)

− λ(

3∑

i=1

n2
i − 1) (60)

Writing
∂L

∂λ
= 0 and

∂L

∂nk
= 0 makes the problem equivalent to the resolution of the

system:

nk

(

P 2
k −

1

1− ν (n2
iPi)Pk −

λ

4µ

)

= 0 k ∈
{

1, 2, 3
}

no sum on k (61)

If n1n2n3 6= 0, the system is indeterminate or impossible depending on P1, P2, P3.
If nk = 0 and ninj 6= 0 (i, j, k distinct),:

• if Pi = Pj , the system is indeterminate;

• if Pi 6= Pj ,

n2
i =

Pi + νPk

Pi − Pj
and n2

j = 1− n2
i (62)

The jump of the strain rate across the surface of normal ~n is also described by ~g:







gi = (Pi − Pj) ni

gj = (Pj − Pi) nj

gk = 0

,







[[ ε̇∼i ]] = Pi + νPk

[[ ε̇∼j ]] = Pj + νPk

[[ ε̇∼k ]] = 0

the corresponding critical hardening modulus being

Hcr = −EP 2
k (63)

If n2
i = 1 and nj = nk = 0,

Hcr = −2µ

(
(Pj + νPk)2

1− ν + (1 + ν)P 2
k

)

(64)

The first possible band is given by the combination i, j, k for which H cr has the
highest value. Note therefore that theoretically, for the 3–dimensional solid, a negative
modulus H does not necessarily mean localization.

Two-dimensional case

The plane strain case can be solved using the three-dimensional analysis. If the
deformation plane is normal to direction 3

ε̇33 = ε̇e
33 + ε̇p

33 (65)

If plastic flow is large enough and assuming that the elastic strain remains small
enough, the contribution ε̇p

33 can be neglected. Furthermore the direction 3 is supposed
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to be a principal direction of P∼. As a result, we have almost P3 = 0 so that (63)

becomes
Hplane strain = 0 (66)

We have also P1 + P2 = 0, so that (62) gives

n2
1 = n2

2 =
1

2
(67)

The orientation of shear bands under plane strain conditions is 45◦.
The plane stress case must be reexamined. The solid is considered two-

dimensional. This means for instance that the compatibility condition in the third
direction will not be ensured. The condition ε33,12 = 0 holds only if ε33 is linear
in x1 and x2. The vectors ~g and ~n are supposed to lie in the 1–2 plane. Lastly the
elasticity matrix in the isotropic case takes a special form





σ11

σ22

σ12



 =
2µ

1− ν





1 ν 0
ν 1 0
0 0 1− ν









εe
11

εe
22

εe
12



 (68)

In that conditions, the critical hardening modulus for a given orientation ~n is

Hplane stress(~n) = 2µ(2(~n.P∼).(N∼ .~n)− (~n.P∼.~n)(~n.N∼ .~n)

− P∼ : N∼ − ν(~n.P∼.~n− traceP∼)(~n.N∼ .~n− traceN∼)) (69)

where ~n = [n1 n2]
t and P∼ and Q

∼
are also two-dimensional, and ~g is given by:

~g = 2P∼.~n− (1 + ν)(~n.P∼.~n) ~n+ ν(traceP∼)~n (70)

H(~n) = 2µ

(

2P 2
i n

2
i − (Pin

2
i )

2 −
2∑

i=1

P 2
i − ν(n2

iPi −
2∑

i=1

Pi)
2

)

(71)

∂H

∂n2
1

= −4µ(1 + ν)(P1 − P2)(n
2
1P1 + n2

2P2 − P1 − P2) (72)

If P1 = P2, H
cr = −2µ(1 + ν)P 2

1 and ~n is arbitrary,
If P1 6= P2,

n2
1 =

P1

P1 − P2
, n2

2 = 1− n2
1 (73)

g1 = (P1 − P2)n1, g2 = −(P1 − P2)n2 (74)

and
Hplane stress = 0 (75)

The jump is then proportional to [[ε̇1]] = P1 and [[ε̇2]] = P2. The calculation proves
that for plane stress also, the critical hardening modulus for discontinuous bifurcations
is generally zero.

The two-dimensional solid is therefore more prone to localization than the real
solid. The reason is that some bifurcation modes though incompatible (in the sense
of Hadamard) in the direction 3 are compatible in the plane 1-2 and are then full
discontinuous bifurcation modes for the 2D solid.
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1.2.5 Stability

Concerning stability we present Mandel’s approach (Mandel, 1966). A more general
framework can be found in (Nguyen, 2002). Let us consider a solid in a state of
equilibrium. Perturbations of the equilibrium may be represented by plane waves in
direction ~g

~u? = f(~n.~x± Ut) ~g (76)

One assumes that the initial equilibrium stress σ∼ is homogeneous. σ∼
? denotes then the

stress variation due to the perturbation. It follows that

div σ∼
? = ρ ~̈u? (77)

Furthermore it is assumed that the constitutive equations take the linear incremental
form (22) and that D

∼∼
is initially homogeneous and that it remains constant around the

equilibrium state. Under these conditions and taking (76) into account, the last equation
becomes

Dijkl uk,lj = üi, ni Dijkl nlck = ρU2 ci (78)

that is
Q
∼
. ~g = ρU2 ~g (79)

As a result plane waves and acceleration waves are governed by the same equations
(compare (44) and (79)), even though they represent two distinct phenomena. The
assumptions in the previous calculation correspond to the so-called “acoustic approx-
imation” in fluid mechanics, which explains the denomination of tensor Q

∼
. When the

eigenvalues of the acoustic tensor are real and positive, equilibrium is said to be stable
because plane waves can propagate without growing. If they are real but negative,
equilibrium is unstable with divergence. Complex eigenvalues with negative real part
lead to a phenomenon called flutter instability in aerodynamics.

1.2.6 Localization criteria

The various bifurcation criteria that have been established in the previous sections
are summed up on figure XI.5. Two critical hardening moduli have been defined:
Hu corresponds to possible loss of uniqueness and H cr is associated with the
possible existence of discontinuous bifurcation modes. An additional critical hardening
modulus can be determined for which general bifurcation modes become compatible,
i.e. are of the form [[ ε̇∼ ]] = (~g ⊗ ~n + ~n⊗ ~g)/2

ε̇∼ : D
∼∼

: ε̇∼ = 0 ⇒ ~g.Q
∼
.~g = ~g.Q

∼

s.~g = 0 (80)

which corresponds to the loss of positive definitiveness of the symmetrized acoustic
tensor Q

∼

s. This condition is called loss of strong ellipticity. It happens for the

critical value H = Hse. The physical meaning is the existence of compatible
general bifurcation modes, which however do not necessarily fulfill equilibrium jump
conditions.

In the general case, the sign of the three critical hardening moduli can be positive
or negative. In particular bifurcation may occur while the material is hardening. In
contrast, for associated plasticity at small strains, Hu = 0 so that bifurcations are
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HHcr

Q
∼
.~g = ~0

detQ
∼

= 0

Hse

~g.Q
∼
.~g = 0

detQ
∼

s = 0

Hu

ε∼ : D
∼∼

: ε∼ = 0

detD
∼∼

s = 0

ellipticity

strong ellipticity

uniqueness

Figure XI.5: Bifurcation criteria in non-associated plasticity.

possible only for ideal plastic or strain-softening materials. Furthermore D
∼∼

and Q
∼

are

then symmetric tensors so that Hse = Hcr.
In general, bifurcation may occur before the extremum σ̇∼ = 0 of the loading curve.

The associated hardening modulus H l for which detD
∼∼

= 0 corresponds to a limit

point.
General bifurcation modes may induce diffuse or localized deformation. It is

difficult in practice to distinguish between localized general bifurcations and discon-
tinuous ones (shear bands strictly speaking). However one can assume that a general
bifurcation which is also compatible in the sense of Hadamard will induce localized
rather than diffuse deformation. That is why one may think of the strong ellipticity
criterion as a good criterion for localization of deformation.

1.3 APPLICATION TO TENSILE TESTS IN ISOTROPIC INCOMPRESSIBLE AND
COMPRESSIBLE ASSOCIATED ELASTOPLASTIC MATERIALS

1.3.1 J2–theory: tensile test

We consider the example of an elastoplastic model with the von Mises criterion

g = J2(σ∼)−R with J2(σ∼) =

√

3

2
σ∼

dev : σ∼
dev (81)

σ∼
dev denoting the deviatoric part of σ∼. In that case,

D
∼∼

= E
∼∼
− 2µ2

H/3 + µ

σ∼
dev ⊗ σ∼dev

σ∼
dev : σ∼

dev
(82)

For isotropic elasticity, 1∼ is an eigentensor of D
∼∼

and the associated eigenvalue is 3k 1.

d∼1 =
σ∼

dev

√

σ∼
dev : σ∼

dev
(83)

1k: compressibility modulus, µ: shear modulus
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is an eigentensor for the eigenvalueω1 = 2µH/(H + 3µ). The remaining eigentensors
are in {1∼, σ∼dev}⊥ and the eigenvalue is 2µ. Accordingly, only one eigenvalue depends

on the hardening modulus. Uniqueness is lost for ω1 = 0 = Hu. For tensile straining

[d∼1] =
1√
6





−1 0 0
0 2 0
0 0 −1



 (84)

This is an incompatible diffuse mode that gives rise to the necking phenomenon.
We restrict ourselves to the tension of a plate to study the bifurcation modes in

the plane 1-2. The mode (84) is assumed to occur within a band of normal ~n. The
components of d∼1 in the basis (~m,~n) read:

[d∼1] =
1√
6





2 sin2 θ − cos2 θ 3 cos θ sin θ 0
3 cos θ sin θ 2 cos2 θ − sin2 θ 0

0 0 −1



 (85)

This bifurcation mode becomes compatible in the sense of Hadamard in the 1-2 plane
if it takes the form

1

2
(~g ⊗ ~n+ ~n⊗ ~g)1−2 plane =

[
0 g1/2

g1/2 g2

]

(86)

in the (~m,~n) basis. This expression must be compared to the 2x2 submatrix in (85).
Such a form is therefore obtained for

2 sin2 θ − cos2 θ = 0, tan2 θ =
1

2
, θ = ±35.26◦ (87)

It means that deformation can localize within a band with the previous orientation (see
figure XI.6). However, compatibility is not ensured in the third direction until the
critical hardening modulus for discontinuous bifurcations is reached

Hcr = −E/4 (88)

according to equation (63). But the orientation of the band is then, according to
equation (62)

n2
1 =

1 + ν

3
(89)

which gives θ = 42◦ for ν = 0.33.
These localization modes can be simulated using the finite element method in the

2D and 3D cases. We consider the tension of a plate with a geometrical or material
imperfection. The mesh corresponds to one quarter of the entire plate. A thickness
heterogeneity or a slightly lower yield strength are introduced according to trigger
strain localization. A classical phenomenological elastoplastic model has been chosen
involving isotropic hardening (Besson et al., 2001a). The hardening parameters are
such that the material first hardens and then softens. The maximum is reached after
small deformation. In the two-dimensional case, we use quadratic elements with eight
nodes and nine integration points. In the three-dimensional case, we use 20-node bricks
with 27 Gauss points.

In the 2D plane stress case, slightly after the maximum, the load-displacement
curve displays an abrupt load drop and strain localizes within two narrow shear bands.
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Figure XI.6: Shear band under tensile loading compatible in the plane and necking
within the thickness.

Their orientation is, as predicted, 54.7◦ with respect to the tensile axis. The bands can
be seen in figure XI.7, with two different meshes.

The plate is now a three-dimensional solid and has a one-element thickness.
Elements are 20-nod bricks with 27 Gauss points. Once again shear bands appear
in a softening material with the same orientation but the bands are much larger and
strain in them much lower than for the 2D plate (figure XI.7). The reason is that the
observed localization mode is only partially compatible. It is compatible in the plane
1-3 but the incompatibility in direction 2 results in necking. That is why we obtain a
more diffuse strain field.

1.3.2 Elliptic potential

One of the most simple yield functions for compressible elastoplastic materials is the
elliptic potential defined as (see also chapter VIII):

g(σ∼) = σ? −R, σ2
? =

3

2
C σ∼

dev : σ∼
dev + F (trace σ∼)2 (90)

where C and F are material parameters, possibly depending on material porosity f ,
and R the hardening function. The tensor giving at each instant the direction of plastic
flow is

N∼ =
∂g

∂ σ∼
=

1

σ?

(
3

2
C σ∼

dev + F (traceσ∼) 1∼

)

(91)

according to the normality rule adopted here for simplicity.
In the case of tension in direction 2, the direction of plastic flow becomes

[P ] =
signeσ2√
C + F






F − C
2 0 0

0 C + F 0

0 0 F − C

2




 (92)
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 1

 2 3

 

Figure XI.7: Simulation of strain localization in a von Mises elastoplastic material in
tension in 2D and 3D case.

The bifurcation analysis under plane stress conditions was performed in section 1.2.4
in the general case trace P∼ 6= 0. It can therefore be applied to the elliptic potential.

Under plane stress conditions, the orientation of the first possible localization is given
by the equation (73) which reads here:

n2
1 =

2

3C

(
C

2
− F

)

(93)

The same orientation is obtained taking the result (62) of the three–dimensional
analysis for ν = 0.

If F = C/2, it can be seen that both ~n and ~g are along direction 2. This corresponds
to an horizontal strain localization band with an opening mode. IfF = 0, the von Mises
criterion is retrieved and the orientation of the band at 54◦ is recovered. As result, the
elliptic model makes it possible to simulate strain localization bands inclined at an
angle ranging from 0 to 54◦.

1.4 RATE-DEPENDENT CONSTITUTIVE BEHAVIOR

The well-posed character of the set of equations characterizing the evolution of damage
fields is based on the ellipticity of the corresponding linear solid of comparison (tangent
operator of the dissipative branch). In the context of rate-dependent constitutive
behavior, the tangent operator is derived through the instantaneous response of the
material, generally the elastic part of the behavior, thus always definite positive.
Therefore, rate-dependent damage laws should not result in ill-posed problems. This
explains why introducing viscous terms in damage laws has appeared as a convenient
way to regularize the ill-posed problems of rate-independent laws, see Needleman
(1988).

However, a linear perturbation analysis shows that, even though well-posed, that
kind of problems becomes unstable beyond a given state (Fressengeas and Molinari,
1985; Anand et al., 1987; Dobovsek and Moran, 1996). The instability takes the form
of a localization band. Moreover, Needleman (1988) illustrated by a 1D example that
the localization is triggered by imperfections whose length scale introduces a size for



332 Local approach to fracture

the localization band. Indeed, from a dimensional point of view, new viscous terms
only introduce a characteristic time. Alone, it does not bring a characteristic length for
the localization band, at least for quasi-static analysis.

Here, we would like to somewhat extend Needleman’s example, so that no
homogeneous solutions are allowed, even piecewise, while preserving the 1D character.
For that purpose, we go back to the rod already studied but we now assume that its cross
section area S is variable:

S(x) = S0

(

1− x

λ

)−1

0 ≤ x ≤ L and L < λ

where L is the rod length and λ a characteristic length scale of the heterogeneity. This
new length scale is involved in the equilibrium equation since it reads:

∂

∂x
(S σ) = 0 ⇒ σ(x, t) = Σ(t)

(

1− x

λ

)

(94)

Contrary to the homogeneous example, the stress field now depends not only on
the time but also on the spatial position, with the special form given in (94) thanks
to the equilibrium equation. The constitutive equation is a Duvaut-Lions viscous
regularization (Duvaut and Lions, 1976) of the damage model (8)-(10), which in the
1D context reduces to:

σ = (1− d) E ε (95)

ḋ =
1

k τ

〈
1

2
E ε2 − wy(d)

〉

where 〈x〉 =
x+ |x|

2
(96)

where the new material parameter τ has indeed the dimension of a time. Finally, the
load is representative of a relaxation test, that is a displacement U is instantaneously
prescribed at time t = 0 on one end of the rod, the other remaining clamped. It
appears that the load does not bring any new characteristic time, so that the various
fields solutions of the problem depend on the time only through the normalized time
t̄ = t/τ : this is the only influence of the characteristic time τ associated to viscosity.

At the initial time t = 0, the damage zone corresponds to the area where ḋ > 0. A
straightforward calculation with d = 0 shows that there is damage inception in a band
of width:

w0 = 1− 2− L/λ
2U/L

εy as soon as U ≥ U c = L

(

1− L

2λ

)

εy

It proves that the initial band width w0 depends not only on the heterogeneity length
scale λ but more generally on the material parameters and on the load level U itself.

A closed-form solution does not seem available for the further evolution of the
damage distribution and namely the band width w(t). Therefore, the solution is dealt
numerically. The results are presented in figure XI.8 for the following set of parameters
(no units, thanks to the normalization of L, E and τ):

L = 1 E = 1 τ = 1 k = 5.6125 10− 8 γ = 0.25 λ = 10 U/U c = 1.02

The following facts can be observed:

• With increasing time, the damage level at the smallest cross-section (x = 0)
increases while the band width (within which damage goes on evolving)
decreases, thus leading to an increasing damage gradient.
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Figure XI.8: (a) Damage spatial evolution; (b) Maximal damage evolution; (c) Evolu-
tion of the width of the damaged zone; (d) Damage gradient evolution.

• There exists a critical time beyond which the previous observations are dra-
matically strengthened. Namely, the damage rate highly increases while the
localization width goes to zero, resulting in a very large damage gradient.

From a purely numerical ground, the fact that the band width tends to zero when
damage increases may raise again the issue of spurious mesh-dependency. This is
confirmed by the numerical simulation of the perforated plate with a material obeying
the Duvaut-Lions viscous regularization of the rate-independent evolution law (9)-
(10). A given instantaneous displacement is prescribed on both sides of the plate.
On figure XI.9, the localization of damage in a band of width equal to the size of
a single element is apparent beyond some damage level. This is independent of the
viscosity parameter value because it only induces a change in the time scale, as in
the 1D example. In addition, the numerical treatment of such problems is somewhat
difficult regarding the time discretization scheme. Indeed, on the one hand, Cherukuri
and Shawki (1995) have shown that the stability of explicit schemes is ensured only
with time steps far smaller that those required by the usual stability conditions (based
on a linear analysis). On the other hand, Simo (1988) has shown that implicit schemes
become only conditionally stable and therefore also require a close attention to the
time–stepping.

In our opinion, these observations put severe restrictions on the use of viscous
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Figure XI.9: Damage distribution with viscosity for a relaxation test: (a) whole
specimen, (b) close–up at the right side of the hole.

regularization as a way to control damage localization. However, the essential fact
that demonstrates that viscous regularization alone is not sufficient concerns the high
increase of the spatial damage gradient, observed in both examples and in the literature,
even for dynamic simulations (Needleman, 1988). For physical reasons that will be
detailed in the next section, usual local constitutive relations, time-dependent as well
as time-independent, fail at characterizing the material behavior in the presence of large
gradients of the mechanical fields. This conclusion is based on a specific viscous law
and other ones may lead to more favourable results Ladevèze (2000).

1.5 STRAIN LOCALIZATION INDICATORS IN NUMERICAL SIMULATIONS AT FINITE
STRAINS

Rice’s condition for localization can be used to derive indicators to detect the onset
of possible numerical localization in finite element simulations (Billardon and Doghri,
1989; Doghri and Billardon, 1995; Besson et al., 2001b, 2003). Following Rice and
Rudnicki (1980) and Mear and Hutchinson (1985) in the case of finite strains, the
localization criterion is expressed as:

detA∼(~n) = 0 with A∼(~n) = ~n.D
∼∼
.~n+ R∼ (97)
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where the tensor R∼ is given by

2R∼ = −~n⊗ (~n. σ∼) + (~n. σ∼)⊗ ~n+ (~n. σ∼.~n) 1∼− σ∼ (98)

when the objective stress rate is taken as the Jauman rate.
A localization indicator can then be defined as:

Il = min
~n, ||~n||=1

det A
∼

(~n) (99)

At a given material point, localization can occur as soon as Il = 0. When performing a
structural finite element calculation, the condition Il = 0 taken over the whole structure
can be used as a criterion for failure initiation (Billardon and Doghri, 1989). Beyond
this point the problem is likely to be ill-posed, and the condition can also be used to
stop the calculations.

An example of application is given in figure XI.10 in the case of the Gurson model.
The indicator in normalized using the value of det~n.D

∼∼
.~n, De, when D∼ is equal to the

elasticity tensor. One gets:

De = det~n.E
∼∼
.~n =

1

4

(1− ν)E3

(1− 2ν)(1 + ν)3
∀~n (100)

for isotropic elasticity. The localization angle can also be determined. It corresponds
to the orientation of the vector, ~n0, minimizing detA∼ . The direction of the velocity

jump across the localization band, ~g, is computed as the eigenvector corresponding
to the lower eigenvalue of A∼(~n0). One notices that in the case of figure XI.10, the

localization angle is slightly larger than 45◦. This is due to the plastic dilatancy of the
constitutive equation.

An example of application of the localization indicator is given in the following
concerning the simulation of cup–cone fracture of tensile bars (Tvergaard and Needle-
man, 1984; Besson et al., 2001b). In absence of regularization, the mesh is designed so
that cup-cone fracture numerically occurs. An numerical investigation, has shown that
it is desirable to have approximatively square elements at the onset of localization. The
calculation shown on figure XI.11 was performed using quadratic elements (8 nodes)
with reduced integration (4 Gauss points).

The evolution of damage f and of the localization indicator Il is detailed in
figure XI.11 during cup–cone formation. After the maximum load has been reached,
progressive necking is observed and the specimen can be divided into two regions:
elastic unloading and plastic loading ((1) in figure XI.11). Damage is concentrated
at the center of the necked region so that the localization indicator becomes negative
(2). This also corresponds to the sharp slope change on the normalized load F/S0—
diameter reduction ∆d/d0 curve (F : force, S0 initial cross section, ∆d: diameter
variation, d0 initial diameter). The diameter reduction is monitored in the initial
symmetry plane. The highly damaged zone grows and leaves, behind its tips, an
elastically unloaded zone which correspond to the flat portion of the cup–cone (3) and
forms a penny–shaped crack. Ahead of this zone, two “wings” where the localization
criterion is met, develop and become larger as the central crack grows (3)—(5). Crack
deflection starts with a relatively small angle. Deflection seems to be possible when the
localization wings extend over 2 and more elements. At step (5) the wings have grown
sufficiently so that the cup–cone develops (6)(7). At some point, the diameter does not
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Figure XI.10: Minimum value of the localization indicator (full line) and localization
angle (dashed line), θ, as a function of the deformation under plane strain condition
(Gurson model).

vary any more. This occurs when the point of measure leaves the active plastic zone
which is ahead of the highly damaged band.

At the center of the specimen where localization starts, the predicted localization
angle is θ = ±60◦ whereas the observed on is equal to 90◦. Note that the experimental
fracture surface remains flat as in the calculations. This result is likely due the the finite
size of the localized band whereas Rice’s analyze is valid for an infinite medium. Once
the crack has left the center of the specimen, the agreement between the predicted angle
and the simulated one becomes better Besson et al. (2001b): it is possibly related to the
increase of the localization “wings”.

1.6 THE NEED FOR CHARACTERISTIC LENGTHS

It has been seen that the mathematical description of the damage problem becomes
ill-posed, at least in the context of rate-independent materials, so that the predicted
width of the localization bands is zero. Nevertheless, the localization phenomenon as a
concentration of the strain and the damage in narrow bands is indeed in agreement
with physical observations. It implies that the length scale of the macroscopic
mechanical fields becomes of the same magnitude as the microstructural length scale,
thus precluding the main homogenization hypothesis of scale separation: classical
homogenization is no more valid to derive the local constitutive laws. We think this
is the key point that explains why usual damage constitutive relations fail to predict
damage propagation within a structure, since they rely implicitly or not on this scale
separation assumption.

It should be noticed that the inadequacy of usual constitutive laws is not specific of
Damage Mechanics. There are other domains where the scale introduced through the
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Figure XI.11: Load vs. diameter reduction curve and cup–cone formation for a round
bar. Contour maps indicate damage (white: f = 0, black: f > 0.1) and the
localization indicator (white: elastic unloading, gray: plastic loading, black plastic
loading and negative indicator). Photographs give an example of cup–cone fracture in
a HSLA steel (Rivalin, 1998).
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loading conditions is close to the microstructure scale. In that cases too, there is a need
for new types of constitutive equations to get quantitative predictions in agreement
with the experiments, even though the problem remains well-posed, on the contrary of
damage ones. Thus, many observed phenomena are known in the literature whereby
the smaller the size, the stronger the response. For instance, indentation hardness of
metals and ceramics increases as the size of the indenter is decreased (Stelmashenko
et al., 1993).

Several authors have proposed to enrich the homogenization schemes to include
this length scale interaction. When the interaction is given a priori, (Drugan and Willis,
1996) succeeded in deriving a homogenized nonlocal constitutive law. However, the
task becomes harder when the interaction results from the evolution of the macroscopic
fields themselves, as for localization. Then, only rough approximations have been
obtained so far. Thus, in the context of hyperelasticity, Bardenhagen and Triantafyllidis
(1994) introduced strain gradient terms into the energy based on the analysis of a
periodic lattice. For ductile damage, Gologanu et al. (1997) enhanced Gurson’s model
by taking into account gradient effects on the boundary of the elementary representative
volume ; it also resulted in the introduction of strain gradient terms. Andrieux et al.
(1996) proposed a homogenization scheme to get some guidelines for the introduction
of the gradient of internal variables into the energy, based on the replacement of
Taylor’s scheme by a first order variation of the macroscopic internal variable field
inside a patch of elementary representative cells. Other authors preferred to introduce
scale effects on the basis of phenomenological propositions, mainly in the context of
metal plasticity where the mechanism of dislocation interaction is well studied, see for
instance (Gao et al., 1999; Fleck and Hutchinson, 1993; Forest et al., 2000).

Whatever their bases, all these approaches result in the introduction of some
characteristic lengths of the microstructure in the macroscopic equations. These new
length scales will in turn control the localization of the macroscopic fields, allowing to
retrieve a well-posed problem the solution of which is no more spuriously set by the
spatial discretization. In particular, the width of the localization bands does not tend
to zero, so that a finite non vanishing amount of energy is dissipated by the damage
mechanism.

2 REGULARIZATION METHODS

Any enhancement of the constitutive or even continuum model that is able to remove
the spurious mesh–dependency observed in the simulation of strain localization phe-
nomena is called a regularization method. It introduces generally additional intrinsic
length scales into the modeling that lead to finite width strain localization bands. The
pioneering work of the dutch school (de Borst, 1991, 1993; de Borst et al., 1993) is
based on a reappraisal of the mechanics of generalized continua developed in the 1960s
(Kröner, E., 1967; Forest et al., 2001). Generalized continua can be classified into 3
main groups. Higher order continua are endowed with additional degrees of freedom
in addition to the usual displacement field (Cosserat and micromorphic theories,
according to Eringen (1976)). Higher grade continua introduce higher space derivatives
of the displacement field than the usual deformation gradient (second gradient theory
according to Mindlin and Eshel (1968)). This group of theories also includes the
gradient of internal variable approach that lets the gradient of some selected internal
variable play a role in the balance and constitutive relations (Aifantis, 1987). The
last class contains fully nonlocal media for which integral relations relate stress and
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strain evolutions (Eringen, 1976; Pijaudier-Cabot and Bazant, 1987). Examples of such
enhancements are given below, that show the presence of an intrinsic length scale in
the equations and its effect on strain localization phenomena.

2.1 A TOOL TO EXPLORE NONLOCALITY

As confirmed by the huge number of publications dedicated to the subject over the past
thirty years, there are many ways to introduce characteristic lengths into constitutive
models, resulting in so-called “nonlocal models”. Because of the diversity, there is a
need for a general framework to encompass several of these nonlocal models, aiming at
a unified formulation to better understand their differences and explore their properties.
Unfortunately, a unified framework implies some abstraction and the reader interested
only in a given nonlocal model may skip this part.

As soon as nonlocality is introduced, we think that the material point is no more
the right scale to express the constitutive laws namely because of the constitutive
interactions between distinct material points: the scale of the structure should be
preferred. However, this cannot be achieved in a systematic way for any type of
constitutive laws. Therefore, we restrict our attention to the class of rate-independent
generalized standard materials. Moreover, for the sake of simplicity, no thermal
coupling will be considered and the material is assumed isothermal.

2.1.1 Generalized standard materials

The concept of generalized standard materials has been introduced as a special class of
constitutive laws initially by Halphen and Nguyen (1975) in the context of plasticity.
It has then been extended to various dissipative phenomena, see Nguyen (1993), to
provide a general expression for the evolution laws of internal variables, in intimate
relation with the notion of normal and associated flow rules in plasticity, that is the
principle of maximal dissipation. On a thermodynamical ground, its energetic bases
ensure that the second principle of thermodynamics, under the form of the Clausius–
Duhem inequality in mechanics, is automatically fulfilled, while on a mathematical
ground, it relies on convex analysis, see Moreau (1970) for the relation with Mechanics
and Ekeland and Temam (1974) for essential mathematical results. Finally, the reader
is also referred to Lemaitre and Chaboche (1994) for a pedagogical presentation.

In this framework, the local material state is described by means of the strain tensor
ε
∼

and a set of independent internal variables a. The definitions of the stress tensor σ
∼

and the driving forces A associated to a are given by the state equations which derive
from the free Helmholtz energy Φ:

σ∼(~x) =
∂Φ

∂ε
∼

(

ε∼(~x), a(~x)
)

A(~x) = − ∂Φ

∂α

(

ε∼(~x), a(~x)
)

(101)

Thanks to these definitions, the mechanical dissipation (the only dissipation source) is
equal to:

D(~x) = σ∼(~x) : ε̇∼(~x)− Φ̇(~x) = A(~x) ȧ(~x) (102)

The driving forces govern the rate of the internal variables ȧ through a flow rule and a
consistency condition which rely on a convex threshold function g(A):

ȧ(~x) = λ(~x)
∂g

∂A
(A(~x)) (103)
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g (A(~x)) ≤ 0 λ(~x) ≥ 0 λ(~x) g (A(~x)) = 0 (104)

λ is the plastic multiplier, in reference to plastic behavior. The set of driving forces that
fulfill the inequality (104)a is the domain of reversibilityK of the constitutive behavior
which, by assumption, should contain A = 0:

K = {A ; g(A) ≤ 0}

An explicit reference to the material point through its coordinates ~x is made in the
previous equations to allow a clear distinction between a field and its value at a given
point, for instance the strain field ε

∼
and the local strain tensor ε

∼
(~x).

As an illustration, consider the damage model described through equations (8)
to (10). At first sight, it does not belong to the framework of generalized standard
materials because its threshold function g depends explicitly on the strain tensor, on
the contrary of (103)–(104). However, we consider the following free energy, which
depends on the strain tensor and the damage variable:

Φ
(

ε
∼
, d
)

=
1

2
(1− d) ε

∼
: E
∼∼

: ε
∼

+ k
d (d− 1)

1 + γ − d

The stress–strain relation (8) is retrieved at once, while the driving force associated to
damage is defined by:

A = − ∂Φ

∂d

(

ε∼, d
)

=
1

2
ε∼ : E

∼∼
: ε∼ + k − wy(d)

Then, it can be noticed that the evolution equations (9)-(10) are equivalent to (103)-
(104) when choosing the following threshold function g that depends only on the
driving force A:

g (A) = A− k

2.1.2 Introduction of a dissipation potential

The evolution equation (103)-(104) can be expressed in a more compact way that
allows a relation with the expression of the dissipation. For that purpose, the dissipation
potential Ψ is introduced through a Legendre transform of the (indicator of the)
threshold function f :

Ψ (ȧ(~x)) =
def.

Sup
A∈K

A(~x) ȧ(~x) (105)

Generally, the dissipation potential is not a regular function. It may include indicator
functions resulting in constraints for the internal variable rate (e.g. damage only
increases, plastic strain remains isochoric, etc.). Besides, in the context of rate-
independent material, it is positive homogeneous of degree one (like the norm function,
for instance) and therefore, it is often not differentiable for ȧ = 0.

To overcome the lack of regularity, we rely on the notion of subgradient which
extends usual derivatives for convex non differentiable functions. In the present case,
the subgradient of Ψ for a given rate ȧ(~x) is defined as the set of driving forces which
realize the maximum (105):

∂Ψ (ȧ(~x)) =
{

A ∈ K ; ∀ Â ∈ K A ȧ(~x) ≥ Â ȧ(~x)
}

(106)
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A characterization of the maximum (105) is actually provided by Euler equation (103)
and Kuhn and Tucker condition (104). It means that the evolution equations (103)-
(104) are equivalent to the following more compact statement:

A(~x) ∈ ∂Ψ (ȧ(~x)) (107)

Regarding the dissipation, it appears that if the internal variable rate obeys the evolution
equation (107), the dissipation is maximized, according to (106): this is the principle
of maximal dissipation. As A = 0 belongs to the domain of reversibility K, it
immediately implies that the dissipation is positive, that is the Clausius – Duhem
inequality is automatically fulfilled by generalized standard materials.

To illustrate the notion, the dissipation potential corresponding to the damage
model is exhibited:

Ψ (α̇) = Sup
A ≤k

A · α̇ =

{
+∞ if α̇ < 0
k α̇ if α̇ ≥ 0

= k α̇+ IR+ (α̇) (108)

where IC denotes the indicator function of a closed convex set C: it is zero valued
inside C and equal to +∞ outside C.

2.1.3 Extension to the scale of the structure

In the context of generalized standard materials, the constitutive behavior is totally
defined using two energetic potentials, the free energy and the dissipation potential.
This is an appropriate starting point to extend the constitutive laws from the material
point scale to the structural scale. Following Lorentz and Andrieux (1999), a global
free energy and a global dissipation potential are defined as the sum of the local ones
over the whole structure, where Ω denotes the body domain:

F
(

ε∼, a
)

=
def.

∫

Ω

Φ
(

ε∼(~x), a(~x)
)

dx (109)

D (ȧ) =
def.

∫

Ω

Ψ (ȧ(~x)) dx (110)

The constitutive law can be expressed at the global scale formally in a similar way as
at the material point scale, that is:

σ∼ =
∂F

∂ε∼

(

ε∼, a
)

A = − ∂F

∂a

(

ε∼, a
)

(111)

A ∈ ∂D (ȧ) (112)

Now the state variables are the strain and internal variable fields while the driving forces
are linear forms operating on these fields. It is yet essential to note that the global law
(111)-(112) is totally equivalent to the local one (101)-(104) expressed at every point
~x of the structure. We believe this is the appropriate level to introduce nonlocality into
the constitutive model.
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2.1.4 Time integration: a minimum principle

It is still possible to go one step further by discretising the global constitutive equations
(111)-(112) with respect to time. The objective is to obtain a characterisation of the
internal variable evolution as a minimization problem. Let us focus on a single time-
increment [tn, tn+1], where qn and qn+1 denote respectively the value of a quantity q
at the beginning and the end of the increment. ∆q = qn+1 − qn denotes its variation
during the increment. The use of Euler backward scheme leads to the following
discretized constitutive equations, corresponding respectively to the state equations
(111) and the evolution equation (112):

σ∼
n+1

=
∂F

∂ε∼

(

ε∼
n+1

, an+1

)

An+1 = − ∂F

∂a

(

ε∼
n+1

, an+1

)

(113)

an+1 ∈ ∂D
(

∆a

∆t

)

(114)

A combination of both discretized equations to eliminate the driving forces results in:

−∂F
∂a

(εn+1, an+1) ∈ ∂D
(

∆a

∆t

)

(115)

This is the characterization of a minimum. Namely, the internal variable field an+1 at
the end of the time-step realizes the following minimum:

an+1 = arg min
a

E

(

ε∼
n+1

, a

)

(116)

where E
(

ε∼, a
)

= F
(

ε∼, a
)

+ ∆tD

(
a− an

∆t

)

In the case of rate-independent materials, the dissipation potential is positive homoge-
neous of degree one, which implies that the time-step length ∆t disappears from the
expression of E, resulting in:

E
(

ε∼, a
)

= F
(

ε∼, a
)

+D (a− an) (117)

Actually, the minimum principle would be preserved if the dependence of the strain
field on the displacement field ~u was explicitly expressed and if the virtual external
work Wext(~u) was subtracted from E. It leads to the following incremental potential
energy, where the attribute “incremental” is set to remind that the function also depends
on the values of the internal variables an at the beginning of the time-increment:

Epot (~u, a) = F
(

ε
∼
(~u), a

)

+D (a− an)−Wext(~u) (118)

Thanks to the expression (113) of the stress field, the minimization with respect to
the displacement field then results in the variational formulation of the equilibrium
equation, the principle of virtual power:
∀ δ~u ∈ KA0

〈
∂Epot

∂~u
(~un+1, an+1)

∣
∣
∣
∣
δ~u

〉

=

∫

Ω

σ
∼

n+1
(~x) : ε

∼
(δ~u(~x)) dx− δWext = 0 (119)
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where KA denotes the set of kinematically admissible displacements, KA0 the
corresponding vector space (the set of admissible virtual velocities) and the brackets
〈· | ·〉 denote the duality product.

In conclusion, a variational formulation of the constitutive relation at the scale of
the structure has been proposed. After time-discretization, it can be expressed as a
minimum principle. Moreover, the equilibrium equations may also be expressed as a
minimum principle. Thus, the solution (~un+1, an+1) of the problem at the end of the
time-step realizes the following minimizations:

~un+1 = argmin
~u∈KA

Epot (~u, an+1)

an+1 = argmin
a

Epot (~un+1, a) (120)

The simultaneous minimization with respect to both variables is not equivalent to (120)
as soon as the potential energy is not convex with respect to the couple (~u, a). It is more
restrictive and may be set as a criterion for the stability of the solution, see Francfort
and Marigo (1993).

2.2 SPATIAL REGULARIZATION OF THE MECHANICAL VARIABLES

One of the first attempts to introduce some characteristic lengths into a constitutive law
consists in substituting a smoothed variable or a smoothed driving force for its local
counterpart into the state equations, the flow rule or the consistency condition. The
purpose is evidently to smooth up the abrupt spatial variations of the mechanical fields
observed in localization bands. This pragmatic way of introducing some regularization
has been used by several authors in the past and is still intensively applied in the context
of brittle damage, see for instance (Bazant and Pijaudier-Cabot, 1988; Peerlings et al.,
1996; Comi, 2001; Pijaudier-Cabot and Bazant, 1987; Pijaudier-Cabot and Huerta,
1991; Comi and Perego, 2001) for the introduction of a nonlocal damage variable
within the evolution law. Yet, it can be noticed that its application in the context of
plasticity, and in particular ductile plasticity, is more seldom (Leblond et al., 1994;
Tvergaard and Needleman, 1995; Baaser and Tvergaard, 2003).

2.2.1 Regularization operators

In the present approach, the first step is the choice of a regularizing operator R, acting
on the strain field, the internal variable field or the driving forces. Consider for instance
the internal variable field a. This operator produces the smoothed internal variable
field, say ā, which is an element of a new space of functions VR, desirably “ smoother ”
than the functions of the space of the original internal variable fields V:

R : V → VR ⊂ V
a 7→ ā = Ra

The definition of the operator R may rely on an integral as well as a differential
characterization, see for instance the frequently used Gaussian convolution operator
M, introduced by Eringen (1972) in the context of nonlocal elasticity, or the gradient
penalty operator P, Peerlings et al. (1996), which both involve a characteristic length
Lc:

(M a) (x) = ā(x) =

∫

Ω

ω (x, y) a (y) dy
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with







ω (x, y) =
1

Vr(x)
e
− ‖x− y‖

2

2L2
c

Vr(x) =

∫

Ω

e
− ‖x− y‖

2

2L2
c dy

(121)

P a = ā solution of

{
ā− L2

c ∆ā = a in Ω
∇ā · n = 0 on ∂Ω

(122)

Two natural demands arise on regularizing operators: they must leave unchanged
the constant fields and be injective. The latter demand is based on the physical
consideration that the “true” state variable which is used for the description of the
local thermodynamic state of the material is the non smoothed one, so that it must
be determined uniquely from the smoothed one. Remark also that the linearity of the
operator R is a matter of convenience which ensures in particular that the regularization
involved in the rate constitutive equations is the same (differentiation of a linear
operator leads to itself).

2.2.2 An attempt toward a classification

The second step of the present nonlocal approach consists in substituting the smoothed
state variable or driving force for its local counterpart into part of or all the equations
of the problem. Obviously, there is a wide range of combinations, depending on
which variables are replaced by their smoothed counterparts and where they are. The
situation is somewhat confusing because all the resulting models do not possess the
same properties, especially regarding localization control.

Lorentz and Andrieux (2003) have tried to make a classification of the formulations,
thus allowing a study of their generic properties, independently of the local constitutive
laws under consideration. Three classes of properties have been distinguished:

• Effect on a well-posed problem: when applying a regularization technique to a
local problem which is an initially well-posed, does it result in a still well-posed
nonlocal problem ?

• Thermodynamics: does the nonlocal model fulfills the second principle of
Thermodynamics (Clausius – Duhem inequality), as soon as the local one does ?

• Effective regularization: does the nonlocal model indeed select a minimal (non
zero) width for the localization bands ?

The analysis relies on the interpretation of the equations of the problem as a
minimization principle (120). Therefore, it is restricted to isothermal rate-independent
materials whose local constitutive law belongs to the framework of generalized
standard materials. Moreover, for the sake of simplicity in the presentation, the explicit
dependence of the strain field to the displacement field is omitted, and so is the external
virtual work. On this basis, only the strain field or the internal variable field may be
smoothed by a regularization operator. The five possible combinations are gathered in
table XI.2.

The conclusions of the analysis are the following:

• Coupled regularization. A smoothed variable (strain or internal variable) is
introduced in both minima (117), characterizing respectively the equilibrium
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and the constitutive relation. In that case, the regularization operator has to
be coercive2 to preserve solutions to initially well-posed problems. This is not
achieved by the operators (121) and (122). Moreover, when using a coercive
operator, the problem is no more regularized: initially ill-posed problems remain
ill-posed.

• Split regularization. Smoothed internal variables are introduced into the free
energy. It corresponds to a large class of nonlocal formulation where the driving
forces are regularized. Again, a coercive operator is required to preserve the
well-posed character of initially well-posed problem and, in that case too, no
regularization is brought into the problem.

• Uncoupled regularization. A smoothed strain is introduced in the global consti-
tutive equation, minimum (120), or smoothed internal variables are introduced
in the equilibrium equation, minimum (120). In that case, the symmetry of the
problem is lost, since a different potential is used in the equilibrium and the
constitutive law. In particular, the second principle of Thermodynamics is no
more automatically fulfilled. However, effective regularization is indeed brought
into the problem: the width of localization band may be controlled.

In conclusion, except for very special nonlocal models which escape the general
framework of the analysis, effective regularization and preservation of the grounding
energetic basis cannot be gained together. This is related to the fact that such a kind
of regularization is more pragmatic than based on physical derivations. Regarding this
aspect, our preference goes to models with higher order gradients, as will be presented
in the next parts. Nevertheless, the regularization approach has the merit of removing
spurious mesh-dependency from the computations, as illustrated below.

2.2.3 Numerical application

To illustrate the potencies of introducing nonlocality through the regularization of some
mechanical fields, we turn again our attention to the perforated plate already used as
a benchmark to explore the properties of local models and viscous regularization,
see figure XI.2. The loading and the constitutive behavior are still a stretching
prescribed displacement and the damage law presented in section 1.1.2 with the
material parameters given in table XI.1.

Relying on the conclusions of the previous section, we choose to adopt an
uncoupled strain regularization. It means that a smoothed strain is used to compute
the internal variable while the stress - strain relation relies on the local strain only. The
corresponding constitutive equations read:

σ∼ = (1− d) E
∼∼

: ε (123)

ε̄∼ = R ε∼ (124)

g
(

ε̄∼, d
)

≤ 0 ḋ ≥ 0 ḋ g
(

ε̄∼, d
)

= 0 (125)

where g is still the threshold function defined in (9). The regularization operator
(122) is preferred to (121) for the regularization step (124), with characteristic length
Lc = 15 mm. Indeed, with (122), a new nodal unknown for the spatial discretization

2A function f : E → R is coercive if f(x) → +∞ when ||x|| → ∞.
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of the smoothed strain field and a new corresponding balance equation (122) are
introduced. This preserves the usual architecture of finite element software whereas
(121) results in a coupling between Gauss points of distinct finite elements, which is
far more unusual. Details on the finite element implementation are given in Godard
(2001). We just mention that the contributions of Gauss points where damage has
reached its ultimate value d = 1 have to be removed from the equation (124) to avoid
the spurious enlargement of the damaged zone observed in Peerlings (1999). This
artificial procedure is a direct consequence of the already mentioned pragmatism of the
approach.

The numerical results are presented in figure XI.12 in terms of the damage
distribution a little bit before the ultimate fracture of the specimen: one of the ligaments
of the plate is totally broken while the second is crossed by a propagating damaged
zone. It can be observed that the localization band width spreads over several finite
elements and is normal to the tensile direction, which was not the case with the viscous
law, figure XI.9. The main purpose of the regularized approach is fulfilled: to remove
the spurious mesh-dependency. However, there are no physical justifications for the
choice of the specific regularization operator (122), nor for the strain regularization
compared to other possible schemes enumerated in table XI.2.

2.3 ENHANCEMENT OF THE KINEMATICS: THE MICROMORPHIC CONTINUUM

One of the most general higher order continuum is the micromorphic one that adds
to the displacement degrees of freedom ~u a full, non–symmetric, micro–deformation
tensor χ

∼
. The micro–deformation field is not necessarily compatible. If χ

∼
reduces to a

pure rotation, the considered material is called a Cosserat medium. If one introduces
the constraint that χ

∼
be equal to the gradient of the displacement field, the theory

reduces to a second gradient model. The micromorphic theory therefore encompasses
several other generalized models, which makes it an attractive framework to explore
the regularization capabilities of enhanced continua. It is presented here within the
small perturbation hypothesis. The reader is referred to Forest and Sievert (2003) for
non–linear micromorphic models at finite strains.

2.3.1 Balance and constitutive equations

Several sets of generalized strain measures can be defined. The one used in Germain
(1973) is retained here:

ε∼ =
1

2
(∇~u+∇~uT ), e∼ = ∇~u− χ

∼
, K

∼

= ∇χ
∼

(126)

i.e. the strain, relative deformation and micro–deformation gradient tensors. Three
generalized stress tensors must therefore be introduced in the virtual power of internal
and contact forces:

p(i) = σ
∼

: ε̇
∼

+ s
∼

: ė
∼

+ S
∼

...K̇
∼

, p(c) = ~t.~̇u+ M
∼

: χ̇
∼

(127)

where the stress tensor σ∼ is symmetric. The balance of momentum and balance of

moment of momentum equations read:

∇(σ∼ + s∼) = ~0, ∇S
∼

+ s∼ = 0 (128)
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Figure XI.12: Damage field with the smoothed strain nonlocal model: (a) whole
specimen, (b) close–up at the right side of the hole.
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They are coupled thanks to the micro–stress tensor s∼. Equilibrium at the boundary
means:

~t = (σ∼ + s∼).~n, M∼ = S
∼

.~n (129)

In the standard model, all strain tensors are decomposed independently into elastic and
plastic contributions:

ε∼ = ε∼
e + ε∼

p, e∼ = e∼
e + e∼

p, K
∼

= K
∼

e + K
∼

p (130)

The free energy is then a function of all elastic parts and additional internal variables:
Ψ(ε∼

e, e∼
e,K

∼

e, q). The state laws read:

σ∼ = ρ
∂Ψ

∂ ε∼
e
, s∼ = ρ

∂Ψ

∂ e∼
e
, S

∼

= ρ
∂Ψ

∂K
∼

e , R = ρ
∂Ψ

∂q
(131)

The residual intrinsic dissipation follows:

D = σ∼ : ε̇∼
p + s∼ : ė∼

p + S
∼

... K̇
∼

p −Rq̇ (132)

The evolution equations can be derived from a viscoplastic potential Ω(σ∼, s∼,S∼ , R):

ε̇∼
p =

∂Ω

∂ σ∼
, ė∼

p =
∂Ω

∂ s∼
, K̇

∼

p
=
∂Ω

∂ S
∼

, q̇ = −∂Ω

∂R
(133)

The choice of a convex potential then ensures the positivity of intrinsic dissipation.
The viscoplastic potential can involve a single yield function containing a combi-

nation of all stress tensors, or, in contrast, be the sum of several mechanisms involving
yield functions in which the individual stress tensors intervene separately. These two
possibilities will be explored in the next subsection. Examples of single and multi–
mechanism plasticity models for micromorphic media are provided in Chambon et al.
(2001).

The main equations are summarized in table XI.3 in both intrinsic and index
forms to avoid any ambiguity. The example of linear isotropic elastic relations is also
provided, following Mindlin (1964). The general case of linear elasticity reads

σ∼ = c
∼∼

: ε∼ + g
∼∼

: e∼ (134)

s
∼

= g
∼∼

: ε
∼

+ b
∼∼

: e
∼

(135)

M
∼

= A
∼∼∼

...K
∼

(136)

In the following, the coupling term will not be taken into account for simplicity.
Simplified elasticity relations have been proposed in Shu and Fleck (1999) for the
second grade medium:

S
∼

= l2e c
∼∼

: K
∼

, Sijk = l2ecijpqKpqk (137)

This relation can be used also for the micromorphic model and amounts to

A1 = A2 = A3 = A4 = A5 = A8 = l2eλ, A10 = A11 = A13 = A14 = A15 = l2eµ

This reduces the number of constants Ai (table XI.3) to a single internal length le.
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Degrees of freedom

(~u, χ
∼
) (ui, χij)

Strain measures

ε∼ = {∇~u}, e∼ = ∇~u− χ
∼

εij = u(i,j), eij = ui,j − χij

K
∼

= ∇χ
∼

Kijk = χij,k

Balance equations

∇(σ∼ + s∼) + ~f = 0, ∇S
∼

+ s∼ + P∼ = 0

(σij + sij),j + fi = 0, Sijk,k + sij + Pij = 0

Boundary conditions

~t = (σ∼ + s∼).~n, M∼ = S
∼

.~n ti = (σij + sij)nj , Mij = Sijknk

Linear isotropic elasticity potential

W =
1

2
λεiiεjj + µεijεij +

1

2
b1eiiejj +

1

2
b2eijeij +

1

2
b3eijeji

+ g1εiiejj + g2εij(eij + eji)

+ A1KiikKkkj +A2KiikKjkj +
1

2
A3KiikKjkk +

1

2
A4KijjKikk

+ A5KijjKkik +
1

2
A8KijiKkjk +

1

2
A10KijkKijk

+ A11KijkKjki +
1

2
A13KijkKikj +

1

2
A14KijkKjik

+
1

2
A15KijkKkji

Linear isotropic elasticity relations

σij = λεppδij + 2µεij + g1eppδij + g2(eij + eji)

sij = g1εppδij + 2g2εij + b1eppδij + b2eij + b3eji

Spqr = A1(Kriiδpq +Kiipδqr) +A2(Kiiqδpr +Kiriδpq) + A3Kjjrδpq

+ A4Kpiiδqr +A5(Kipiδqr +Kqiiδpr) +A8Kiqiδpr

+ A10Kpqr +A11(Kqrp +Krpq) +A13Kprq

+ A14Kqpr +A15Krqp

Table XI.3: Micromorphic medium: balance equations and isotropic linear elasticity
relations
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2.3.2 Application to strain localization phenomena

Two extensions of the classical compressible plasticity framework with the elliptic
potential presented in section 1.3.2 are proposed here.

Micromorphic plasticity with a single yield function

A yield criterion g(σ∼, s∼,M∼ ) is introduced that depends on the three stress tensors:

g(σ∼, s∼,M∼ ) = σ? −R(p) (138)

σ2
? =

3

2
C σ∼

dev : σ∼
dev + F (trace σ∼)2

+ a1 s∼
dev : s∼

dev + a2 s∼
dev : s∼

devT + a3(trace s∼)2 + bM
∼

...M
∼

(139)

The invariant MijkMijk only is retained among the 5 possible ones for the sake of
simplicity. The flow rules associated to the chosen yield function result from the
generalized normality rule (133):

ε̇∼
p = ṗ

∂g

∂ σ∼
, ė∼

p = ṗ
∂g

∂ s∼
, K̇

∼

p
= ṗ

∂g

∂M
∼

(140)

The single plastic multiplier ṗ is derived from the consistency condition when g = 0:

ġ =
∂g

∂ σ
∼

: σ̇
∼

+
∂g

∂ s
∼

: ṡ
∼

+
∂g

∂M
∼

...Ṁ
∼

= 0 (141)

ṗ =
H1

H2 +H3 −H4
, with H1 =

∂g

∂ σ∼
: c
∼∼

: ε̇∼ +
∂g

∂ s∼
: b
∼∼

: ė∼ +
∂g

∂M
∼

...A
∼∼∼

...K̇
∼

(142)

H2 =
∂g

∂ σ
∼

: c
∼∼

:
∂g

∂ σ
∼

+
∂g

∂ s
∼

: b
∼∼

:
∂g

∂ s
∼

+
∂g

∂M
∼

...A
∼∼∼

...
∂g

∂M
∼

,

H3 =
dR

dp
, H4 =

∂g

∂f
(1− f)trace

(

∂g

∂ σ∼

)

(143)

The contribution H4 is due to the possible dependency of material parameters on
porosity f , the evolution of which is still given by the classical formula: ḟ =
(1− f)trace ε̇∼

p.

Multi–criterion plasticity

According to this second class of elastoplastic models and in the spirit of multi–
mechanism–based frameworks Mandel (1965); Cailletaud and Sai (1995), three equiv-
alent stress measures are introduced, together with three distinct yield functions:

g1(σ∼) = σ? −R(p), g2(s∼) = s? −Rs(ps), g3(M
∼

) = M? −Rk(κ), (144)

σ2
? =

3

2
C σ∼

dev : σ∼
dev + F (trace σ∼)2 (145)
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s2? =
3

2
a1 s∼

dev : s∼
dev +

3

2
a2 s∼

dev : s∼
devT + a3(trace s∼)2, M2

? = M
∼

...M
∼

(146)

The associative flow rules involve three plastic multipliers corresponding to each
mechanism:

ε̇∼
p = ṗ

∂g1
∂ σ∼

, ė∼
p = ṗs

∂g2
∂ s∼

, K̇
∼

p
= κ̇

∂g3
∂M

∼

, ṗ =

∂g1
∂ σ∼

: c
∼∼

: ε̇∼

∂g1
∂ σ∼

: c
∼∼

:
∂g1
∂ σ∼

+ dR
dp
−H4

(147)

ṗs =

∂g2
∂ s∼

: b
∼∼

: ė∼

∂g2
∂ s∼

: b
∼∼

:
∂g2
∂ s∼

+ dRs
dps

, κ̇ =

∂g3
∂M

∼

...A
∼∼∼

...K̇
∼

∂g3
∂M

∼

...A
∼∼∼

... ∂g3
∂M

∼

+ dRk
dκ

(148)

Coupling terms between the different mechanisms can be introduced in the hardening
functions R,Rs et Rk. For simplicity, they are not considered here.

First application to strain localization phenomena

A micromorphic compressible elastoplastic material is considered, that admits a simple
linear softening rule (H < 0):

R = R0 +Hp

and an elliptic yield function. Plastic contributions e∼
p and K

∼

p are set to zero in this

first example. The classical plastic strain ε∼
p only is non–vanishing. In this special

case the previous two formulations of micromorphic plasticity coincide. It amounts to
taking a1 = a2 = a3 = b = 0 in equation (139), or very high thresholds Rs and Rk

in equation (144). The remaining relevant parameters are the additional elastic moduli.
One takes here:

b1 = λ, b2 = b3 = µ, A1,...,15 = A (149)

The classical parameters ν = 0 and F = C/2 are used to ensure that no lateral
deformation takes place and that strain localization bands are horizontal according to
the classical bifurcation analysis of section 1.3.2. The problem becomes actually one–
dimensional (strip along direction 2 in the sequel). The localization problem can in fact
now be solved analytically.

σ? =
√
C + F |σ22|, ε̇p

22 = ṗ
√
C + F , ṗ =

2µ
√
C + F ε̇22

2µ(C + F ) +H
(150)

For monotonous loading, one gets:

p =
2µ
√
C + F

2µ(C + F ) +H

(

ε22 −
R0

2µ
√
C + F

)

(151)

The balance equations for stresses must be taken into account:

(σ22 + s22),2 = 0, M222,2 + s22 = 0

σ22 = 2µ(ε22 − εp
22) =

2µ

2µ(C + F ) +H

(

Hε22 +R0

√
C + F

)

, (152)

s22 = 2µ(ε22 − χ22) M222 = Aχ22,2
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A system of equations is obtained for the two unknowns (ε22, χ22):
{
H̄ε22,2 + 2µ(ε22,2 − χ22,2) = 0
Aχ22,22 + 2µ(ε22 − χ22) = 0

(153)

where H̄ = 2µH/(2µ(C + F ) +H). The micro–deformation χ22 is then solution of
equation

χ22,222 −
2µH̄

A(H̄ + 2µ)
χ22,2 = 0 (154)

It appears that, when H is negative, the solution is sinusoidal with the wave length:

1/ω = 1/

√

2µ|H̄|
A(H̄ + 2µ)

(155)

The strain discontinuity of figure XI.13(a) is replaced by a strain localization zone
of finite width. The localization zone is an arc of sinus curve for this simple model,
whereas the material unloads elastically in the rest of the strip.

Second application to strain localization phenomena

The multi–criterion model is used here with the following hardening rules:

R = R0 +Hp, Rs = R0s +Hsps, Rκ = R0κ +Hκl
2
pκ (156)

The modulus H is taken negative as in the previous examples, whereas Hs and Hκl
2
p

remain positive. In addition to the parameters (149), the following values will be used
in the numerical examples to come:

b3 = µ, A = 25 MPa.mm2, a1 = C = 1, a2 = 0, a3 = F = 0.5

Hs = 2 MPa, Hκ = 50 MPa, lp = 1 mm

R0 = 1 MPa, R0s = 0.0001 MPa, R0κ = 0.0001 MPa.mm2 (157)

The profile of the localization zone can again be predicted analytically. The analysis is
similar to the previous one, when the elasticity relations are taken into account:

σ22 =
2µ

2µ(C + F ) +H
(Hε22 +R0

√
C + F ) (158)

s22 =
2µ

2µ(a1 + a3) +Hs
(Hse22 +Rs0

√
a1 + a3) (159)

M222 =
A

A+Hκl2p
(Hκl

2
pK222 +R0κ) (160)

The following constants are defined:

H̄ =
2µH

2µ(C + F ) +H
, H̄s =

2µHs

2µ(a1 + a3) +Hs
, H̄κ =

AHκ

A+Hκl2p
(161)

The equation governing χ22 then takes the same form as (154). The strain localization
profile is again a sinus arc with a wave length related to

ω =

√

|H̄|H̄s

H̄κl2p(H̄ + H̄ ′)
(162)
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2.3.3 Finite element simulations with the micromorphic continuum

The implementation of the micromorphic model into a finite element program is
illustrated here in the two–dimensional case (plane stress and plane strain). The vector
of degrees of freedom attributed to each node is written:

[d.o.f] = [U1 U2 X11 X22 X12 X21]
T (163)

The associated generalized strain vector is:

[grad] = [ε11 ε22 ε33 ε12 e11 e22 e33 e12 e21

K111 K112 K121 K122 K211 K212 K221 K222]
T (164)

The matrix [B] linking the strain vector to the degrees of freedom reads as follows
under plane strain conditions:

[grad] = [B] [d.o.f] , [B] =





























∂x1 0 0 0 0 0
0 ∂x2 0 0 0 0
0 0 0 0 0 0

1
2∂x2

1
2∂x1 0 0 0 0

∂x1 0 −1 0 0 0
0 ∂x2 0 −1 0 0
0 0 0 0 0 0
∂x2 0 0 0 −1 0
0 ∂x1 0 0 0 −1
0 0 ∂x1 0 0 0
0 0 ∂x2 0 0 0
0 0 0 0 ∂x1 0
0 0 0 0 ∂x2 0
0 0 0 ∂x1 0 0
0 0 0 ∂x2 0 0





























(165)

where ∂xi
= ∂ ·/∂xi. Plane strain conditions imply ε33 = e33 = 0. In the case of plane

stress conditions, ε33 and e33 are introduced as additional degrees of freedom shared
by each element. The associated reactions are σ33 and s33. Plane stress conditions are
enforced by prescribing vanishing reaction stresses, but other conditions can also be
considered. The generalized stress vector reads:

[flux] = [σ11 σ22 σ33 σ12 s11 s22 s33 s12 s21

M111 M112 M121 M122 M211 M212 M221 M222]
T (166)

The isotropic elasticity matrix linking the elastic part of the micro–deformation
gradient and the third–rank stress tensor is written as:















M111

M112

M121

M122

M211

M212

M221

M222















= [A]















K111

K112

K121

K122

K211

K212

K221

K222
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where [A] equals














AA 0 0 A1,4,5 0 A2,5,8 A1,2,3 0
0 A3,10,14 A2,11,13 0 A1,11,15 0 0 A1,2,3

0 A2,11,13 A8,10,15 0 A5,11,14 0 0 A2,5,8

A1,4,5 0 0 A4,10,13 0 A5,11,14 A1,11,15 0
0 A1,11,15 A5,11,14 0 A4,10,13 0 0 A1,4,5

A2,5,8 0 0 A5,11,14 0 A8,10,15 A2,11,13 0
A1,2,3 0 0 A1,11,15 0 A2,11,13 A3,10,14 0

0 A1,2,3 A2,5,8 0 A1,4,5 0 0 AA















with AA = 2A1 + 2A2 +A3 +A4 + 2A5 +A8 +A10 + 2A11 +A13 +A14 +A15.
The notation Ai,j,k = Ai +Aj +Ak is used.

The variational formulation of the micromorphic boundary value problem is a
straightforward extension of the classical one:

∫

Ω

(σ∼ : ε̇∼ + s∼ : ė∼ + S
∼

...K̇
∼

) dV =

∫

∂Ω

(~t.~̇u+ M∼ : χ̇
∼
) dS (167)

with the boundary conditions ~t = (σ∼ + s∼).~n, M∼ = S
∼

.~n. The finite element

formulation follows from the same discretization of the variational problem as in the
classical case (Besson et al., 2001a).

The analytical solutions for the strain localization profiles derived in the previous
sections are appropriate tests for the implementation of the model. The strip is meshed
by a row of elements. Figure XI.14(a) shows that the numerical profile coincides with
the predicted one according to equation (162). The mesh objectivity of the results can
be tested also. In the classical case, mesh refinement leads to a strain localization
band of smaller and smaller width, as shown on figure XI.13(a). In contrast, the
localization band converges toward the predicted sinus arc for a sufficiently fine mesh
(figure XI.13(b)).

The plasticity model based on a single yield function can be used now using the
finite element method, for different values of parameter b allowing for non–vanishing
plastic contribution Kp

222. The other parameters are set to the already given numerical
values. In particular,Ai = 1 MPa.m2, ∀i. The figure XI.14(b) gives the corresponding
strain localization profiles. When b decreases, the band width tends toward one single
finite element as in the classical case. No analytical solution is available for this model.

2.4 GRADIENT OF INTERNAL VARIABLES APPROACH

The introduction of the gradients of the internal variable is the last nonlocal approach
that will be presented here. Once more, the new terms, based on spatial derivatives of
some or all the internal variables, can be introduced in several ways, leading to various
formulations. Therefore, to gain a unified framework, we rely again on the global
variational formulation described in section 2.1. It means that we focus on generalized
standard materials obeying the global constitutive laws (111)-(112).

2.4.1 Introduction of the gradient of internal variables

The homogenization assumption of scale separation has been pinpointed as the reason
for the inadequacy of local constitutive behaviors in presence of localization. A
minimal enrichment of the homogenization scheme based on internal variable gradients
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Figure XI.13: Finite element simulations of strain localization in a one–dimensional
strip in tension using different mesh sizes: (a) classical plasticity model, (b) micromor-
phic plasticity model (the coordinate y describes the length of the strip).
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Figure XI.14: Simulation of strain localization in a strip made of a micromorphic
elastoplastic material: (a) analytical and numerical solution for a multi–criterion
model, (b) numerical results with a single–criterion micromorphic model for different
values of material parameter b that intervenes in the yield function (139).
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then relies on the involvement of the first order spatial gradient of the field of internal
variables. At the scale of the material point, it results formally in a free energy and a
dissipation potential that depend on an additional set of internal variables b(~x):

Φ
(

ε∼(~x), a(~x), b(~x)
)

and Ψ
(

ȧ(~x), ḃ(~x)
)

(168)

where b(~x) is the gradient of the field a:

b(~x) = ∇a(~x) (169)

It is interesting to note that a straightforward application of the local constitutive
behavior (101)-(104) is generally not possible, as observed in Andrieux et al. (1996).
Indeed, the evolution equations (103)-(104) would express the rates of the internal
variables as functions of the material state and of the strain increment:

ȧ(x) = Ga

(

ε∼(~x), a(~x), b(~x), ε̇∼(~x)
)

ḃ(x) = Gb

(

ε∼(~x), a(~x), b(~x), ε̇∼(~x)
) (170)

The functions Ga and Gb could be given a closed-form but this proves useless here.
Actually, the crucial point is the fact that to preserve the nonlocal relation (169) during
the evolution of the internal variables, we should have:

ḃ(~x) = ∇ȧ(~x) ⇒ Gb

(

ε∼(~x), a(~x), b(~x), ε̇∼(~x)
)

= ∇Ga

(

ε∼(~x), a(~x), b(~x), ε̇∼(~x)
)

This requirement puts severe and complex restrictions on the material state coupled
to the strain evolution. This is in contradiction with the framework of generalized
standard materials where no such restriction appears. It results indirectly from the fact
that one of the main assumptions of the framework is not fulfilled: the independence
of the state variables. Here, a and b are not independent since one is the gradient of
the other. This deficiency justifies why the material point is not the appropriate scale
to introduce nonlocality.

On the contrary, we define the global potentials as:

F
(

ε∼, a
)

=
def.

∫

Ω

Φ
(

ε∼(~x), a(~x), ∇a(~x)
)

dx (171)

D (ȧ) =
def.

∫

Ω

Ψ (ȧ(~x), ∇ȧ(~x)) dx (172)

Then, the set of internal variables is reduced to the single field a, so that the question
of Independence is answered. The global constitutive law as defined in (111)-(112) is
fully applicable. It is recalled:

σ∼ =
∂F

∂ε∼

(

ε∼, a
)

A = − ∂F

∂a

(

ε∼, a
)

(173)

A ∈ ∂D (ȧ) (174)

Because of the introduction of the gradients, the formulation of the constitutive law at
the structural scale and at the material point scale are no more equivalent. In particular,
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the latter is flawed. The great difference with usual local laws is the fact that the
evolution equation is now variational:

− ∂F

∂a

(

ε∼, a
)

∈ ∂D (ȧ) (175)

Its solutions do not always admit a point wise characterization in terms of a flow
rule and a consistency condition, depending on the expression of D. This definitely
proves the interest of the minimum principle (120) to perform a numerical solution
of the problem. Besides, the existence of solutions to (175) is proved in the context
of dissipation potentials D which are positive homogeneous of degree one (rate-
independent materials) as soon as they verify a coercivity property, in addition to the
standard convexity and lower semi-continuity conditions, see Lorentz (1999).

Thermodynamic questions related to this class of constitutive relations are ad-
dressed in Lorentz and Andrieux (1999), especially the fact that the Clausius – Duhem
inequality is only ensured at the structural scale. To retrieve a local positive dissipation,
some nonlocality residual (Edelen and Laws, 1971; Polizzotto and Borino, 1998) or an
extra entropy flux (Maugin, 1990) have to be introduced. However, a local definition
of the dissipation does not seem necessary as long as no thermal coupling is taken into
account.

2.4.2 Relation with gradient models of the literature

The definition of the potentials at the material point scale Φ and Ψ can be based
either on phenomenological intuitions or homogenization derivations. For instance,
Andrieux et al. (1996) provided some guidelines to derive the potentials from those
corresponding to the local constitutive behavior, denoted Φloc and Ψloc. Namely, the
additional gradient terms are quadratic. Relying on part of their results, we simply
define the Helmholtz free energy and the dissipation potential as:

Φ
(

ε∼(~x), a(~x), b(~x)
)

= Φloc

(

ε∼(~x), a(~x)
)

+
1

2
c b(~x)2 (176)

Ψ
(

ȧ(~x), ḃ(~x)
)

= Ψloc (ȧ(~x)) (177)

In that special case, the variational evolution equation (175) does admit a point wise
interpretation because the dissipation potential does not depend on the gradient of the
internal variable rate.

Consider the global driving force A defined by (173). This linear form reads for
any virtual field δa:

〈A | δa〉 = −
〈

∂F
∂a

∣
∣ δa

〉
=
∫

Ω

Aa(~x) δa(~x) +Ab(~x)∇δa(~x)

with







Aa(~x) = −∂Φ

∂a

(

ε∼(~x), a(~x),∇a(~x)
)

= −∂Φloc

∂a

(

ε∼(~x), a(~x)
)

Ab(~x) = −∂Φ

∂b

(

ε∼(~x), a(~x),∇a(~x)
)

= −c∇a(~x)
(178)

After integration by parts, it can be expressed as:

〈A | δa〉 =
∫

Ω

(
Aa(~x) + c∇2a(~x)

)
δa(~x) −

∫

∂Ω

c∇a(~x) · ~n(~x) δa(~x) (179)
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where ∂Ω and~n denote respectively the boundary of the domain Ω and its outer normal.
Following Ekeland and Temam (1974), it appears that satisfaction of (175) results in
a zero boundary term in (179) and in the enforcement of the local evolution equation
where Aa(~x) + c∇2a(~x) plays the role of the local driving force:

(
Aa(~x) + c∇2a(~x)

)
∈ ∂Ψloc (ȧ(~x)) ∀ ~x ∈ Ω (180)

The only nonlocal term is the laplacien of the internal variable field in the local
evolution equation (180): the nonlocal model proposed and studied in Mühlhaus
and Aifantis (1991) can be recognized. In this way, the model is recast in a more
general framework. We think that departing from the variational formulation (173)-
(174) instead of the point wise equations may give rise to new perspectives. Thus,
the interpretation of the variational formulation also provides boundary and interface
conditions. Namely, the vanishing boundary term in (179) leads to:

∇a(~x) · ~n(~x) = 0 ∀ ~x ∈ ∂Ω (181)

Moreover, by splitting the domain Ω in two sub-domains, it appears that the disconti-
nuity of Ab(~x) · ~ν(~x) across any interface of normal ~ν should also be zero, that is:

[[c∇a(~x)]].~ν(~x) = 0 (182)

Finally, by requiring that the global free energy be finite, the internal variable field a
has to belong to the Sobolev spaceH1(Ω), so that its discontinuity across any interface
is zero:

[[a(~x)]] = 0 (183)

It is worth noticing that the boundary and the interface conditions are set on the damage
field and not on its rate. This is a difference with most authors, see for instance de Borst
and Mühlhaus (1992). In the context of gradient plasticity, they assigned the boundary
and the interface conditions on the plastic strain rate, instead of the plastic strain itself.
Consequently, along the free boundary between the elastic and the plastic zones, they
did not take into account the interface condition (182), whose temporal derivative is
difficult to postulate a priori. As an equation was missing in their model, they ended
up with several solutions when they tried to solve the problem of a bar submitted to
gradient plasticity. Therefore, they had to choose arbitrarily one of these solutions (the
steepest one).

3 CASE STUDIES

3.1 NUMERICAL APPLICATION OF GRADIENT MODELS TO DUCTILE PLASTICITY

To illustrate the localization control provided by gradient models, the numerical
simulation of a ductile notched specimen submitted to tension is performed, see figure
XI.15. The constitutive law is based on the Rousselier model (see chapter VIII 4.2),
which belongs to the framework of generalized standard materials. It is extended with
new gradient terms in the spirit of the previous part.

Actually, the Rousselier model has to be given a slightly different presentation than
usual to fully benefit from the global framework, see Lorentz and Cano (2003). The
state variables consists of the total deformation gradient F∼, the plastic deformation

F∼
p(multiplicative split of the deformation gradient) and a hardening variable p. The
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local free energy Φloc is split in two terms, the elastic energy Φel which depends only
on an elastic strain measure e∼ (function of the total and the plastic strain) and a stored

energy Φst, function of the hardening variable:

Φloc

(

F∼,F∼
p, p
)

= Φel

(

e∼(F∼,F∼
p)
)

+ Φst (p) (184)

The local evolution equation is governed by the principle of maximal dissipation with
respect to the following threshold3:

g
(

s∼, p ; f
)

= seq + σ1Df exp

(
trs∼

3σ1

)

−R (p)− σy (185)

where s∼ is a stress measure close to Kirchhoff stress tensor, which includes the

volumetric change on the contrary of Cauchy stress, and f is the porosity. The
corresponding dissipation potential can be found in Lorentz (1999), but its closed-
form expression is not of great interest here. The porosity is not given the full status of
an internal variable since it could be expressed as a function of the total deformation
gradient under the micro-mechanical assumption of an incompressible matrix (with f0

the initial porosity):
1− f0
1− f = detF∼ (186)

The definitions (184) to (186) totally define the local constitutive behavior as soon
as the formulation of finite strain proposed by Lorentz and Cano (2002) is adopted.
It allows to retrieve the properties of generalized standard materials for finite strain,
namely the characterization of the discretized constitutive law as a minimum principle.

The introduction of gradient terms follows the scheme proposed previously.
Actually, only the hardening variable gradient is introduced because it proves sufficient
to regularize the localization phenomenon. In that case, the free energy is equal to:

Φ
(

F∼,F∼
p, p,∇p

)

= Φloc

(

F∼,F∼
p, p
)

+
1

2
c∇p2 (187)

The numerical results are presented in figure XI.16 in terms of the porosity distribution,
with the material characteristics given in table XI.17. It appears that a localization band
initiates in the core of the specimen, in relation with the triaxiality distribution, then it
propagates toward the notch. The width of the band is independent of the mesh size,
on the contrary of the results obtained with the local model. Moreover, it is also proved
independent of the mesh topology and the finite element type since the use of quadratic
triangles allows to retrieve the same results as with under-integrated quadrangles.

Actually, special triangles are used to avoid locking phenomenon related to the
“plastic incompressibility”. They are based on a three field formulation (displacement,
volumetric change, pressure) which proves totally compatible with the gradient
formulation, see Michel-Ponnelle et al. (2003). The fact that triangle meshes are
available to compute ductile structures is a very interesting point since it allows:

• automatic mesh generation in the case of structures with complex geometries ;

• automatic adaptive remeshing, in relation with an error criterion, to better capture
the creation of localization bands without having to use a fine mesh everywhere
a priori.

3This expression differs for the expression presented in chapter VIII because the Kirchhoff stress is used
instead of the Cauchy stress.
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Figure XI.15: Notched specimen: geometry (in mm) and loading conditions.

In conclusion, these results definitely prove the potency of the gradient approach to
perform real-life numerical simulations. However, the question of the agreement with
experimental results in case of complex loading paths is still an open question which
deserves future work.

3.2 DEFORMATION AND FRACTURE OF ALUMINUM FOAMS

Cellular materials are widely used for energy absorption applications Gibson and
Ashby (1998). Depending on the wanted strength level, polymer or metal foams
are good candidates for crash resistance applications in the automotive industry. The
mechanical properties of aluminum foams obtained by injecting gas directly into the
liquid metal is investigated in detail in Blazy (2003). It turns out that such foams
are unable to deform in an homogeneous way. Instead, the short elastic regime is
followed by the formation of intense strain localization bands that propagate through
the whole specimen. Figure XI.18 shows that the bands are quasi–horizontal under
compressive loading. The formation of the bands is associated with load drops on the
overall load/displacement curves and their propagation is responsible for the observed
plateau. The final stage is densification leading to a sharp increase of the load at the
end of the localization process. The plastic behavior of metal foams is adequately
modeled by an elliptic yield function as introduced in section 1.3.2 and proposed in
Badiche et al. (2000); Deshpande and Fleck (2000). The horizontal orientation of the
bands corresponds to the relation F = C/2 between the material parameters involved
in the yield function (90). Multiaxial tests suggest that this is not necessarily true for
the initial yield surface, but we will stick here to this simplification.

The formation of the first localization band is associated with an initial peak
systematically observed on the overall curve of figure XI.19. The introduction of
this first peak into the constitutive behavior by an appropriate dependency of the
parameters C and F on porosity f triggers the formation of the first localization
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Figure XI.16: Porosity distribution (zoom) with the Rousselier model: (a) local law,
(b,c,d) gradient laws.
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Figure XI.17: Material parameters for the Rousselier model

band. Densification then takes place inside the band, so that localization will occur
again close to the band or at another location. This results in serrations on the
simulated overall curve of figure XI.19. However, starting from a homogeneous initial
porosity field and some initial material imperfections triggering localization is not
sufficient to account for the slight apparent hardening observed on the experimental
load/displacement curve. This is due to the tremendous heterogeneity of the initial
porosity field induced by the foaming process, as shown on the view of figure
XI.20(a) obtained by X–ray tomography. Efficient simulations of components made
of aluminum foams require a continuum plasticity model that cannot account for
the detailed distribution of large and small cells. Instead, it is proposed to replace
the exact aluminum/air distribution by a smeared out porosity field. This is done
by attributing to each material point of the image the mean density of a window
of given size centered at this point. Such a smeared out porosity field is shown on
figure XI.20(b) and used to initialize the finite element model of figure XI.20(c). The
simulation of the compression of the sample then results in a complex distribution of
strain localization bands that correctly mimic the experimental deformation process.
The apparent hardening is then due to the successive crushing of zones of increasing
local density inside the heterogeneous materials.

The simulation of such strain localization phenomena is necessary to predict
the response of actual components made of metal foams to impacts for instance.
The absence of localization in the simulation leads to significant overestimations of
component strength.



364 Local approach to fracture

(a) (b)

Figure XI.18: Strain localization in an aluminum foam under uniaxial compression:
(a) initial state, (b) first strain localization band.
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Figure XI.19: Experimental and simulated overall load/displacement curve for alu-
minum foam under compressive loading.
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(a) (b)

(c) (d)

(e) (f)

Figure XI.20: Simulation of strain localization during the compression of aluminum
foam: (a) tomographical section of the initial state of the real sample, (b) smoothing of
the porosity field using a moving averaging window (here a window of 60 pixels size),
(c) initial porosity field attributed to the integration points of the mesh, (d,e,f) three
stages of the strain localization process according to the simulation (the brown color
indicates 60% axial strain; the image width is 2.5 cm).
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Figure XI.21: Simulation of cylindrical indentation of an aluminum foam: experimen-
tal and simulated results including the strain localization phenomena.
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Ecole des Mines de Paris.

Cailletaud, G., Sai, K., 1995. Study of plastic/viscoplastic models with various inelastic
mechanisms. Int. J. of Plasticity 11 (8), 991–1005.

Chambon, R., Caillerie, D., Matsuchima, T., 2001. Plastic continuum with microstruc-
ture, local second gradient theories for geomaterials. Int. J. Solids Structures 38,
8503–8527.

Cherukuri, H., Shawki, T., 1995. An energy-based localization theory : I. basic
framework. Int. J. Plasticity 11, 15–40.

Comi, C., 2001. A non-local model with tension and compression damage mechanisms.
Eur. J. Mech., A/Solids 20, 1–22.

Comi, C., Perego, U., 2001. Numerical aspects of nonlocal damage analyses. Revue
Européenne des Elements Finis 10, 227–242.

de Borst, R., 1991. Simulation of strain localization: a reappraisal of the Cosserat



368 Local approach to fracture

continuum. Engng Computations 8, 317–332.
de Borst, R., 1993. A generalization of J2-flow theory for polar continua. Computer

Methods in Applied Mechanics and Engineering 103, 347–362.
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Lorentz, E., 1999. Lois de comportement à gradients de variables internes : construc-
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Mandel, J., 1966. Conditions de stabilité et postulat de drucker. In: Kravtchenko, J.,
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