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Introduction

Classical homogenization methods enable one to replace a heterogeneous material with
periodic microstructure by a homogeneous equivalent medinm. The mathematical theory of
homogenization [1] establisches the validity of this procedure providing that the size of the
heterogenities is much smaller than the characteristic size of the considered structure or. more
precisely, than the wavelength of the static mechanical loading. When these prerequisites
are not fulfilled, the use of asvmptotic methods is generally recommended [2].

The aim of this work is to propose an alternative methodology consisting in replacing the
heterogeneous medium by a generalized continuum. Such continua involve additional degrees
of freedom (Cosserat, micromorphic media [3]) or higher order gradients of the displacement
field (second grade materials [4]...). The advantages of replacing a composite material by
a homogeneous generalized continuum have been shown in [3] for instance, but the explicit
links to homogenization theory appeared only recently [6,7,8].

The proposed scheme is general : it consists in developing the macroscopic displacement
field into a polynomial main field and a periodic perturbation. The minimum order and
number of terms of the retained polynomial are dictated by the number of macroscopic
degrees of freedom and generalized strain measures to be prescribed on a unit cell. An
additional scale invariance property of this polynomial is also required. For the sake of
simplicity, the method is presented in the two-dimensional case and for a square unit cell.
This heterogeneous Cauchy medium is replaced by a homogeneons Cosserat continuum. A
simple application of the method to multilayer components is then presented to illustrate
the predictive capability of a Cosserat effective medium. The results are compared with the
response of a conventional Cauchy continuum.

In the sequel, X, X, x respectively denote a vector, second-rank and fourth-rank tensors.

Vector product and transposition are denoted by x and ‘. The space of symmetric linear
applications on R? is £,(R?).

Kinematics at the micro and macro scales
The kinematics of the heterogeneous material is given by the displacement field u = u,e, +
use9, whereas the effective medium is described by both a displacement field U = Uy e, +Use;
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and an independent rotation field @ = ®es. The relations between u and (U, @) are first
investigated.

Let V,{X) be a square, [ its edge length and X = X;e; + Xype; its center. We postulate
that (U, @) characterize the rigid body motion that best fits the actual displacement field
u on V;(X). They are more precisely defined as the arguments for which

Ty=A+1/2 rr=Nyt+/2 ‘ . .
/ / | u(x) — U(X) - @(X) x (x — X) |* dadzs, (1)
Ty =X1—1/2 Jxy=Xy-1/2
reaches a minimum. A straightforward calculation gives
U(X) =< u >yx (2)
6
2(X) = 5 < (%~ X) x u >y (3)
where < . >y;x) denotes volume averaging. It can then be proved that
V, U(X) =< V.u >y x), (4)
a® 8<I> 6
K= X, e+ - 81\2 =Vy®= 2 < V. ((x x u).e3) >vyx) — ZQ_V_,\((_X xU).es) (5)
where K denotes the torsion-curvature tensor in the two-dimensional case. The following
notations are introduced : )
g(x) = 5(Veu+ Viu)(x) (6)
1
E(X) = S(VxU + Vi U)(X) (7)
1, 9U;, oU,

Q(X) = é(a\] ax, ¢

The elastic strain energy of a linear elastic Cosserat medium is a quadratic form in (E,Q ~
2,K) 3]
Let us now compute (E,Q — ®,K) according to (2)-(5) when u is polynomial of grade 3

in (7, = 2, /1,79 = 1/1) -
w = A; + Bj&y + Bpdy + C@l;z + sziz + 2Cz'§;1%1
~ 2
+ D”rl +D121,+3D”l lg+3Dl4$1I2 (l: 1,2) (9)
We find

. Ciy +Cy Dy + Dy ~ Dy + Dy
Ui o= (At =55 ) (Ba + 20X+ (Ba+ 20T,
2 ~2 e~ ~3 ~?
+ CaX+ Xy + 203X X+ Do X, + Ding + 3D1.4_Yg4\'-2-, (10)
By - B12 3 D. D o~ ~
(X)) = ( e 5 T(D2l - Do) + . 8 13) +(Co = C13) X1+ (Coz ~ Cia) Xy
2
+ 3(D24—Du)\|\z+ (Dzlen)\ + (1)24—D12)\ (11)

Dy — Dy,

HO(X) - UX)) = —5
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The following particular cases arise :
e If u is affine, we get E(X) = ¢(X) constant, ® — ! =0 and K = 0.
e If u is polynomial of grade 2, we get

Cy - Cly  Cu—Cy
E(X) = ¢(X) affine, @ —Q =0, K= 2 7 Hey + -2 5 Le,.

o If u is polynomial of grade 3, and if we impose that E(X) = g(X) be of grade 2 and @
be affine, the following relations must hold

Dy = =Dy, Dyy = Dy, Dyy = =Dy

Dy=~-D. Dy = —Dyy, Doy = Dy

which leads to an expression of the terms of grade 3 involving only two independent constants
Dy, and Dyy. A strain field such that E(X) = &(X) is said to be scale invariant in the
homogenization process.

In the latter case, the expressions reduce to

E(X) = ¢(X) quadratic, {13)
: Dy
— (X)) = 22,
(® - 0)(X) = 32 (14)
Coi — C Cor — Cyo
K(X) = o2 . g 4 S2 - 12, (15)

It must be noted that terms including Dy, Cy, Can, ( By — B12)/2, (Cy + C13)/2, (Cys —
C12)/2, Ay and Ay do not appear in the previous expressions (13)-(15) for g(x), E(X), (® —
2)(X) and K(X), or are left indeterminate after prescribing the scale invariance condition,
so that they will not be retained in the polynomial development. Finally, we retain the form:

: ~2n

~ ~ ~2 o~ ~3
II,T = B]]fl'l + }312-772 - C"ggl‘z +2C 13T Ty + D]z(l‘z — 3:1711172).
(16)

~3 ~ 2

~ ~ 2 Y~
'Il.:: = B]z.’l‘] + 1322.7'2 — 67133“ + 2C 93y Ty — Du(ilfl - 31'1.‘172).

Identification of an overall Cosserat medium

Within the classical framework of periodic homogenization, a single unit cell ¥3(X = 0)
is considered and, in the case of elasticity, the effective Cauchy medium is obtained by
minimizing the elastic strain energy with respect to displacement fields belonging to C{E)
defined by :

VE' € L,(R*) u€C(E") <= ulx)=E" x+ v (x) (17)
where the displacement field u”*" fulfills periodicity conditions at the boundary of V;(0) [9].
If a denotes the local elasticity tensor field. the effective elastic properties A"™ are such
that . i
min 5 < e(u): g(;) ce(u) >y - (18)

uec(E)

1 v
i‘E . Ahmn, B =
¥ E

The previous definition can be extended to the case of an effective Cosserat medium as
follows :

V(E', 0" K") € L(R)) x R xR, (ue K(E". 0" K') &> u=u" +u*) (19)



452 S. FOREST and K. SAB

where u* is polynomial of the form (16} and u”*" is periodic. Furthermore, (E*,0* K*)

describing the kinematics of the Cosserat continuum at X = 0, the previous field must be
such that

E(0)=E', (¢-2)0) =6, K0)=K" (20)
These conditions imply the following relations for the coefficients of the polynomial :
E(0) = E" = B;; = lE];, (21)
* D Y 6 er *
(‘:I)—Q)(U) =0"' = ﬁ+ﬁ <x xu >Vl(0):9 . (22)

The last condition K(0) = K" gives :

2C 3 6 - - 2(,723 6 «
— 121 + ﬁ < J.']Uvgfl 0= ]\1* ——IZ— - 'l*z' < IQU?;T >0~ Kz (23)

The strain energy density of the overall Cosserat medium is then defined by

1
VE.OK)= min -<e(u):a:e) >y - (24)
uek(E- - k) 2

One may notice that UP*" =< u”*" > is constant whereas the corresponding ®°" is periodic.

To solve (24), a polynomial u* is given and the the minimizing procedure proceeds over
all periodic fields uP*". The obtained solution for u*" linearly depends on the coefficients
of polynomial u*. These coefficients are determined by solving equations (21)-(23). This
ensures that u = u* + u**" € K(E*, ©* K"). The overall force and couple stresses are then
obtained by differentiating ¥ with respect to (E*, ©*, K*). This homogenization scheme is
applied in the next section to a specific example.

Example : Deformation of a multilayer material
Let us consider a multilayered material made of a material A and a much softer material
B with the following elastic properties :

E* = 210000MPa, v =03, FE? = 1000MPa,v? = 0.49.

The volume fraction of each component is 0.5. This heterogenous material is now replaced
by a homogeneous Cosserat material according to the previous scheme. The strain measures
are E,©, K. They are related to the associated force and couple stresses £ and M according
to

Y Yo Yo 0 0 0 0 Ey

212 _ 0 0 1’]212 )'122] 0 0 E12 -+ (‘) (25)
Eg] 0 y) )7122] )':2121 0 0 Eu - (")

M, 0 0 0] 0 Cug 0 K,

where 1" denotes the overall elasticity tensor. Its components are determined by prescribing
successively the non-vanishing components By = 1, Byy = 1, By = 0.5, and Dy, = 1,0y =
1,C% =1 and computing the resulting E, ©, K according to (2)-(5) and strain energy.

The problem is solved using the finite element method in elasticitv. The B;;, Cy; and
D;; are treated as global degrees of freedom attributed to all elements of the cell, whereas
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the displacements «?*" are the degrees of freedom attributed to each node. This is a
straightforward extension of the numerical method used in [10] for conventional periodic
homogenization. Periodicity conditions are then simply prescribed at the boundary of the

cell. The values of the effective elasticity constants are found to be :
Yin = 131161 MPa, Yy = 22420Mpa, Youu = 32274MPa.
Y012 = 63757TTMPa. Yigoy = —720428MPa, Y591 = 817085MPa
Cyrar = 2500MPa.mm?. Cyagn = 2087MPa.mm?.

For this calculation, we have used a unit cell (edge length [ = lmm) with a hard core
bounded by two soft layers (see also figure 1). The deforined states associated with Ci3 = 0.5
(prescribed curvature X)) and to Dy, = 1 (prescribed Cosserat relative micro-rotation) are
shown on figure 1 and 2.

Let us now consider a multilavered structure made of 6x8 cells and submitted to the
following loading conditions : the nodes of the right hand side of the structure are fixed
in both directions whereas a constant displacement in direction 2 is prescribed on the right
hand side. The right hand side is free of forces in direction 1. The obtained deformed state
is schown on figure 3. It can be seen that the mechanical loading combines fexion and
shear. The same computation is carried out using the conventional Cauchy homogeneous
equivalent continuum and with the newly identified Cosserat medium. A comparison between
the two responses is given on figure 4 : the displacement [ is schown along a line X, = Cst
belonging to the hard material in the middle of the structure. The Cauchy continnum is seen
to give a poor prediction of the real deformation state, it is not able to take the clamping
conditions into account. On the contrary, the additional boundary condition ¢ = 0 can be
prescribed at the left hand side for the Cosserat continuum to more precisely approach the
actual situation. In the Cosserat computation, the right hand side is also free of couples.

Another example of the use of a Cosserat effective medium for a structure subjected to
strong mechanical loading conditions gradients can be found in [11].
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Figure 1 and 2 : Prescribed curvature (left) and relative rotation (right) on the unit cell.
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Figure 3 : Deformation of a multilayered structure (material B in gray).
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Figure 4 : Comparison between the response of the effective Cosserat continuum, the Cauchy continuum
and the reference structure, along a horizontal line in the middle of the specimen within the hard material.



