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In the light of recent progress in coarsening the
discrete dislocation mechanics, we consider two
questions relevant for the development of a
mesoscale, size-dependent plasticity: (i) can the
phenomenological expression for size-dependent
energy, as quadratic form of Nye’s dislocation
density tensor, be justified from the point of view of
dislocation mechanics and under what conditions?
(ii) how can physical or phenomenological
expressions for size-dependent energy be computed
from dislocation mechanics in the general case of
elastically anisotropic crystal? The analysis based
on material and slip system symmetries implies the
negative answer to the first question. However,
the coarsening method developed in response to
the second question, and based on the physical
interpretation of the size-dependent energy as the
coarsening error in dislocation interaction energy,
introduces additional symmetries. The result is that
the equivalence between the phenomenological and
the physical expressions is possible, but only if the
multiplicity of characteristic lengths associated with
different slip systems, is sacrificed. Finally, we discuss
the consequences of the assumption that a single
length scale governs the plasticity of a crystal, and
note that the plastic dissipation at interfaces has a
strong dependence on the length scale embedded in
the energy expression.
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1. Introduction
Following numerous observations of size effects in plasticity of metals and Ashby’s [1] analysis of
geometrically necessary and statistically stored dislocations (GND and SSD), equally numerous
phenomenological theories have appeared in the past two decades, of which we take Gurtin’s
[2] crystal plasticity as the representative one. In addition to the theories directly concerned with
plasticity of crystals, some generalized continua inspired by early works in polar or micromorphic
continua, [3,4] such as the microcurl theory [5,6], include the size-dependent crystal plasticity, as
a special case. Finally, the special class of dynamical theories, statistical continuum dislocation
dynamics (SCDD), is under development [7–9]. This formulation includes the dynamic evolution
of dislocations represented as continuum density fields.

The size-dependent portion of internal energy is typically a function of Nye’s [10] or Kröner’s
[11] dislocation density tensor, or its finite deformation generalization [12,13]. Because this
portion of energy has its roots in elastic interactions of dislocations, the quadratic form leading to
a linear constitutive law is appropriate

1
2

A : M : A = 1
2

AjiMijklAlk. (1.1)

The components of Nye’s [10] dislocation density tensor A are defined as the components of
the net Burgers vector in a representative volume element (RVE) associated with dislocation line
directions. If the dislocation segment type1 I(I = 1, . . ., NT) is defined by its Burgers vector bI and
its line direction ξ I, and each type is characterized by its density (line length per unit volume) ρI,
then the Nye’s tensor is given as the sum of dyads

A =
NT∑
I=1

ρIbIξ I =
NT∑
I=1

(ρb)IsIξ I; b = |b| ; s = b
b

. (1.2)

The densities (ρb)I are, in general, not uniquely defined from the Nye’s tensor [14].
Dimensionally, the components of the rank-4 constitutive tensor M are products of an

elastic modulus and the square of a characteristic length responsible for size-dependence. The
phenomenological theories, based on the existence of representation (1.1), also rely on the ability
to (in principle) fit the components of M to experimental data.

Advances in experimental methods, in particular EBSD, have allowed researchers to measure
lattice curvatures at very small scales [15–17] and compute the Nye’s tensor from the lattice
curvature tensor. Naturally, the question of deconstruction of Nye’s tensor into dislocation
densities arises. Because purely kinematic deconstruction is not unique, additional conditions,
typically minimization of some norms of dislocation densities, are used to obtain a unique
deconstruction2. The quadratic form (1.1) is one such norm.

In this paper, we compare the phenomenological size-dependent energy (1.1) to analogous
energy representations in recently developed physical theories [18,19]. Because the later are
developed on the basis of dislocation mechanics, they serve as the benchmark for the
phenomenological expression (1.1). The main questions addressed in this paper are

1. Can the phenomenological size-dependent energy (1.1) represent the physical
expressions, and under which conditions?

2. How can the size-dependent energy be computed on the basis of dislocation mechanics?

The paper is organized as follows.
In §2, we discuss the material symmetries that must be satisfied by the tensor M (1.1). In §3,

the summary of physical theories, based on dislocation mechanics and statistics of dislocations, is

1To simplify the discussion, we consider, without loss of generality, straight segment in a RVE.

2The resulting pseudo-inversion to (1.2) is nonlinear and involves a particularly vexing type of nonlinearity with Boolean
queries on linear combinations of Nye’s components. See Kysar et al. [17] for an illustrative example.

 on February 18, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


3

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140868

...................................................

given. In §4, we discuss the mathematical equivalence conditions between the phenomenological
and physical theories, whereas in §5, we consider additional symmetries arising from the
geometry of slip systems. Section 6 is devoted to the method of coarsening dislocation mechanics
to compute the size-dependent energy. We conclude the paper in §7, with the discussion on the
importance of multiple length scales.

2. Material symmetries
The tensor M is subjected to the major symmetry restriction imposed by the quadratic form3 (1.1):

Mijkl = Mklij, (2.1)

so that it can have no more than 45 independent components.
The Nye’s tensor, as defined in (1.2), is a dyadic product of vectors which are transformed by

an orthogonal transformation in a standard way. Let Q be an orthogonal transformation. Then

A′ = 〈Q〉2 ∗ A = Aij(Q · ei)(Q · ej);

M′ = 〈Q〉4 ∗ M = Mijkl(Q · ei)(Q · ej)(Q · ek)(Q · el),

⎫⎬
⎭ (2.2)

where asterisk is the Rayleigh product [20] and 〈Q〉4 is the fourth Kronecker power of Q [21].
The energy (1.1) is a scalar invariant. We note, for later use, that transformations (2.2) are linear.
Further, if Q is in the symmetry group of the material, M is invariant under the transformation

〈Q〉4 ∗ M = M. (2.3)

Symmetries of tensors analogous to M have been analysed in the context of polar continua,
where non-symmetric tensors, such as A, enter quadratic forms describing energy densities
[21–23]. For materials with isotropic, cubic and hexagonal symmetries, there are three, four and
eight independent constants, respectively. Define the canonical orthonormal crystal base triad
ei(i = 1, 2, 3). For cubic crystals, the canonical base is aligned with the edges of the cubic unit
cell. Further, let pi(i = 1, 2, 3) be an arbitrary orthonormal base. In the isotropic case, the canonical
system plays no special role, so that the tensor M and the elastic stiffness tensor C can be
written as

M = M1pipipjpj + M2pipjpjpi + M3pipjpipj;

C = C1pipipjpj + C2(pipjpjpi + pipjpipj).

⎫⎬
⎭ (2.4)

For material with cubic symmetries

M = M0

3∑
α=1

eαeαeαeα + M1pipipjpj + M2pipjpjpi + M3pipjpipj;

C = C0

3∑
α=1

eαeαeαeα + C1pipipjpj + C2(pipjpjpi + pipjpipj).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.5)

The usual summation over repeated indices applies, unless Greek alphabet is used.

3. Physical theories and length scales
We are aware of only two attempts to derive the size-dependent energy from the mechanics
of discrete dislocations. Motivated by needs of SCDD needs, Groma [24] and Groma et al. [18]
consider a two-dimensional random field of dislocations and apply the analysis based on the self-
consistent method (‘Debye screening’). Not surprisingly, the analysis of a random field yields a
single characteristic length—the average spacing of dislocations. Noting that such characteristic

3The skew portion (Mijkl − Mklij) does not contribute to (1.1). Alternatively, one may invoke the elastic reciprocity theorem.
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length evolves on a slower timescale than plastic deformation, the results can be linearized. Upon
generalizing to three-dimensional, the size-dependent portion of the total energy will take the
form

1
2
{ρb}T[K]{ρb} = 1

2

NT∑
I=1

NT∑
J=1

(ρb)IKIJ(ρb)J. (3.1)

The quadratic form in (3.1) requires the symmetry

KIJ = KJI. (3.2)

Dimensionally, KIJ are products of elastic moduli and the square of the characteristic length. The
Burgers vector, bI in (1.2), is defined relative to line direction ξ I, so that the pairs (b, ξ ) and
(−b, −ξ ) count as a single type. This ambiguity is resolved if dislocation densities are defined
from slip gradients [25], as follows.

The standard definition of the slip system α(α = 1, . . . , NS) includes the slip plane normal mα

and the slip direction sα . Both are unit vectors and the latter is parallel to the Burgers vector.
The triad (sα , mα , tα = sα × mα) forms the local orthonormal basis for the slip system. The slip
field γ α(x) is associated with each slip system. The in-plane components of its gradient define
the partial densities of edge (⊥) and screw (�) dislocations, i.e. the densities resulting only from slip
evolution on that slip system

gα
⊥ = sα · ∇γ α ; gα

� = tα · ∇γ α ; gα = gα
�tα + gα

⊥sα . (3.3)

Nye’s dislocation density tensor A can be defined from the partial densities:

A = −
NS∑
α=1

sα(mα × gα) =
NS∑
α=1

(−gα
�sαsα + gα

⊥sαtα). (3.4)

As in the case of definition (1.2), the inverse mapping is not unique, i.e. the partial densities are
not uniquely defined from the Nye’s tensor.

The list of partial densities {g} has 2NS elements, and the list of densities {ρ} has NT elements.
Because some slip systems share slip direction, and stationary screw dislocations are oblivious
to the slip plane: NT ≤ 2NS. For example, in fcc crystals, 2NS = 24 and NT = 18. The kinematic
redundancy in description (3.3) is resolved by simply adding the components gα� of the two slip
systems (α and α’) which share the slip direction

(ρb)Iζ I = gα
�sα + gα′

�sα′
. (3.5)

The compliance with any local definition of Burgers vector [26] is accomplished by requiring that
the dislocation line direction, ξ , always follows one rule with respect to mα : either the right-hand
rule or the left-hand rule [25].

We note that both sets of dislocation densities {ρ} and {g} are crystallographic densities, i.e.
defined with respect to crystallographic slip systems. In general, stationary dislocations may be
formed as the result of relaxation and need not be constrained with slip system geometry [14].

In contrast to Groma’s approach, Mesarovic et al. [19] consider an ordered field of periodically
stacked pile-ups against an obstacle (i.e. interface).4 Each slip system carries a characteristic
length, �α , interpreted as the average spacing of discrete slip planes for that slip system. These
evolve with deformation, but on a timescale slower than slips. We note that these lengths
are in fact associated with slip planes, rather than with slip systems, so that they need not
all be independent. For example, for fcc crystals, at any material point, there will be only four

4In this case, the separate two-dimensional analysis of screw and edge components of pile-ups is justified by decoupling of
screws and edge component as anti-plane and plane strain whenever such decoupling is allowed by material symmetries. In
addition to isotropic elasticity, such decoupling occurs if the material symmetry group includes the mirror plane orthogonal
to the dislocation line.
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characteristic lengths, each covering three slip systems. The overall form has similarities with
Gurtin’s [2] formulation and the energy term analogous to (1.1) is a quadratic form of in-plane
slip gradients for each slip system

1
2

NS∑
α=1

NS∑
β=1

gα · Dαβ · gβ . (3.6)

Rank-two constitutive tensors Dαβ have the form

Dαβ = �α�βdαβ = �α�β
[
dαβ

⊥⊥sαsβ + dαβ
⊥�sαtβ + dαβ

�⊥tαsβ + dαβ
��tαtβ

]
. (3.7)

Clearly, dαβ
⊥� = dβα

�⊥, so that

Dαβ =
[
Dβα

]T
. (3.8)

It will be shown shortly that this symmetry is equivalent to (2.1).
The length-free components dαβ

XY are proportional to elastic constants and depend on the
relative orientation of the two systems (see §6a). While explicitly derived only for isotropic
elasticity [19], it is clear that the general form of (3.7) will be the same for the anisotropic case,5

except that the components dαβ

XY will depend not only on the relative orientation of the two
systems, but also on their orientation with respect to the canonical crystal basis.

The physical interpretation of additional energy terms (3.6) is the coarsening error in interaction
energy of dislocations. More precisely, it is the difference in energy computed from discrete
dislocations as line defect, and the energy computed from the kinematically equivalent, smooth
Nye’s fields. Proper interpretation of Groma’s analysis leads to the same physical interpretation
of additional energy (3.1). We emphasize that the interaction energy of dislocations represented as
continuous densities is included in the simple (size-independent) elastic–plastic continuum as the
strain energy associated with incompatible elastic strains [27,28]. What remains is the energy error
caused by smoothing out discrete dislocations into density fields. Moreover, this energy error is
localized to the region of the size comparable to the characteristic length (i.e. they are short-range).
The irreducibly non-local portion of dislocation interactions (i.e. the long-range interactions) is
entirely contained within the classic size-independent elastic–plastic continuum.

4. Connection between physical and phenomenological theories
Whether one considers random or ordered dislocations arrays, with multiple lengths or a single
one, it is clear that the energy expressed in terms of densities, either (3.1) or (3.6), must be regarded
as the proper physical basis for the energy expressed in terms of Nye’s components (1.1). If Nye’s
tensor A allowed a unique deconstruction into densities {(ρb)I} (1.2) or {gα} (3.4), the analysis
would be simple; substitution of such linear inverses into either (3.1) or (3.6) would yield the
unique values for the components of tensor M in (1.1) in terms of [K], or Dαβ . However, in
addition to physical ambiguity of pseudo-inversion of (1.2) on the basis of norm minimization, the
resulting pseudo-inverse relations are nonlinear and do not yield a unique M in (1.1). Therefore,
it is of interest to understand in what sense (1.1) approximates the physical expressions (3.1) and
(3.6), as well as if there are any special cases when the representation (1.1) is correct.

In trying to reconcile (3.6) and (1.1), it is convenient to use a somewhat different formulation
of (1.1): AT : M̄ : A, where the components of M̄ are obtained by simply switching the first

5Any rank-2 tensor can be represented on a dual basis, say (s,m,t)α,β . The quadratic form (3.6) of vectors lying in slip planes
α and β makes all components with dyads involving mα or mβ energetically impotent, so that only components included in
(3.7) remain.
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two indices of M. Then, upon equating (1.1) and (3.6), and substituting (3.7) into this equality,
we obtain

NS∑
α=1

NS∑
β=1

gα · Dαβ · gβ = −
NS∑
α=1

NS∑
β=1

gα · [mα × (sα · M̄ · sβ ) × mβ ] · gβ . (4.1)

The equality (4.1) is valid for arbitrary combination of vectors gα , so that

Dαβ = −mα × (sα · M̄ · sβ ) × mβ ; α, β = 1, . . . , NS. (4.2)

Upon transforming the symmetry relation (2.1) into

M̄ijkl = Mjikl = Mklji = M̄lkji,

it is easily shown that symmetries (3.8) and (2.1) are equivalent.
Thus, there are NS(NS + 1)/2 tensor equations (3.7), or 2NS(NS + 1) scalar conditions, which

are to be satisfied by no more than 45 independent components M. For fcc crystals with 12
slip systems, the number of scalar conditions is 312. As material symmetries impose additional
restrictions on M, the slip system geometry also imposes additional restrictions on Dαβ . This
problem is addressed in §5.

Should the multiplicity of length scales be discarded (either for physical reasons or for
mathematical convenience), there would be a reduction in the number of independent material
constants. From (3.5), for each pair of slip planes that share slip direction, α and α’,

dαβ

�X = dα′β
�X; X = �, ⊥. (4.3)

An analysis, analogous to the one leading to (4.2), can be applied to the other definition of the
size-dependent energy (3.1), yielding

KIJ = ξ I · (sI · M̄ · sJ) · ξ J = (ξs)I : M̄ : (sξ )J; I, J = 1, . . . , NT (4.4)

With symmetric [K] and M, the maximum number of independent conditions (4.4) is
NT(NT + 1)/2 (171 for fcc). The reduction in the number of independent scalar conditions, from
(4.2) to (4.4), is accompanied by the loss of multiplicity of characteristic lengths.

At first sight, it does not appear that the phenomenological energy (1.1) can represent the
physical expressions (3.1) or (3.6). Nevertheless, we proceed with the analysis, in the hope of
understanding the approximation introduced by the phenomenological energy. To that end, we
first expand (4.2) into scalar edge–screw interactions. Upon substituting m = t × s in (4.2) and
using ε − δ equality

Dαβ
⊥⊥ = (st)α : M : (st)β = Mjikls

α
i tαj tβk sβ

l ;

Dαβ
⊥� = −(ts)α : M : (ss)β = −Mjikls

α
i tαj sβ

k sβ

l ;

Dαβ
�⊥ = −(ss)α : M : (st)β = −Mjikls

α
i sα

j tβk sβ

l ;

Dαβ
�� = (ss)α : M : (ss)β = Mjikls

α
i sα

j sβ

k sβ

l .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

5. Additional symmetries of slip systems
To determine the number of independent parameters dαβ

XY(X, Y = ⊥, �) in (3.7), and thus (with a
single length scale), the number of independent conditions (4.2), (4.4)), we consider symmetries in
the slip system geometry. Most material symmetry groups contain rotations and mirror reflection.
The summary of the most important rules is as follows.

1. For a family of slip systems (i.e. the set of slip systems obtained by applying the symmetry
operations on a single slip system), it is sufficient to count independent interactions of a
single slip system with other slip system. All other interaction coefficients are dependent,
i.e. obtainable by application of a symmetry operation.
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2. Moreover, if the system β can be obtained from the system α by applying symmetry
operations which are in the material symmetry group, then the interaction between
α-screw and β-edge is identical to the interaction between α-edge and β-screw, i.e.
dαβ

�⊥ = dβα
�⊥, so that the interaction matrices are symmetric:

Dαβ =
[
Dαβ

]T
. (5.1)

Consequently, only three of four components of Dαβ are independent. We emphasize that
this is only true within a family of slip systems.
Let the systems (β, Y) and (β’, Y’) be mirror images with respect to the mirror plane m.

3. If m is orthogonal to the dislocation line (α, X):

dαβ

⊥Y = dαβ ′
⊥Y′ (m⊥ξ ) (5.2)

and
dαβ

�Y = −dαβ ′
�Y′ (m⊥ξ ). (5.3)

4. If m is parallel to the dislocation line (α, X):

dαβ

�Y = dαβ ′
�Y′ (m ‖ ξ ) (5.4)

and
dαβ

⊥Y = dαβ ′
⊥Y′ (m ‖ ξ ∧ m⊥b). (5.5)

Note that the last rule (5.5) requires that the mirror plane be orthogonal to the edge
Burgers vector, which, in general, need not be the case.

5. Finally, if one of the screws lies in the mirror plane and the other is orthogonal to that
plane, their interaction vanishes.

(a) Fcc slip systems
The {111}/〈1̄10〉 family of fcc slip systems is easily visualized as a regular octahedron (figure 1a)
with each slip plane represented twice. To count the independent energy coefficients, we
enumerate slip planes as A, B, C and D, each having three slip systems, as shown in figure 1b. We
then count the independent interactions with the slip system A1. The relevant mirror planes are
shown in figure 1c. The rule (1) reduces the number of independent interaction coefficients to 36.
This number is further reduced by application of the mirror rules (5.3)–(5.5) to 13, listed in table 1.
There are only two independent interactions between the screws, four independent screw–edge
interactions (including the interactions within the same slip plane), and seven independent edge–
edge interactions. The last number is the largest, because there are no mirror planes orthogonal
to the edge dislocation lines, so that (5.2) is not applicable.

(b) Bcc slip systems
The {110}/〈1̄11〉 family of slip systems consists of six slip planes, each hosting two slip directions.
Screw dislocations lie in the mirror planes, so that (5.4) applies. Rules (1) and (2) apply, so we
consider only interactions of one slip system.

The four possible screws give three independent screw–screw interactions: self + pair of
mirrored screws +1. There are 12 edges, giving seven independent screw–edge interactions: five
mirrored pairs + within the same plane +1. Edge–edge interactions are not subjected to any
symmetry reductions, so that their number is 12. The total number of independent interactions,
for the {110}/〈1̄11〉 family alone, is 22.

The {211}/〈1̄11〉 family of slip systems consists of 12 slip planes, each hosting one slip direction.
The same symmetry (5.4) applies, so that the total number of independent interactions within this
slip system family is also 22.
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m

m

C

A

BD

1

1

1 1

2

2
2

2
3

3

33

(b)(a) (c)

^

Figure 1. (a) Geometry of fcc slip planes: four slip planes form a half of the regular octahedron. Edges are slip directions. (b) Top
view of the octahedron with enumeration of slip systems. (c) One slip plane with directions of screw and edge dislocations and
relevant mirror planes (m), corresponding to the rules (5.3)–(5.5) in the text.

Table 1. Independent energy coefficients for the {111}/〈1̄10〉 family of slip systems in an fcc crystal. The slip system ordering
(A1–D3) is shown in figure 1b. The numbers reflect the arbitrary order in which the interactions have been considered, except 0
which signifies vanishing interaction.

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 total

�� 1 2 2 0 2 2 1 2 2 0 2 2 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�⊥ 3 4 4 5 6 6 3 4 4 5 6 6 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊥⊥ 7 8 8 9 10 11 12 13 13 9 11 10 7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If both families are active, the number of interactions is much larger, but owing to the condition
(5.4), smaller than the nominal number. With four screws and 24 edges, the nominal number is
NT(NT + 1)/2 = 406.

6. Computation of the size-dependent energy by coarsening the discrete
dislocation energies

In previous sections, we attempted to deduce the number of independent constants required to
compute dislocation interactions, solely on the basis of crystal and slip symmetries. The purpose
of this analysis is to determine whether a global representation of size-dependent energy (1.1)
in terms of Nye’s field represents the physical theories. Based on such discussion, the answer
to the above question is negative. In general, the global representation (1.1) is not equivalent to
the physical models (3.1) and (3.6), not even if all the characteristic lengths of various slip systems
are equal.

Thus far, we have not addressed the question of how may the constitutive tensors, M
(1.1) and Dαβ (3.6), or the constitutive matrix [K] (3.1), be computed. To compute the size-
dependent energy from dislocation mechanics, some form of spatial coarsening method is
required. In other words, any local representation of size-dependent energy, such as (3.1) or (3.6),
is necessarily a local approximation to the exact (within the discrete dislocation mechanics) non-
local form. The approximation method is likely to include additional symmetries, so that the
question of equivalence between the phenomenological (1.1) and physical (3.1, 3.6) expressions of
size-dependent energy must be reconsidered.

To that end, we first write a more explicit mathematical description of the physical
interpretation of the size-dependent energy as the coarsening error in dislocation interaction
energies. Consider a continuum (coarse) description of dislocations. Dislocations of type α are
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characterized by continuum field ρα , its Burgers vector bαsα , and its line direction ξα . The
interaction energy of the two types of dislocations can be represented as

Eαβ
coarse = 1

2

∫
V

dVα

∫
V

dVβ (ρb)α(ρb)β

R
(sαξα) : L : (ξβsβ ), (6.1)

where dVα = dxα
1 dxα

2 dxα
3 , R = |R|, R = xβ − xα , whereas the rank-four two-point tensor field L is

a function the direction r = R/R: L(r). Such expression has been derived for isotropic elasticity
[27,29]. Owing to the complexity of anisotropic interactions, an explicit expression (6.1) for the
anisotropic case has not been formulated. In §6b, we show that such expression can, in principle,
be derived. In §6c, we provide some details for the case of cubic symmetries.

Consider now the discrete description of dislocations, ρ̂α , characterized formally as a
set of three-dimensional Dirac delta functions6. The expression for interaction energy is
analogous to (6.1)

Eαβ

discrete = 1
2

∫
V

dVα

∫
dVβ

(ρ̂b)α(ρ̂b)β

R
(sαξα) : L : (ξβsβ ). (6.2)

Because the energy (6.1) is already included in the standard size-independent continuum (as the
strain energy corresponding to incompatible elastic strains), the size-dependent energy, given by
either (1.1), or (3.1), or (3.6), represents the difference between the ‘exact’ (discrete) energy (6.2)
and the coarse energy (6.1)

Eαβ

discrete − Eαβ
coarse = 1

2

∫
V

dVα

∫
V

dVβ (ρ̂ − ρ)αbα(ρ̂ − ρ)βbβ

R
(sαξα) : L : (ξβsβ ) (6.3)

The key mathematical difference between (6.3) and (6.1)–(6.2) is that while the kernels in (6.1)–
(6.2) are essentially non-local (long-range interactions), the kernel in (6.3) is localized (short-range)
to the small values of R. Both physical theories discussed here [18,19] rely on that fact, albeit for
different assumed arrangement of dislocations. The kernels are given explicitly and graphically
in reference [19] for isotropic elasticity, single slip system and stacked pile-ups configuration7.
While the kernels for anisotropic case and interaction between different types of dislocations have
not been derived explicitly, powerful intuitive arguments indicate that the localization property
holds8. Thus, each slip system is characterized with the characteristic length �α , such that for
R > �α the kernel in (6.3) vanishes, i.e. the interaction energies between remote dislocations are
insensitive to the representation of dislocations (discrete or smeared).

Consider a RVE with volume VRVE. When interpreted in view of (6.3), the representation (3.1)
embodies the claim that

Eαβ

discrete − Eαβ
coarse

VRVE
= 1

2
(ρb)αKαβ (ρb)β . (6.4)

6Alternatively, one may consider a set of sharp peaks with a certain width, which in the limit of zero width approach Dirac
delta functions.
7For illustration of essentially non-local kernels of (6.1) and (6.2) in isotropic elasticity, see Baskaran et al. [30].

8Consider a discrete dislocation and its equivalent smeared distribution, both in an infinite elastic solid. In both cases,
the interaction energies with another defect are essentially non-local, i.e. without a cut-off distance. The statement that
the difference between the two cases is localized amounts to the statement that for a defect sufficiently removed from the
dislocation core, the exact representation of dislocation does not affect the interaction energy.
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In view of the localization property in (6.3), let the RVE be the sphere with radius
√

�α�β . If the
discrete distribution is a uniform distribution of Dirac delta functions, it seems reasonable to
assume the proportionality

Kαβ ∼
∫

VRVE

dVα

∫
VRVE

dVβ 1
R

(sαξα) : L : (ξβsβ )

= (sαξα) :
[∫

VRVE

dVα

∫
VRVE

dVβ 1
R

L
]

: (ξβsβ ). (6.5)

The tensor field L is independent of the choice of slip systems (dislocation types) α and β, but the
double integral depends on the characteristic lengths. In analogy to (4.4), we can write

Kαβ = (sαξα) : M̄αβ : (ξβsβ ); M̄αβ ∼ 1
2

∫
VRVE

dVα

∫
VRVE

dVβ 1
R

L(r). (6.6)

For the spherical RVE, the integrals over distance and direction separate. Let S0 be the surface of
the unit sphere. Then

M̄αβ ∼ �α�β

∫
S0

dSL(r). (6.7)

It is clear that the tensor M̄, as defined in (4.4), cannot exist in the general case. However, if the
characteristic lengths are assumed equal, �α = � for all α, the expression

M̄ ∼ �2
∫

S0

dSL(r), (6.8)

provides a recipe for computing M̄ (or M). Although conceptually simple and easily
implemented for isotropic elasticity, the computations are significantly more complicated in the
anisotropic case.

We first consider the case of elastic isotropy. Then, we return to the general anisotropic case
in §6b, where we discuss the properties of the tensor M̄ obtained by the averaging procedure
described in this section and leading to (6.8).

(a) Elastically isotropic crystal
To analyse the isotropic case, we substitute the isotropic tensor M (2.4) into (4.5)

Dαβ
⊥⊥ = M2(sα · tβ )(tα · sβ ) + M3(sα · sβ )(tα · tβ );

Dαβ
⊥� = −(M2 + M3)(sα · sβ )(tα · sβ );

Dαβ
�⊥ = −(M2 + M3)(sα · sβ )(sα · tβ )

and Dαβ
�� = M1 + (M2 + M3)(sα · sβ )2.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.9)

In the isotropic case, the tensor L is computed as [27]

Lijkl ∼ 2μ(2δikδjl − δijδkl) − Ē(δikδjl − δilδjk− ∈mij rmrn ∈nkl), (6.10)

where μ is the shear modulus, Ē is the plane strain modulus, Ē = 2μ/(1 − ν), with ν being the
Poisson ratio.

Mesarovic et al. [19] derived the size-dependent energy for dislocations belonging to the same
slip system

1
2

gα · Dαα · gα , (6.11)

with

Dαα
⊥⊥ = �α�α Ē

12
, Dαα

�� = �α�α μ

12
, Dαα

�⊥ = Dαα
⊥� = 0. (6.12)
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Then, using proportionality (6.7), and noting that upon integration the last term in (6.10) vanishes,
we obtain9

Dαβ
⊥⊥ = �α�β Ē

12
(sα · sβ )(tα · tβ ) + �α�β 2μ − Ē

12
(sβ · tα)(sα · tβ );

Dαβ
⊥� = −�α�β 2μ

12
(sα · sβ )(tα · sβ );

Dαβ
�⊥ = −�α�β 2μ

12
(sα · sβ )(sα · tβ )

and Dαβ
�� = �α�β 2μ

12

[
(sα · sβ )2 − 1

2

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.13)

Comparison between (6.9) and (6.13) gives a triplet of coefficients for each pair of slip systems

Mαβ

1 = �α�β μ

12
; Mαβ

2 = �α�β 2μ − Ē
12

; Mαβ

3 = �α�β Ē
12

. (6.14)

Clearly, these do not form a unique tensor M (2.4) in the general case. However, if the
characteristic lengths are identical, we obtain

M1 = �2

12
μ; M2 = �2

12
(2μ − Ē); M3 = �2

12
Ē. (6.15)

Moreover, only two of three coefficients in (2.4) are independent

M2 = 2M1 − M3 (6.16)

and

Mijkl = μ�2

12
(δijδkl + 2δjkδli) + Ē�2

12
(δjlδik − δjkδli). (6.17)

In summary, for the case of elastic isotropy and a single characteristic length, the
phenomenological energy representation (1.1) corresponds to the physical representation (3.6).

It is instructive to contrast the reduction in the number of independent constants from
3 to 2 for tensors M and C. The elasticity tensor C has only two independent constants
because it possesses the minor symmetry: CIJkl = CJIkl = CJIlk. With reference to (2.3), this implies
C2 ≡ C3. However, the tensor M (6.17) does not possess the minor symmetry. The reduction
in the number of independent coefficients (6.16) follows from dimensional analysis and its
dependence on C.

(b) Anisotropic crystal
Consider two dislocation segments, α and β, with Burgers vectors bαsα and bβsβ . Let infinitesimal
segments vectors dxαξα and dxβξβ be located at xα and xβ (figure 2). Define

R = xβ − xα ; R = |R| ; r = R
R

. (6.18)

In the plane orthogonal to the unit vector r, choose an arbitrary direction and define the unit
vector n(φ), where φ is measured from the chosen direction.

9The coefficients in (6.13) have been derived in reference [19], but for a different convention, and with an error in the edge–
edge interactions. Here, we correct the error and give results for the convention used in this paper: ξα

� = sα , ξα
⊥ = −tα .
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R
n(f)

f

dxbxb

dxaxa

Figure 2. Geometry for interaction of two infinitesimal dislocation segments located at xα and xβ . (Online version in colour.)

From the major symmetry and positive definiteness of the elasticity tensor C, it follows that
the rank-two tensor

M= n · C · n, (6.19)

is symmetric and positive definite. Next, define the rank-four tensor

L= n × [(C · n) · M−1 · (n · C) − C] × n. (6.20)

The elementary interaction between two infinitesimal segments can be written as [31,32]

1
8π2

bαdxαbβdxβ

R
(sαξα) :

[∫ 2π

0
Ldϕ

]
: (ξβsβ ). (6.21)

The integration domain in (6.21) is the unit circle in the plane shown in figure 2, which we denote
c0. Then, following (6.5) to (6.8), we write

L(C, r) ∼
∫

c0

L(C, r, n)dϕ; M̄(C) ∼ �2
∫

S0

dS
∫

c0

dcL(C, r, n). (6.22)

The second equation corresponds to the case where all characteristic lengths are identical. Integral
over the unit circle c0 is the integral over all directions n in the plane shown in figure 2, whereas
in the outer integral over the unit sphere S0 is the integral over all spatial directions r.

From (6.19) and (6.20), the tensor L is a homogeneous function of order 1 of the tensor C:

L(λC, r, n) = λL(C, r, n). (6.23)

The integration over directions r and n in (6.22) does not affect the homogeneity, so that the tensor
M̄ is also a homogeneous function of order 1 of C:

M̄(λC) = λM̄(C). (6.24)

Let the symmetry operation Q be in the material symmetry group, so that the components of C
are invariant under this symmetry operation

〈Q〉4 ∗ C = 1C. (6.25)

Then, with λ = 1 in (6.24)
M̄(〈Q〉4 ∗ C) = M̄(C). (6.26)

Thus, M̄ is invariant under all transformations that leave C invariant. In appendix A, we show
that the tensor M̄ transforms in a manner that satisfies the principle of material frame indifference
(2.2) for rank-four tensors, i.e.

M̄(〈Q〉4 ∗ C) = 〈Q〉4 ∗ M̄(C). (6.27)

Therefore, if all the characteristic lengths are equal, the tensor M̄ (6.8) is uniquely defined, so that in
this case, the phenomenological expression (1.1) is justified.
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Moreover, we expect the tensor M̄ to have the same number of independent constants as C, for
the same reason as in the isotropic case, cf. discussion after (6.17). However, we were unable to
prove that the relationship which reduces the number of independent constants, such as (6.16) for
isotropic case, is linear in the general case. The difficulty lies in the fact that order 1 homogeneity
(6.23)–(6.24) between a tensor and its tensor function does not imply linear relationship between
the components of the two tensors.

As an aside, we prove in appendix B that the tensor M̄ satisfies the index reversal symmetry

M̄ijkl = M̄lkji, (6.28)

for any symmetry group. While isotropic and cubic symmetry groups (§2) include this symmetry,
other symmetry groups do not10. Assuming that the major symmetry is given, the reversal
symmetry follows from the minor symmetry, but the converse is not true.

If the characteristic lengths are not equal, we rewrite (6.7) as

M̄αβ (C) ∼ �α�βm̄(C); m̄(C) =
∫

S0

dS
∫

c0

dcL(C, r, n). (6.29)

Now, the tensor m̄ inherits all the symmetries (and the number of independent constants) from
the elasticity tensor C, but there is no unique tensor M̄ (nor M). Thus, the phenomenological
expression (1.1) as quadratic form of Nye’s densities cannot be physically justified in this case.

(c) Cubic crystals
In the case of cubic crystal, three independent elastic constants are required (2.5). Assume that the
interactions within one slip system are known

Dαα
⊥⊥ = �α�αd⊥⊥, Dαα

�� = �α�αd��, Dαα
�⊥ = Dαα

⊥� = �α�αd⊥�. (6.30)

The three coefficients: d⊥⊥, d�� and d⊥�, and the proportionality (6.7), are sufficient to compute
all interaction matrices Dαβ , provided that all characteristic lengths are known. Moreover, if
all characteristic lengths are identical, the global representation in terms of Nye’s fields (1.1)
applies. The computation of (6.29) is the most involved step. The details of such computations
for isotropic case are given in references [19,30]. In summary, this amounts to computing both
energy of discrete dislocation assembly and its continuous representation, then approximating the
thus obtained non-local difference by a local expression. Assuming that such result is available, it
remains to perform integration (6.22). From (2.5) and (6.19)

M= C0

3∑
α=1

n2
αeαeα + (C1 + C2)nn + C2pjpj (6.31)

The simplest method to compute the inverse appears to be the application of the Cayley–
Hamilton theorem

M−1 = 1
detM (M2 − IM + III); I = trM; II = 1

2
(I2 − trM2). (6.32)

The determinant is computed as

detM= C2
2(C0 + C1 + 2C2) + C2C0(C0 + 2C1 + 2C2)(n2

1n2
2 + n2

2n2
3 + n2

3n2
1)

+ C2
0(C0 + 3C1 + 3C2)n2

1n2
2n2

3, (6.33)

10The reversal jk → kj is in fact invariance to the rotation by π/2 (or identity if j = k), which is included in the cubic and
isotropic groups, but not in all the symmetry groups.
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where the components of n are in the canonical crystal system: n = niei. The integral
∫ 2π

0
[n × [(C · n) · M−1 · (n · C) − C] × n]dφ, (6.34)

can now be computed by means of (6.32)–(6.33) and with C given by (2.5). To that end, the vector
n can be described in the local coordinate system

p3 = r; n = cos φp1 + sin φp2

and ni = cos φp1i + sin φp2i; pji = pj · ei; pj = pjiei.

⎫⎬
⎭ (6.35)

7. Summary and discussion—the relevance of multiple length scales
In this paper, we have addressed two questions relevant for development of size-dependent
plasticity theory:

1. Can the phenomenological expression for size-dependent energy 1/2A : M : A represent
the physical expressions (i.e. derived from dislocation mechanics): 1/2{ρb}T[K]{ρb}, or
equivalently, 1

2
∑

α

∑
β gα · Dαβ · gβ , and under which conditions?

2. How can physical or phenomenological expressions for size-dependent energy be
computed from dislocation mechanics?

The answer to the first question, based solely on the analysis of material and slip symmetries,
is that the equivalence between the phenomenological and physical expressions is not possible,
even if the multiplicity of characteristic lengths is sacrificed. The physical expressions require
much larger number of independent constants than the number allowed to the phenomenological
expression by the material symmetries.

The coarsening method developed in §6 is based on the physical interpretation of the size-
dependent energy as the coarsening error in dislocation interaction energy (or, equivalently, the
strain energy associated with incompatible elastic strains). It amounts to a local approximation of
a non-local (but localized to a small domain) expression and includes the following assumptions:

(A) The coarsening error in interaction between two sets of dislocations is proportional to the
total energy.

(B) The spatial averaging over the spherical RVE whose size is the geometric mean of
characteristic lengths associated with the two slip systems.

Such coarsening procedure introduces additional symmetries. Nevertheless, the answer to the
first question is still negative for the general case. However, if all characteristic lengths are equal,
the equivalence between phenomenological and physical expressions is possible. Moreover, the
number of independent coefficients in the phenomenological expression is lower than the one
predicted by material symmetries.

Given the mathematical convenience of the phenomenological expression, the question of error
incurred by assuming that all slip systems have the same characteristic length, deserves some
consideration. In Mesarovic et al. [19], the physical interpretation of the characteristic length of a
slip system is the average spacing between the stacked pile-ups of dislocations. Each characteristic
length evolves with plastic deformation, as illustrated in figure 3a. In early stages of deformation
of a well-annealed crystal, the characteristic length is determined by the average spacing between
the Frank–Read sources. With continuing deformation, dislocation multiplication by the double
cross-slip mechanism introduces a new—typically much smaller—spacing, so that the spacing
distribution between stacked pile-ups is bi-modal in the intermediate stages of deformation. In
the later stages, the characteristic double cross-slip distance dominates. If the second slip system
is activated at later stages of deformation, the two characteristic lengths will be very different, as
shown in figure 3b.
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�source

�cross-slip

(b)(a)

Figure 3. Pile-ups at a crystal boundary. (a) Evolution of the characteristic length for single slip. (b) Activation of the second
slip systems at a later stage of deformation leads to a large difference in characteristic lengths associated with the two systems.
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Figure 4. (a) Configuration of the thin filmwith symmetric double slip. Stress–strain graphs for various characteristic lengths:
(b) Discrete dislocation dynamics [33]; (c) continuum theory [34].

In small volumes where interfaces dominate, the dissipative dislocation-interface reactions
(penetration, dissociation, relaxation) are critical for determining the macroscopic behaviour
of materials. Computation of energy is the essential first step in determining the dissipation
mechanism at the boundary. Calculations using both, discrete dislocation dynamics [33] and
the continuum model [34], indicate that the length scale (i.e. the spacing between slip planes)
is relevant. This is illustrated in figure 4, for the simple configuration of thin film with symmetric
double slip. The characteristic length has little or no effect on the initial yield, but its effect on
hardening is significant.
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In summary, while the assumption of equal characteristic lengths, combined with the
coarsening method proposed in §6, allows for the energy representation as the quadratic form of
Nye’s tensor, such representation should be used with caution, as it erases potentially important
effects of dissimilar characteristic length in different slip systems.
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Appendix A. Material frame indifference of M̄
Consider an orthogonal transformation Q as a transformation of the coordinate system. The
vector n (figure 2) is a material vector. Thus, any transformation of the coordinate system must be
accompanied by transformation of n

n′ = 〈Q〉 ∗ n (A 1)

We aim to prove that

L(〈Q〉4 ∗ C, 〈Q〉 ∗ n) = 〈Q〉4 ∗ L(C, n), (A 2)

where

L= n × (P − C) × n; P = (C · n) · M−1 · (n · C); M= n · C · n. (A 3)

The components of the tensor M transform as

M′
jk = n′

iC
′
ijkln

′
l = QixnxQipQjqQkrQlsCpqrsQlyny. (A 4)

For orthogonal transformations, QixQip = δxp, so that

M′
jk = QjqQkrδpxnxCpqrsδsyny = QjqQkrMqr. (A 5)

The inverse of a tensor transforms in the same way as the original tensor, so that

(M−1)′jk = QjqQkr(M−1)qr. (A 6)

Next, it is easily shown, using the orthogonality of the transformation as in (A 4)–(A 5), that

P ′
ijkl = QipQjqQkrQlsPpqrs. (A 7)

Then, we express the transformation of L

L′
xjky = ∈xmi n′

m(P − C)′ijkln
′
t ∈ylt= ∈xmi QmznzQip︸ ︷︷ ︸

xp

QjqQkrQls(P − C)pqrsQtwnw ∈ylt . (A 8)

Consider the expression denoted xp and multiply it by δxβ = QxαQβα :

δxb ∈xmi QmzQipnz = ∈xmi QmzQipQxaQbanz = (det Q) ∈zpa Qbanz. (A 9)

It follows that

∈xmi QmzQipnz = (det Q) ∈zpa Qxanz. (A 10)
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Applying the similar transformation to the terms at the tail end of (A 8), we obtain

∈ylt QlsQtwnw = (det Q) ∈swc Qycnw. (A 11)

Upon substitution into (A 8)

L′
xjky = (det Q)2QxaQjqQkrQyc ∈azp nz(P − C)pqrsnw ∈swc . (A 12)

Upon noting that det Q = ±1 for proper/improper orthogonal transformation (rotation/inversion),
we obtain

L′
xjky = QxαQjqQkrQyγLαqrγ . (A 13)

Finally, from (6.20)

M̄′ = const. ×
∫

S0

dS
∫

c0

dc〈Q〉4 ∗ L= const. × 〈Q〉4 ∗
∫

S0

dS
∫

c0

dcL= 〈Q〉4 ∗ M̄. (A 14)

Appendix B. Reversal symmetry of M̄
Following (A 3), we show that

(n × P × n)ijkl = (n × P × n)lkji. (B 1)

Similar property for n × C × n is easily proven, implying the reversal symmetry of L
Lijkl =Llkji. (B 2)

Then, because the integration over directions in (6.22) is a linear operation, the reversal symmetry
of M̄ (6.28) follows.

To prove (B 1), we first note that the major and minor symmetry of C, and the symmetry of
M−1, imply the major and minor symmetry of P :

Pijkl = CijpqnqM−1
pr nsCsrkl = CklrsnsM−1

rp nqCqpij =Pklij =Pjikl. (B 3)

Then

(n × P × n)ijkl = ∈ipq npPqjkrns ∈rsl= − ∈lsr nsPkrqjnp(− ∈qpi)

= ∈lsr nsPrkjqnp ∈qpi= (n × P × n)lkji. (B 4)
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