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Received 15 April 2002; received in revised form 14 October 2002; accepted 10 November 2002

Abstract

Microstructural mechanics combines the computational methods of structural mechanics and materials sciences. It is

dedicated to the mechanics of heterogeneous materials. On the one hand, it can be used to compute industrial com-

ponents for which the size of the heterogenities is of the order of magnitude of the size of the structure itself or of holes

or notches. On the other hand, the computation of representative volume elements of heterogeneous materials enables

one to predict the influence of phase morphology and distribution on the linear or non-linear effective properties, having

in view microstructure optimization. Such computations provide the local stress–strain fields that can be used to predict

damage or crack initiation. This work focuses on the modern tools available for reconstructing realistic three-dimen-

sional microstructures and for computing them, including parallel computing. The choice of the local non-linear

constitutive equations and the difficulty of identification of the corresponding parameters remain the weakest link in the

methodology. The main example detailed in this work deals with polycrystalline plasticity and illustrates the tremen-

dous heterogeneity of local stress and strain, and the effect of grain boundary or free surfaces. The computations are

finally used to calibrate a simplified homogenization polycrystal model.
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1. Objectives

The mechanics of heterogeneous materials has

longly been limited to the derivation of simplified

schemes to include some aspects of the micro-

structure into the prediction of their effective

properties [1]. The tremendous increase of com-
putational capabilities has strongly favoured the

development of numerical simulations based on a

more realistic description of microstructure. The

computation of microstructures within the frame-

work of continuum mechanics has now gained the

level of a scientific ‘‘discipline’’ in its own. We call

it in this work ‘‘microstructural mechanics’’, as a

reference to the longstanding and now classical
structural mechanics. Microstructural mechanics

combines the tools of computational structural
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mechanics and materials sciences in order to reach

the following objectives:

• The understanding of local deformation mecha-

nisms at work in heterogeneous materials at
the level of individual heterogenities: strain in-

compatibilities between neighbouring grains in

a polycrystal, stress concentration and distri-

butions in the constituents of composite ma-

terials . . . This corresponds to the goal of

micromechanics stricto sensu.

• The computation of industrial components, the

size of which is comparable to that of the individ-

ual heterogenities. This situation is met for in-

stance in MEMS for which the grain size can

be of the order of magnitude of the sample size,

or in critical parts of small components like

notches.

• The prediction of the overall properties of hetero-

geneous materials. Homogenization techniques

have been designed to bound or estimate the ef-
fective properties of materials made of several

constituents [2]. Such estimations can be com-

pared with explicit computations of representa-

tive volume elements (RVEs) of the material.

When the properties of the constituents are

highly contrasted and in the case of elastovisco-

plastic local behaviour under complex global

loading conditions (multiaxial, changes of load-
ing paths, cyclic behaviour . . .), the latter may

well represent the single reliable solution.

• The simulation of local damage processes. Dam-

age initiation in heterogeneous materials is not

driven by the mean values of stress and strain

in each constituent, that homogenization meth-

ods may be able to estimate, but by some max-

imal values reached at some places of the
heterogeneous microstructures (near grain

boundaries or interfaces . . .). The computation

of explicit microstructures also provides these

local data and can be coupled to damage crite-

ria or damage evolution equations to predict

initiation and propagation of damage or cracks.

The continuum mechanical framework sets a
lower bound for the relevant scales in the micro-

structure to be dealt with, namely not below 1 lm
in general, especially in the non-linear case (elasto-

viscoplasticity). The treatment of regions in the

material containing a finite number of dislocations

definitely falls into the realm of dislocation dy-

namics [3], which is deliberately excluded from the

present study together with similar discrete sys-
tems described by explicit schemes. The mechanics

of generalized continua however enables one to

extend the limits of continuum modelling to lower

scales where size effects are expected. The example

of a two-phase single crystal superalloy with 0.5

lm cuboidal precipitates, regarded as a two-phase

Cosserat medium, is presented in [4]. The intro-

duction of internal length scales in the computa-
tion of microstructures is reported in Section 4.2.

Heterogeneous materials generally exhibit a

random distribution of phases according to spe-

cific statistical distributions so that one single

computation will not be enough. Instead a suffi-

cient number of realizations of the microstructure

will be necessary to estimate both the wanted

property and its dispersion. In particular, the
question of the size of the RVE for a given geo-

metrical physical property must be addressed.

Microstructural mechanics proceeds in three

main steps: representation of the microstructure in

a realistic manner, choice of the numerical tech-

niques to solve the boundary value problem and

identification of the constitutive equations of the

constituents, corresponding to the three main
sections of this work. Different types of materials

are investigated ranging from two-phase elastic

materials to metallic foams, but the stress is laid on

the plasticity of crystalline solids. The main ex-

ample presented in Section 6 deals with the me-

chanical behaviour of polycrystalline aggregates.

Section 7 links the computation of microstructure

to the identification of macroscopic constitutive
equations for structural applications.

2. Representation of the microstructure

Microscopic observation (optical microscopy,

SEM . . .) usually provides two-dimensional views

of the distribution of heterogenities in the micro-
structure that can be sometimes sufficient to pre-

dict the mechanical response of this material

element under loading. In the general case, 3D

352 G. Cailletaud et al. / Computational Materials Science 27 (2003) 351–374



information should be gathered to reconstruct a

realistic representation of the real microstructure.

2.1. 2D and quasi-2D microstructures

The case of thin films or coatings containing

grains larger than the sample thickness can be

easily handled since 2D characterization gives a

thorough representation of the microstructure.

Fig. 1 shows an EBSD analysis of a hot-dip zinc

coating on galvanized steel sheet [5]. The coating

thickness is about 10 lm and the grain size 400

lm. In this case, the EBSD analysis provides a 2D
map of the crystal orientation of all grains in the

investigated zone, from which the geometry of the

grains can be directly inferred. This information

can be then used to build a finite element mesh of

this microstructure (Fig. 1) for subsequent com-

putations of the mechanical response of the coat-

ing. A 2D computation is however not realistic

since the deformation mechanisms activated in
each grain when the coated sheet is deformed, are

highly three-dimensional: basal and pyramidal slip

systems have been systematically observed experi-

mentally in the studied zinc alloy which exhibits

close-packed hexagonal crystal symmetry. An

idealized view of all grains having their c-axis
perpendicular to the sheet, which may permit a 2D

computation, is not acceptable here. Instead, a 3D

extension of the mesh in the direction normal to

the sheet plane is considered with the minor hy-

pothesis that all grain boundaries are perpendicu-

lar to the sheet plane [5].
A similar situation is met in the case of multi-

crystalline samples for which the grain size is of the

order of magnitude of the sample size. A recrys-

tallized sample made of the Inconel 600 alloy and

containing six main grains is presented on Fig. 2,

after [6,7]. Again a 2D analysis of the problem of

the tension of the sample would lead to strong

discrepancies with experimental results since the
orientations of the individual grains do not display

any special symmetry. A simplified 3D represen-

tation of the grains can be deduced from the ob-

servation of all sides of the sample, as shown on

Fig. 2.

2.2. 3D real microstructures

In the general case, the investigated volume

contains a large number of heterogenities hidden

in the bulk of the materials. The observation of the

morphology of individual phases and their distri-

bution in the volume remains a challenging issue,

which sometimes remains simply out of reach or

requires considerable effort. The polishing and

Fig. 1. Grain distribution in a zinc coating on a galvanized steel sheet: EBSD analysis (top); finite element mesh of the grains and 3D

extension (bottom); the grain size is about 200 lm on the pictures.
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EBSD analysis of successive layers of a small

polycrystalline volume is possible but destructive

[8,9].

However, specific techniques are available to
image real three-dimensional microstructure in

some cases. If the phases of the heterogeneous

material have very different densities, X-ray to-

mography can be used. This is the case of metallic

foams for instance that have aroused considerable

interest in the past 10 years, especially for energy

absorption applications [10–12]. A sample of alu-

minum foam is shown on Fig. 3 with a slice in its
interior reconstructed from X-ray tomography [13]

and showing a highly heterogeneous distribution

of cell sizes.

When one phase of a two-phase material is

transparent or can be artificially replaced by a

resin transparent to light, confocal optical micro-

scopy is a powerful tool to obtain 3D images of the

microstructure at least up to a certain depth. It is

the case for several materials involved in food in-

dustry for instance. The material shown on Fig. 5

is a highly contrasted two-phase material, the
elastic properties of the softer phase being more

than 1000 less than that of the hard one [14]. The

soft phase can be chemically substituted by a

transparent resin. Confocal microscopy can be

applied providing details on the distribution of the

phases in a 50 lm thick sample.

2.3. Random models for microstructures

If three-dimensional images of real microstruc-

tures are not available, one can try to simulate

them according to some adequate random process.

One must then check that the proposed statistical

distribution is compatible with information known

from 2D observations: volume fraction of phases,

two-point correlation functions, morphology (see
the corresponding chapters in [15]) . . . Beyond

idealized periodic models, such random models

exist for instance to describe the structure of metal

foams: Voronoi trusses, randomized honeycombs,

quasi-periodic beam networks [12] . . .
The example provided here is the case of poly-

crystalline morphology presented in detail in [16].

There are two main idealized representations of the
polycrystalline microstructure: the periodic model

of Kelvin (periodic arrangement of tetrakaideca-

Fig. 2. Multicrystalline nickel sample: both sides of the sample

(left), finite element computation and orientation of the grains

(right); the gauge length of the sample is about 15 mm.

Fig. 3. Cellular morphology of aluminum foams: sample and two-dimension slice reconstructed from X-ray tomography; the edge of

the sample is 10 cm long.
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hedra) and the more realistic Voronoi mosaic. One

realization of 3D Voronoi mosaic is given in Fig. 4.

Once the Voronoi cells have been simulated, a

color is attributed randomly to each one. Each

color corresponds to a crystal orientation, the

prerequisite being that the associated orienta-

tion distribution function must be in accordance

with the experimental crystallographic texture. In
[16,17], isotropic distributions of orientations only

have been considered. Note that it is possible to

impose a periodicity constraint at the boundary of

the polycrystalline cube if one is interested in pre-

scribing periodic boundary conditions in the sub-

sequent computations (see Fig. 4(b)).

2.4. Morphology and mechanical behaviour

The effort dedicated to a realistic and detailed

description of the microstructure is all the more

important as the morphology can have a drastic

influence on the mechanical response of the ma-

terial, at least if the properties of the constituents

are sufficiently contrasted. The example of the

two-phase material from food industry repre-

sented on Fig. 5 is striking enough to be presented

here.

Fig. 5 shows in fact two different morphologies
that can be obtained depending on the material

processing: one is called here the coarse distribu-

tion, the second one the fine morphology. Note

that both distributions give the same overall vol-

ume fraction of each phase. The elastic properties

are highly contrasted since the green/red phase is

at least 1000 stronger than the transparent one.

The elastic properties of the constituents and of
each two-phase materials are measured by means

of four-point bending tests [14]. They have been

measured as a function of the volume fraction of

Fig. 5. Three-dimensional microstructure of a two-phase material from food industry obtained by confocal microscopy; the hard

phase is represented by the green and red colors: coarse distribution (left), fine distribution (right); the thickness of the layer is 50 lm
(after [14]).

Fig. 4. Simulation of Voronoi polyhedra: 3D distribution (left); section of cube made of Voronoi polyhedra with a periodicity con-

straint at the boundary (right).

G. Cailletaud et al. / Computational Materials Science 27 (2003) 351–374 355



the hard phase. The experimental results are re-

ported in Fig. 6(a): the fine microstructure turns

out to be much stronger that the coarse one. The

reason cannot be easily seen from the presented

images of both microstructures. One may simply

notice that the heterogenities are smaller and more
elongated in the fine microstructure than in the

coarse one (see also the 2D sections of Fig. 7).

When the properties of the constituents are so

contrasted, the bounds for the effective properties

of the mixture coming from homogenization the-

ory are not really helpful since there is a huge gap

between lower and upper bounds. Estimation

schemes, like the self-consistent estimate, can then
be used to evaluate effective properties. However it

is not clear how to decide which approximate

scheme is best-suited for each morphology. That is

why we propose here to take explicitly the detailed

morphology of the presented two-phase micro-

structures into account and to perform 3D finite

element computations. Such a computation of the

effective Young�s modulus is shown on Fig. 8. This
requires a huge mesh and parallel computing.

The results obtained for both microstructures are

compared to the experimental values on Fig. 6.

It can be seen that the full computation makes

it possible to distinguish both microstructures

whereas the difference of morphology were not

easy to assess at a first glance. The localized de-

formation paths in the soft phase appear clearly in
Fig. 8.

3. Numerical techniques

Two main numerical methods are used to solve

the boundary value problem for the considered

microstructure. The partial differential equations
to be solved are the equilibrium equations re-

stricted to the static case in this work. For the

computations of RVEs, homogeneous boundary

conditions in strain or stress, periodicity condi-
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function of hard phase volume fraction. Experimental results

and numerical estimations for two microstructures.

Fig. 7. Two-dimensional slices of both microstructures of Fig. 5.
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tions or mixed boundary conditions can be applied

at the boundary of the RVE [18]. The finite ele-

ment method is versatile and has proved to be

reliable enough to handle strongly non-linear

problems. In the case of periodic boundary con-
ditions, methods based on Fourier transforms

have proved to be successful to simulate diffusive

or displacive phase transformations [19,20] and,

more recently, elastoplastic problems [21]. We re-

fer only to the finite element method in the sequel.

3.1. Meshing microstructures

The choice of the finite element method to solve

the considered boundary value problem requires

the design of a finite element mesh discretizing the

geometry of the microstructure. A straightforward

and systematic way, sometimes called multiphase

element technique consists in superposing a regular

3D mesh on the image of the microstructure. The

mechanical property associated with the color of
the underlying voxel is attributed to each integra-

tion point of all elements (Fig. 9(a)). The draw-

back of this method is the poor description of

interfaces: jumps of some quantities that are in

principle allowed at interfaces cannot be described

properly if the interface goes through the element.

A proper meshing of interfaces is possible in par-

ticular in the case of Voronoi polyhedra (Fig. 9(b))
using standard 2D and 3D free meshing techniques

[22,23].

A numerical comparison between both meshes

of Fig. 9 has been performed for the elastic highly

contrasted two-phase material considered in Sec-

tion 2.4. It shows that the mean values of stress or

strain over the whole volume are identical and that

the local responses along a given line can differ
significantly unless fine enough meshes are used in

both cases. This explained why the multiphase

element technique is used at several occasions in

this and related works.

Similar finite element meshing methods involv-

ing Voronoi tessellation can also be found in [24].

3.2. Parallel computing

The obtained three-dimensional finite element

meshes usually lead to a huge amount of degrees

Fig. 8. Three-dimensional finite element simulation of the linear tensile behaviour of a two-phase material: (deformed) finite element

mesh of one of the microstructures corresponding to Fig. 5 (left) and field of von Mises equivalent strain (right) for a mean prescribed

deformation in vertical direction. The blue/red colors denote low/high strains (88 200 quadratic bricks, i.e. 1 126 131 degrees of free-

dom, parallel computation on 32 processors).
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of freedom. The resolution of the corresponding

linear system requires very large memory and

disk storage capacity. On the other hand, it will

be seen in Section 4 that the used constitutive

equations are strongly non-linear (viscoplasticity,

large deformations). The local integration of the
evolution equations for the internal variables is

very time-consuming. That is why specific res-

olution techniques are necessary to make it

possible to compute realistic microstructures.

Parallel computing is a powerful tool introduced

in structural mechanics about 15 years ago. At

the early stage, independent computation loops

were automatically distributed among the pro-
cessors of dedicated machines. The technology

has evolved towards the use of clusters of ma-

chines. In the mean time, new computing meth-

ods based on subdomain decomposition have

been designed. They explicitly take the specificity

of the mechanical numerical problem to solve

into account, contrary to the previous automatic

methods. This lead to a tremendous increase in
efficiency.

The parallelized finite element code used in

this work [25] resorts to the subdomain decom-

position method called FETI [26,27]. It is based

on a decomposition of the considered structure

into subdomains that can share only interfaces.

Each subdomain is handled by one different

processor or machine. Parallel solving of local
integration of constitutive equations is therefore

automatic, provided that the information at an

integration point is sufficient for the integration

of the variables at this point (local constitutive

equations). The subdomains are fixed at the

beginning and the problem of dynamic load re-

partition is not tackled here. At the global

level, the independent resolution on a given

subdomain leads to discontinuities of the global
solution at interfaces. The FETI method is a

dual iterative method that tries to distribute the

forces at the interfaces for the displacement field

to become continuous. One simply mentions

here the three main steps of the computation,

after the decomposition of the structure into

subdomains:

• resolution of the subproblems into each domain;

• iterative scheme to get the solution of the global

problem;

• merging the results of all subdomains.

4. Constitutive equations of the constituents

The constitutive equations describing the local

behaviour of each constituent in a heterogeneous

material definitely are the weakest point in the

computation of microstructures. The reason is that

the local properties of one phase may differ sig-

nificantly from that determined on the bulk phase.

This is especially the case for non-linear properties

like viscoplasticity. One set of constitutive equa-
tions is given here for crystalline solids as an

example enlightening the anisotropy of local be-

haviour.

Fig. 9. Meshing 10 Voronoi polyhedra: multiphase element technique (left); 3D free meshing with tetrahedra (right).

358 G. Cailletaud et al. / Computational Materials Science 27 (2003) 351–374



4.1. Crystal plasticity framework

The constitutive theory of crystal plasticity now

is a well-established framework to model slip
processes at the grain level in a continuum way

[28–30]. It is based on the multiplicative decom-

position of the deformation gradient F� into elastic

and plastic parts:

F� ¼ 1� þ ui;jei � ej ¼ E�P� ð1Þ

where u denotes the displacement vector and the ei
an orthogonal basis of unit vectors. The choice of

the rotation part of the elastic deformation E� is

settled by the definition of an intermediate isoclinic

configuration for which the crystal orientation of

the volume element is the same as a reference one.

Plastic flow is the results of glide processes ac-
cording to N slip systems characterized by the slip

plane of normal n and slip direction m:

_PP�P�
�1 ¼

XN
s¼1

_ccsms � ns ð2Þ

_ccs ¼ jss � xsj � rs

K

� �n

signðss � xsÞ with

ss ¼ ms 	 r� 	 ns ð3Þ

A viscoplastic flow rule (3) linking the resolved

shear stress ss to the increment of plastic slip _ccs has
been adopted. Two hardening variables appear in

(3): the threshold rs called isotropic hardening
variable, and the internal stress xs associated to

kinematic hardening. Kinematic hardening at the

level of the grains indirectly describes the possible

formation of dislocation structures, especially un-

der cyclic loading. The retained non-linear evolu-

tion rules are the following:

rs ¼ r0 þ Q
XN
r¼1

hsrð1� e�bvrÞ; _vvs ¼ j _ccsj ð4Þ

xs ¼ cas; _aas ¼ _ccs � d _vvsas � xs

M

����
����
m

signðxsÞ ð5Þ

The initial plastic threshold is r0 and hrs denotes an
interaction matrix accounting for self and latent
hardening. The evolution equation for kinematic

hardening contains dynamic and static recovery

terms. Note that other choices of hardening vari-

ables are possible, for example dislocation densi-

ties-like variables appearing in some evolution

rules used in physical metallurgy [31,30]. Most of
them however do not significantly differ from the

responses obtained using Eqs. (3)–(5).

The material parameters appearing in the con-

stitutive equations have been identified for instance

in the case of single crystal copper or nickel-based

superalloy under tension, cyclic loading and creep

[32,33]. Even though the form of the constitutive

equation is still pertinent to describe the behaviour
of a grain in a polycrystal, the values of the pa-

rameters may differ for the bulk single crystal and

the grain in a polycrystal, because of grain size

effects for instance. The values of the parameters

for the grain are usually identified from an inverse

approach using the overall mechanical response of

the polycrystal and a polycrystal homogenization

model. The bias introduced by the choice of a
specific simplified homogenized polycrystal model

sheds some dark on the relevance of the found

local parameters. In particular, very different val-

ues can be found to describe the same global

curves if a Taylor or a self-consistent model is used

[1]. The use of the obtained constants for the

simulation of the polycrystalline aggregates com-

puted in Section 6 is then questionable. A first
attempt of a direct inverse approach based on

polycrystalline aggregates is reported in [34].

4.2. Introduction of a length scale

The aim of the mechanics of heterogeneous

materials in the case of metal polycrystals should

be to predict the polycrystal behaviour from the
knowledge of a constitutive model for the single

crystal, the crystallographic texture and the grain

morphology. This procedure fails due to the fact

that the proposed framework is up to now insen-

sitive to the influence of grain size classically ob-

served in metallurgy [35]. It must be noticed that

within the classical continuum mechanical frame-

work the absolute size of heterogenities in the
materials of Fig. 6(b) or 9 does not play any rôole in

the final local and global responses. There is no

effect of the absolute dimension in the coordinates

of the nodes in the mesh.
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Therefore a more realistic microstructural me-

chanics should be able to put a scale on the strain

maps of Fig. 11, as in the corresponding micro-

graphs. The introduction of explicit metallurgical

rules like the Hall–Petch correlation cannot be
used inside the grain since they are valid for

the macroscopic response only. A solution to

this difficulty is to introduce additional hardening

variables incorporating an intrinsic length scale.

One of them is the so-called dislocation density

tensor (also called density of geometrically neces-

sary dislocations) defined as the rotational part of

the inverse of the elastic deformation [36]:

a� ¼ �curl� E�
�1 ð6Þ

that has the dimension of the inverse of a length.

The meaning of this quantity is made clearer

when it is related to the lattice curvature tensor j�.
Lattice rotation connects an initial reference

crystal orientation of a single crystal element to
its current orientation. It is therefore related to

the rotation part in the polar decomposition of E�.
As a rotation, it can be represented by an axial

vector and, at least in the small rotation frame-

work, the gradient of it is the definition of lattice

curvature j�. Lattice curvature can be deduced

from EBSD maps of a deformed crystal. It is

usually postulated that lattice curvature contrib-
utes to material hardening [37], for instance ac-

cording to

rs ¼ r0 þ Q
XN
r¼1

hsrð1� e�bvrÞ þ Hhs ð7Þ

where hs denotes a lattice curvature angle over a

given length scale. This enhancement of the clas-

sical crystal plasticity framework falls into the

mechanics of generalized continua, since it has
been incorporated in strain gradient or Cosserat

formulations of continuum mechanics [4,38]. It has

been shown to provide Hall–Petch like grain size

effects on polycrystal behaviour in the case of f.c.c.

and h.c.p. materials [4,39]. The generalized con-

tinuum affects also the obtained strain localization

modes at stress concentration points or cracks [40].

4.3. Coupling with other physical mechanisms

Dislocation glide processes are not always the

single physical mechanism at work in a plastically

deformed materials. Other deformation and

damage modes should be included: deformation

twinning, stress-induced phase transformation,

recrystallization, trans or intergranular crack-
ing . . . Fig. 10(a) shows a 2D simulation of inter-

granular cracking in a zirconium alloy [41]. In Fig.

10, the grains boundaries have a non-vanishing

thickness in order to attribute specific properties to

them: intergranular viscous sliding or damage

observed at high temperatures. In [41,42] the me-

chanical framework is coupled to diffusion pro-

cesses in a weak formulation, to predict stresses
due to the growth of oxide layers on the one hand,

and stress assisted corrosion.

Several of these important physical mechanisms

can be simulated individually. However they often

act simultaneously or concurrently and the main

Fig. 10. Modelling intergranular damage in a polycrystalline aggregate: damage initiation in two-dimensional polycrystal under

vertical tension (left); 3D meshing of damageable grain boundaries (right).
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difficulty for future computations will be to cope

with the increased non-linearity of the coupled

problems.

5. Computation of multicrystals

The interest of computing samples containing a

small number of large grains lies in the fact that the

whole framework can be checked experimentally

by comparing local and global predictions to strain

or stress field measurements. In the case of coat-

ings for instance, the computations are also of in-
dustrial interest since they can be used to optimize

the microstructure, like grain size for instance.

5.1. Multicrystalline specimens and coatings

Metallic multicrystals have been investigated

both experimentally and numerically in several

situations in the past 10 years: copper bicrystals
[33], copper, nickel, aluminum or iron multicrys-

tals [6,43–45]. The specimens may be strained in

situ in a SEM. An EBSD analysis provides the

lattice rotation field and the use of grids on the

surface enables one to derive some components of

the strain fields. In all mentioned contributions,

the experimental results have been compared with

success with realistic 3D computations using
crystal plasticity.

The application of the methodology to metallic

coatings is perhaps more important from the in-

dustrial point of view. The case of zinc coatings on

steel sheets has been presented in Section 2.1. The

finite element computation of the tension or ex-

pansion of a coating on its substrate using the

mesh of Fig. 1 for instance, reveals the following
features of the coating behaviour:

• the multiaxial stress state of each grain depend-

ing on its orientation;

• activated slip systems in the core of the grains,

at the grain boundaries and at the interface

coating/substrate;

• the gradient of strain that can develop from the
interface to the free surface; this gradient can be

shown to increase when the ratio between in-

plane grain size and coating thickness decreases;

• forces acting at grain boundaries and at the in-

terface, that can lead to intergranular fracture

or interface decohesion;

• the coating roughness induced by local plasticity.

A detailed illustration of these points can be

found in [5].

5.2. Confrontation with strain field measurements

The results of the previous calculations can be

directly compared with experimental strain field
measurements giving a distribution of some me-

chanical or physical quantity generally at the sur-

face of the specimen:

• Total strain field measurements using a fiducial

grid technique; the grid is deposited on the sur-

face of the sample by electrolithography with a

step ranging from 1 to 10 lm or more (see [46]
and several contributions in the same vol-

ume). Comparisons between simulation and

measurement are provided in [43,44] for multi-

crystalline aggregates. The agreement can be

improved using refined meshes and accurate

3D grain shapes. If the surface exhibits a suffi-

cient roughness, the grid is not necessary any

more and image correlation analysis can be
used to estimate the strain field from one image

to the other. This is the case for metal foams

for instance [12].

• Lattice orientation field measurements by

EBSD provide not only the relevant distribu-

tion of grain orientation to be used in the simu-

lation of multicrystals but also its evolution

during deformation. The lattice curvature field
can be deduced from this information. The crys-

tal plasticity models are able to predict such

orientation changes due to plastic slip (confron-

tation between simulation and measurements in

[46] and [7] for instance).

• Elastic strain field measurements by X-ray local

measurements; they are usually translated into

stress maps relying on elastic constants. Stress
heterogenities from grain to grain or stress dis-

tribution in a large grain can be determined and

have been compared with FE computations [7].

More ambitiously, the X-ray imaging technique
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using the synchrotron facility of HASYLAB in

Hamburg––Germany, gives a complete image

of the elastic deformation and lattice orienta-

tion distribution in a given grain. A complex
image data treatment is necessary [47].

6. Computation of polycrystalline aggregates

The type of geometrical aggregates shown in

Fig. 4 can be used to investigate the intragranular

fields, and to contribute to a better knowledge of
the state of stress and strain in a current point of a

polycrystal, and in more critical areas like the vi-

cinity of the surface or at the grain boundaries. To

be significant, the calculation must involve a rea-

sonable number of grains and a reasonable number

of elements in each grain. According to the liter-

ature related to texture effect, 1000 of grains seems

to be a good number for representing a given
material. The following examples are restricted to

200 grains, in order to have more than 1000 inte-

gration points in each grain (10
 10
 10, in 3D).

Averaged values can then be considered on the

mesh, in order to compare the FE model to the

results given by more simple models like self-con-

sistent approaches, on the level of each grain, and

for the global mechanical response. The elements
used are 20-node bricks with 27 integration points

per element.

6.1. Boundary conditions and representativity of the

volume element

Five types of boundary conditions will be con-

sidered on a cube containing 200 grains:

• Homogeneous strain boundary conditions (la-

belled HSB): the three components of the dis-

placement at each node of the outer surface

are prescribed according to the equations:

ui ¼ Eijxj ð8Þ
where E� is a given constant strain tensor and x
the position of the point. We apply in this work
a strain E� corresponding to average uniaxial

tension. The values of the component are taken

from a simulation with a homogenized poly-

crystal model;

• Mixed boundary conditions (labelled MB) for

which only the displacement normal to the sur-
face is prescribed according to the previous

equation;

• Tension with one free surface (labelled 1FF):

the same as MB except for one face of the cube

which is let free of forces;

• Tension with four free faces (labelled 4FF): nor-

mal displacement is zero at the bottom and pre-

scribed at the top. The four lateral faces of the
cube are free of forces.

In the whole section, the local and global be-

haviour of the polycrystal is investigated. No

special property is attributed to the grain bound-

aries. In particular, grain boundary sliding or

damage are not considered in this section.

The representativity of the considered poly-
crystalline volume element is an essential issue.

The number of grains must be large enough

for the volume to be sufficiently representative.

On the other hand, the number of elements inside

each grain must be large enough for a sufficiently

accurate description of the local intragranular

strain field. That is why the presented computa-

tions belong to the largest computations of
polycrystals available in literature and require

parallel computing. With the number of proces-

sors used, the compromise is a volume containing

200 grains. The representativity of the volume

element depends on the contrast of phase prop-

erties, on the type of boundary conditions and on

the wanted accuracy of the estimation of the ef-

fective property [48]. It can be assessed by ap-
plying strain based and stress based boundary

conditions on the same volume [49]. The differ-

ence between the apparent properties found for

both conditions is due to the lack of represent-

ativity of the sample. For large volumes, the

choice of the boundary conditions should not

matter any more. The tensile curves obtained for

both conditions on the considered sample of 200
grains differ by about 6%. The tensile curves can

be found in [17]. This difference can also be seen

in Fig. 13. The attention is now focused on the

intragranular fields.
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6.2. An approach to intragranular fields

Fig. 11 shows respectively the von Mises

equivalent stress on a 123-mesh (a), on a 183-mesh
(b), on a 323-mesh (c), then the grain map (d), and

finally the total amount of plastic slip (sum of the

slip on all the slip systems) for the 183-mesh (e) and

for the 323-mesh (f). For each plane, n is the dis-

tance to the center of the aggregate normalized by

its half width a, n ¼ x1=a. The material is IN600

[17], the cube is submitted to a 1.5% overall ten-

sion, and the orientations of the grains are ran-
domly distributed, in order to simulate an initially

isotropic material. The 123-mesh is obviously

Fig. 11. Contour plots for the Gauss points near (n ¼ 0) for a tension test along x3-axis: von Mises stress in 123-mesh (n ¼ 0:08375) (a),

183-mesh (n ¼ 0:09875) (b) and 323-mesh (n ¼ 0:09375) (c); (d) grain map in 323-mesh, amount of plastic slip in 183-mesh (n ¼ 0:09875)

(e) and in 323-mesh (n ¼ 0:09375) (f).

G. Cailletaud et al. / Computational Materials Science 27 (2003) 351–374 363



much too crude to correctly represent the local

fields. The global variations are generally cap-

tured, but the finely heterogeneous areas near the

grain boundaries are absent of the contour plot.

The 183-mesh is a little better, especially for the
von Mises stress, which is well predicted far from

the grain boundaries since it is rather uniform

inside each grain. But it is not the case for

the amount of plastic slip: there are some grains

where high-slip-activity-structures form near grain

boundaries and where the rest of the grain remains

unaffected by slip activity. Such features are

strongly dependent on the resolution of the mesh
near the grain boundary: if the 183-mesh only is

considered, one may observe high-slip-activity-re-

gions spreading over grain boundaries. But with a

higher resolution, these structures appear to be

disconnected at the grain boundaries, thus illus-

trating the fact that for the present case, the slip

activity is mainly due to the gradients of stress at

the grain boundaries and not related to a kind of
propagation of slip across boundaries.

Hence, having about 3
 3
 3 quadratic ele-

ments per grain (case of 183-mesh) may lead to a

first good estimation of the gradients of the fields

inside grains. Yet, for a systematic treatment

aiming at describing the effect of grain boundaries

(e.g. plotting field variables vs. the distance to the

grain boundary and averaging over the grains of
the aggregate), the uncertainty resulting from the

fact that grain boundaries pass inside elements

instead of between elements (so-called multiphase

elements) could alterate the observations made in

the vicinity of the boundaries. Such a systematic

treatment requires to have at least 4
 4
 4 ele-

ments per grain so that one is sure that there are

2
 2
 2 single-phase elements inside each grain,
i.e. enough elements unaffected by the numerical

construction of grain boundaries.

The heterogeneity of the local fields can also be

studied by plotting stress–strain curves. The result

is shown in Fig. 12, for the biggest grain (number

58) and the strongest grain, presenting the maxi-

mum axial stress (number 132) in the aggregate.

The graphs in Fig. 12(a)–(d) are obtained with
homogeneous strain boundary conditions (HSB).

For the biggest grain, the mean behaviour is close

to the single crystal response (the response of an

unique grain having the same orientation, and

tested under the same macroscopic strain), and a

large scatter is present. This scatter remains even if

the first integration points close to the grain

boundaries are removed from the picture. It
should be noted also that the stress redistribution

induces some local unloadings. As illustrated by

Fig. 12(b), the various points in the grain are lo-

cated in the r33 � r11 axial stress–lateral stress

plane on a line like r33 � r11 ¼ Cte. There is a

fluctuation of the hydrostatic pressure more than a

change in the deviatoric components (the same

plot would be obtained for r22). For grain58, the
two branches of the graph are balanced, so that

the average lateral stress is about zero. This is not

the case for grain132. This grain is smaller, and it

is strongly overloaded by its neighbours, so that

the local r33 stress is far larger in the aggregate

than in the relevant single crystal (Fig. 12(c)) and

an important lateral stress is observed, since the

segment in the r33 � r11 plane is no longer sym-
metric with respect to r11-axis. The large variation

on hydrostatic pressure predicted by the FE model

could not be seen by a mean field model, since in

this case the elasticity is assumed to be uniform.

On the other hand, it is not surprising to check

that hydrostatic pressure strongly depends on the

boundary conditions. As shown in Fig. 12(e) and

(f), the overloading effect on grain132 vanishes for
the same aggregate computed with four free lateral

faces (4FF).

6.3. Comments on the surface effect

Opposite results can be read in the literature

concerning the effect of a free surface on local

plastic behaviour [50]. After extensive TEM stud-
ies, some authors [51] observe a hardened surface,

due to the increase of dislocation density, but

other works [52,53] display an inverse effect, with

lower dislocation densities and larger cell sizes. On

the other hand, attempts have been made to ap-

proach the surface effect from a mechanical point

of view, using a crystallographic inclusion in a

homogeneous semi-infinite medium, considered as
elastoviscoplastic [54] or just elastic [55]. In both

cases, the authors find that surface relaxes the

stress level, the perturbed area corresponding to
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about three grains. Without repeating here the

discussion of this problem, which can be found

elsewhere [17], a summary of the main results is

now given. Having real neighbours instead of a

homogeneous medium changes everything for each

grain, so that the first order surface effect is scatter:

• as described in Fig. 12, relaxing the boundary

condition can produce a drop of the local stress,

but in some other location, a very low stress le-

vel obtained with HSB boundary conditions

can increase when freeing the surface;

• there is a a lower difference between 4FF and

MB (a mixed case with just imposed normal dis-

placement on the lateral faces but free in-plane)
than between MB and HSB;

• averaged quantities can be considered, by plot-

ting the average value of a critical variable in a

Fig. 12. Illustration of the low (a,b), (e,f) or high (c,d) grain-to-grain interaction for three levels of macroscopic strain (E ¼ 0:5%, 1.0%,

1.5%), with homogeneous strain boundary conditions (HSB) or four free faces (4FF) (a) rzz vs. ezz, grain58 (HSB), (b) rxx vs. rzz,

grain58 (HSB), (c) rzz vs. ezz, grain132 (HSB), (d) rxx vs. rzz, grain132 (HSB), (e) rzz vs. ezz, grain132 (4FF), (f) rxx vs. rzz, grain132

(4FF).
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slice at a given distance of the free surface. In

that case, the observed effect is small. For in-

stance, it is shown in Fig. 13 that the boundary

conditions have an effect on the mean value of
the von Mises stress (that demonstrates that

the cube is too small to be a mechanical

RVE), and, on the other hand, the stress drop

that can be attributed to the surface effect is sig-

nificant (relative value of about 10%). Some

other typical variations are reported in Table

1. At the surface of the cube:

• the number of active slip systems is significantly
smaller (more than 15% less than in the middle

of the specimen), then the sum of the plastic slip

is also smaller;

• on the other hand, the slip systems are ‘‘more

efficient’’, the maximum amount of slip is lar-

ger, and finally the equivalent von Mises strain

is larger too.

6.4. Effect of the grain boundary

Returning to the grain58 already observed in

Fig. 12, we plot the values of the axial stress and

axial strain vs. the distance to the grain boundary.

The first Gauss point belonging to the grain re-

ceives a value of zero, and the Gauss points in the
middle of the grain have the largest distance, of

about 2.5, that means that the grain ‘‘diameter’’ is

about 5 (to be compared with 18, which is the
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Table 1

Effect of the boundary conditions on several variables; the average is given in each box, together with the relative local variation in

(x ¼ 0)

von Mises stress

(MPa)

von Mises strain Sum of plastic slips Max amount of

slip

Number of systems

with slip >0.001

HSB 438 (+2.5%) 0.0144 ()4.6%) 0.0345 (+3.5%) 0.0151 ()3.0%) 4.30 (+4.5%)

MB 422 ()11.2%) 0.0147 (+3.6%) 0.0338 ()5.3%) 0.0160 (+7.6%) 3.83 ()16.7%)

1FF 415 ()11.3%) 0.0148 (+3.5%) 0.0333 ()5.1%) 0.0162 (+7.7%) 3.73 ()19.8%)

4FF 405 ()9.7%) 0.0148 (+3.5%) 0.0323 ()3.1%) 0.0167 (+7.6%) 3.56 ()16.7%)
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actual size of the present mesh). Like the surface,

the grain boundary will first produce a large

scatter, in terms of stress and strain. The average

values are also drawn for the two curves, the axial

strain increases at the center of the grain, but the
stress is almost constant (Fig. 14).

If some other grains are considered, the dis-

persed character of the mechanical fields remains

present. On the other hand, in order to determine

a general rule, averaged values were also taken

[56], so that the resulting curves show the chosen

variables in each grain as a function of the ab-

solute distance to the appropriate grain bound-

ary. The von Mises stress is taken in Fig. 15 to

illustrate this type of plot. The stress increases a

little bit at the grain boundary, but it is difficult

to discriminate between a real, physical increase,
and the artefact related to the poor description of

the displacement field in this area. On the other

hand, the stress tends to decrease in the middle of

the grain. By the way, the biggest grain (grain58)

is known to show very low values. To summarize

the other types of plots, one has to remember

that:

Fig. 14. Effect of the grain boundary in grain58, (a) axial strain, (b) axial stress.
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• the number of active slip systems increases near

the grain boundary;

• the sum of the plastic slips increases near the

grain boundary;

• the von Mises strain is larger in the center of the

grain;

• the von Mises stress is smaller in the center of
the grain.

The situation is quite different in the case of an

aggregate of h.c.p. crystals like zinc. For this class

of symmetry, elasticity and plastic slip are strongly

anisotropic. In the zinc alloy studied in [5,34], the

activated slip system families are mainly basal slip

and pyramidal P2, the latter having an initial
CRSS 10 times bigger than the former. The con-

sequence is that pyramidal slip takes place princi-

pally near the grain boundaries whereas basal slip

spreads over the entire grain.

7. Identification of scale transition rules and link

with macroscopic constitutive equations

The results of the previous section demonstrate

that the local fields present very strong gradients

within the grains. The purpose of the present

section is now to evaluate the response of the

mean field models with respect to these solutions.

Even if these models cannot produce a detailed

description of the intragranular fields, they might

be able to approach the response averaged on

grains having the same orientation. We first give

a brief description of these models, then show the
results.

7.1. Scale transition rules for the polycrystal

In a polycrystalline aggregate, one phase may

be characterized by its shape, volume fraction,

crystallographic orientation, location with respect

to the surface of the material, etc. . . Most of the
models usually specified for polycrystals made of

equiaxial grains retain only the crystallographic

orientation [57–59], and put in the same crystal-

lographic phase all the grains having the same

orientation. Thus the alloy is considered as a n-
phase material, each phase being defined by a set

of Euler angles, and then the model is used to

describe the mean behaviour of all of them.
The relation (9) summarizes the results given by

several homogenization polycrystal models, ac-
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cording to the definition of a, with a specific

mention to a ¼ 2 [60] representing uniform total

strain, to a ¼ 1 [61], corresponding to an elastic

accommodation of the homogeneous equivalent

medium, or to (10) involving the overall equivalent
stress R in uniaxial tension and the equivalent

plastic strain p deduced from the overall plastic

strain tensor E�
p [62]. This last model is the

simplified expression extracted from the general

self-consistent model due to Hill [63], valid for

isotropic elasticity and radial loading paths.

r�
g ¼ r� þ l aðE�

p � e�
pgÞ ð9Þ

with

1

a
¼ 1þ 3lp

2J2ðRÞ
; p ¼ 2

3
E�
p : E�

p

� �1=2

and E�
p ¼ he�

pgi

ð10Þ

From a physical point of view, the previous rules

simply show that local plastic strain reduces the
local stress, whereas the stress redistribution re-

lated to plastic accommodation tends to decrease

for larger plastic strains. An alternative formula-

tion, the ‘‘b-model’’, introducing a non-linear

accommodation, has also been proposed [64]. It

can be calibrated from finite element computa-

tions, using either an inclusion embedded in a

homogeneous medium [65] or a 3D FE poly-
crystal [34]:

r�
g ¼ r� þ lðb

�
� b

�
gÞ with b

�
¼

X
g

f gb
�
g ð11Þ

Various expressions can be used for the evolution

of the variable b
�
g in each grain [18]. The model can

be used for any kind of loadings, especially cyclic

loadings.

7.2. Stress–strain behaviour of the grains

The mean values predicted by the mean field

models present a lower dispersion than the FE

results. Fig. 16 shows the curves obtained with the

model proposed in [62] (BZ) (a) for a tension until

1.5%. As expected, for the final state, all the points

are on the same line, the slope of which is )22 000
MPa, showing that the accommodation is elasto-

plastic. The stress range is about 115 MPa between

the softest grain and the strongest one and the

strain range about 0.5%. The results from FE

computations are given in Fig. 16(b) for a HSB

case, and Fig. 16(c) for the 4FF case. The stress

redistribution due to the local fields no longer

Fig. 16. Axial stress–strain curves of the 200 grains of the ag-

gregate, (a) Berveiller–Zaoui model, (b) cube, HSB, (c) cube,

4FF.
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respects the nice rule coming from the self-con-

sistent approach, and it is even difficult to extract a

relation between local stress and local strain. At

least, one can check that a fully constrained type of

load dramatically increases the scatter on stress
(range of 294 MPa), but the strain range is also

larger than with the BZ model (0.86%). On the

other hand, the stress range is smaller for the 4FF

case (range of 230 MPa, but still two times bigger

than with BZ model), but the strain values are now

very dispersed (range of 1.5%).

The local grain-to-grain interactions seem to

play a very important rôole in the stress redistri-
bution. This fact is also illustrated in Fig. 17,

which shows the grain response in the r22 � r33

(lateral stress vs. axial stress) plane. Since the grain

elasticity was chosen isotropic, all the grains are

equivalent up to the onset of plasticity, for

r22 ¼ �74 MPa and r33 ¼ 148 MPa. Then, the

plastic flow produces contradictory evolutions

according to the grain: the lateral stress can either
increase or decrease, and the stress paths are non-

proportional.

A final view of the difference between FE and

mean field models is given in Fig. 18, which shows

a plot of the mean axial stress in several grains

according to different calculations, along a line

located near the middle of the cube, perpendicular

to the tensile direction. For each grain, the figure

shows:

• the result obtained in the single crystal having

the same orientation;
• the result obtained with the BZ model;

• the results obtained with various meshes, from

103 to 323 elements.

The stress levels predicted by the BZ model are

larger than the single crystal results (one could also

have lower values). Again the dispersion observed

for all the FE computations is larger than the
dispersion of the self-consistent approach.

However, this comparison is not definitive be-

cause of the lack of representativity of the con-

sidered sample in terms of number of grains of

close orientation. Accordingly, the comparison

must be drawn again in the future for larger ag-

gregates.

8. Conclusions and prospects

Microstructural mechanics lies at the junction

between structural mechanics and material sci-

ences. It has been illustrated for two main types of

applications:
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• Computation of specimens or industrial compo-

nents for which the size of the heterogenities of

the material is of the order of the size of the

structure or of its parts (holes, notches . . .). Ex-
amples are films, coatings, MEMS, sensors,

multiperforated blades or combustion cham-
bers . . .

• Computations of RVEs of random heteroge-

neous materials, with a view to predicting over-

all properties and optimizing microstructures

(morphology, size . . .).

In both cases, realistic three-dimensional

computations are necessary. Parallel computing
seems to be the only possible solution to per-

form them (on networks of standard PCs). The

simulations of polycrystalline aggregates for in-

stance show the tremendous heterogeneity of

stress and strain fields within grains that cannot

be predicted by available explicit homogenization

models. Such stress and strain concentrations

may well be the precursor of crack initiation and
growth.

Regarding computational homogenization

methods, the notion of RVE is essential and re-

mains to be defined properly. Its size depends on

the studied property (thermal, mechanical . . .), on
the contrast of properties between the constitu-

ents, on phase morphology and on boundary

conditions. If the contrast is very high, a RVE may
contain a considerable number of heterogenities,

which makes the computation untractable. Smaller

sizes can however be used provided that a statis-

tical treatment of a sufficient number of realiza-

tions of the microstructure is considered [66,48]. A

first approach of the size of RVE for polycrystals

can be found in [67]. Other applications dealing

with fiber or particle composites should be con-
sidered.

The next step will be the systematic use of

such techniques to simulate damage and fracture

of heterogeneous materials under complex ther-

momechanical loading conditions. Considerable

numerical difficulties will arise due to the high non-

linearity of the problem associated with strain and

damage localization phenomena.
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