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Summary
The present paper proposes a new efficient and robust algorithm for evaluat-
ing the loss of ellipticity criterion. While commonly used in two-dimensional
models for thin metal sheet forming processes, it is rarely evaluated in
three-dimensional structures due to the computational cost. The proposed
algorithm is based on a Newton-Raphson scheme and a multisampling opti-
mization method based on a discretization method of the half unit sphere. First
the new process is compared to the existing methods in the literature and then
it is applied to a structural problem, namely tubes in torsion. The evolution of
the loss of ellipticity in these structures is analyzed leading to conclusions about
the failure of the structure. Meanwhile, the stability of the discretized problem
is analyzed in order to better understand the loss of regularity of the finite
element method problem. These results are then used to predict the failure of an
experimentally tested torsion sample.
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1 INTRODUCTION

Even though strain localization is one of the most critical phenomena leading to the failure of elasto-plastic structures,
its emergence is still not fully understood. Indeed, the term “localization” itself is interpreted differently depending on
the context. In a loose sense, localization means the development of high strains in a narrow region of the body, like in
a shear band with through thickness necking in a thin plate in tension. A more precise definition is the emergence of
strain rate discontinuities through surfaces usually associated with loss of ellipticity, and we use this latter definition in
the present work. In some situations, both definitions may even coincide, for instance, a one-dimensional bar display-
ing a softening behavior experiences simultaneously necking and loss of ellipticity,1,2 or in thin plates modeled under
plane stress conditions.3 However, these definitions do not coincide for three-dimensional (3D) models in general. When
localization starts in complex structures and whether it leads to catastrophic failure is still an open problem in many sit-
uations, especially when certifying industrial components. The example of tubes loaded in torsion,1 shows that even an
apparently simple structure can lead to difficulties in defining localization and the localization's influence on the safety
of the global structure.

When dealing with localization, a first distinction needs to be made between types of loss of ellipticity. Strong ellipticity
corresponds to definite positiveness of the eigenvalues of the symmetrized acoustic tensor whereas ellipticity refers to the
absence of vanishing eigenvalue of the general acoustic tensor.4,5
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The loss of ellipticity criterion has commonly been adopted as a strain localization criterion. It has been introduced,
for instance, in the analysis of the propagation of acceleration waves in Reference 6, as a stability criterion in small
deformation in Reference 7, which was then generalized to finite deformations in Reference 8. According to the latter
analysis, in a homogeneously strained domain, a strain localization band can develop when two parallel surfaces fulfill
the loss of ellipticity criterion,9 although other local or global instability modes can occur prior to loss of ellipticity in the
form of buckling or necking modes. For instance, it is commonly used for the analysis of thin metal sheets forming limits10

in a plane stress framework. The loss of ellipticity analysis is strictly a local analysis, however, nothing is said about the
structural aspect with this criterion. As discussed in Reference 11 around the analysis of localization in polycrystals, loss
of ellipticity in a single material element is not enough for the structure itself to fail.

The loss of strong ellipticity criterion is often discussed using a similar approach, especially for geomaterials.12 Both
loss of ellipticity and loss of strong ellipticity can be shown to be equivalent when the tangent operator possesses major
symmetry, therefore it is often considered that both conditions are met as long as the material possesses an associative
flow rule. However, this is not precisely the case. In some particular cases strong ellipticity and ellipticity will differ in a
given finite deformation framework even though the material possesses an associative flow rule.13

Regarding numerical methods, the evaluation of the loss of ellipticity criterion leads to a minimization problem on
one half of the unit sphere where the minimized surface is a sixth order polynomial. Different numerical strategies are
available in the literature to solve this minimization problem: Evaluation of the minimum by successive discretization,14

use of a simplex method,15 or definition of an eigenvalue problem.16-18 Some strategies combine a Newton-Raphson
scheme and a line-search method.19 The iterative discretization of the half unit sphere is both time consuming and does
not ensure the detection of global minimum unless one uses a very fine discretization. Hence, when considering a large
structural problem, this strategy would require a large amount of computational power while still not guaranteeing con-
vergence to the global minimum. The simplex method and the eigenvalue problem are standard optimization methods.
Given that the global minimum is required and that the minimized surface is a generally nonconvex sixth order polyno-
mial, it is necessary to take multiple starting points to ensure that the method does not converge to a local minimum. As
a consequence, the strategy of coupling Newton-Raphson and line-search methods19 turns out to be the most promising
numerical method. This requires defining a regular discretization of the half unit sphere, which, usually, is not obtained
using a regular discretization of the angles in a spherical coordinates system similar to what is discussed in Reference 20.
Moreover, most methods found in the literature are presented in a small deformation framework,16,18 and some only for
materials possessing an associative flow rule.18

Finally, it is usually believed that the loss of ellipticity criterion is limited to softening materials and it can be shown
that a nonsoftening material with an associated flow rule can never lead to localization in the sense of Rice within a small
deformation framework.21 This however is not necessarily the case for finite deformations due to the “geometrical” terms.
It will be shown in Section 4 of this work, that a material that has nonsoftening behavior can still exhibit localization.

The previous literature review shows that, in spite of many efforts, there is still a need for an efficient and robust strat-
egy to detect loss of ellipticity applicable to structural computations of industrial components. Existing applications are
limited to volume elements or mesh subdomains. The objectives of the present work are three-fold: (i) The proposal of an
efficient and robust algorithm to detect localization modes; (ii) A failure detection method amenable to the computation
of industrial-like samples; and (iii) Interpretation of shear localization modes by means of combined loss of unique-
ness and loss of ellipticity criteria. The originality of the work lies in: (i) The robustness and efficiency of the proposed
algorithm; (ii) Its use in 3D structural computations; and (iii) Some remarkable observations about the development of
the loss of ellipticity domain in a structure under continuing loading. Experimental validation is also provided in the case
of a torsion test on a high strength steel used in aeronautics applications. The present work does not consider the post-
localization behavior of the structure because the boundary value problem becomes ill-posed as a consequence of loss of
ellipticity. Analysis of the postlocalization response requires the introduction of regularization methods22 not included in
the present analysis.

In the present work, the corotational formulation (hypo-elastoplastic) that is commonly used in most commer-
cial finite element method (FEM) software is presented in Section 2.1. In Section 2.2, tangent operators, along with
loss of ellipticity and loss of strong ellipticity criteria are derived in a closed form. Then, a new general method
is presented in Section 3 for an efficient evaluation of the loss of ellipticity criterion based on a Newton-Raphson
(NR) scheme. While a similar algorithm was introduced in detail in Reference 19, a new initialization method is
proposed to improve robustness while being computationally more efficient. This method is derived in the most gen-
eral case as it does not depend explicitly on the formulation of the constitutive law, and works for both small and
finite deformation frameworks. A comparison with the algorithm given in Reference 19 in terms of computation
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cost is performed on the basic example of a material volume element under simple shear loading at the end of this
section. A more complex loading is then presented to underline that the use of multiple starting points improves
the robustness of the method leading to a better understanding of the results. In order to illustrate the performance
of the method, a structural problem is presented in Section 4.1 to evaluate the failure of a tube loaded in torsion.
It is shown that while the material is nonsoftening and possesses an associative flow rule, the loss of ellipticity cri-
terion is met and localization emerges in the simulation. To better understand these results, the loss of uniqueness
of the rate boundary value problem is also analyzed and compared to the original localization analysis. Finally, in
Section 4.2, these latter results will be applied to a real torsion sample used in Reference 1 in order to predict the shear
band failure observed in the experiment.

2 RICE’S LOCALIZATION CRITERION

In order to formulate the problem in the most general case, the loss of ellipticity criterion is derived within the finite
deformation framework, as in Reference 8.

2.1 Finite deformation formulation
Let X be the position of a material point in the reference configuration, Ω0, and x(X , 𝑡) its position in the current
configuration, Ωt. The deformation gradient is then:

F∼ =
𝜕x
𝜕X

= I∼ + ∇∼u 𝐹𝑖𝑗 =
𝜕𝑥𝑖

𝜕𝑋𝑗
= 𝛿𝑖𝑗 +

𝜕𝑢𝑖

𝜕𝑋𝑗
, (1)

Ḟ∼ = ∇∼ u̇ 𝐹̇𝑖𝑗 =
𝜕𝑢̇𝑖

𝜕𝑋𝑗
, (2)

where (⋅) and (⋅)
∼

are first and second order tensors, ∇ is the gradient operator, u = x − X denotes the displacement, 𝑎̇ the

time derivative of the quantity a.
Following Rice's notation in Reference 8, the Boussinesq stress tensor, noted S∼ (also called “First Piola Kirchhoff,” or

the transposed “Nominal stress tensor”) is given by:

S∼ = 𝝉∼F∼
−𝑇 , (3)

where J = det(F∼) denotes the volume ratio, 𝝉∼ = J𝝈∼ the Kirchhoff stress tensor and 𝝈∼ the Cauchy stress tensor.
Local equilibrium in the absence of body forces is given by:

𝜕𝑆𝑖𝑗

𝜕𝑋𝑗
= 0, (4)

which gives the following rate form:

d
dt

(
𝜕𝑆𝑖𝑗

𝜕𝑋𝑗

)
=
𝜕𝑆̇𝑖𝑗

𝜕𝑋𝑗
= 0. (5)

2.2 Tangent operators
The developments in Section 2.3 require the definition of a tangent operator. For this purpose, the present work is limited
to rate constitutive laws that can be expressed as:

Ṡ∼ = 
≈
𝑆 ∶ Ḟ∼ , (6)
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where 
≈
𝑆 depends on the internal variables and the plastic loading or elastic unloading condition. Equivalently in an

updated Lagrangian framework23 one gets:

ṡ∼ = 
≈
∶ L∼ , (7)

where L∼ = Ḟ∼F∼
−1 is the Eulerian velocity gradient, and s∼ is the Boussinesq stress tensor with respect to the current

configuration. It is defined as:

s∼ = 𝝈∼ , (8)

ṡ∼ = Tr (L∼)𝝈∼ + 𝝈̇∼ − 𝝈∼L∼
𝑇 , (9)


≈

and 
≈
𝑆 can be linked by:


≈
= 1

J
(I∼⊠ F∼) ∶ 

≈
𝑆 ∶ (I∼⊠ F∼

𝑇 ), (10)

where the “⊠” denotes the dyadic product defined by:

(A∼ ⊠ B∼)𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑘𝐵𝑗𝑙. (11)

While these formulas are general, the expression of 
≈

depends on the choice of the finite deformation constitutive

law. The most common laws found in commercial FEM softwares are “hypo-elastoplastic” formulations. Several Eulerian
stress tensors can be chosen for this formulation, for instance the Cauchy stress 𝝈∼ , the Kirchhoff stress 𝝉∼, or the Kirchhoff
stress in an updated Lagrangian framework 𝝉̂∼. One can show that the first and third choices are almost equivalent when

volume changes are small,23 however, they differ in terms of tangent operator 
≈

.13

2.2.1 Corotational formulation for the Kirchhoff stress
The previous rate constitutive law is now translated into the Jaumann formulation with respect to the Kirchhoff and
Cauchy stress tensors because these are formulations widely used in practice, especially in commercial codes. The
definition of a corotational formulation of the constitutive law based on the Jaumann derivative of the Kirchhoff stress
tensor is given by:

𝝉∼
𝐽 = 

≈
𝜏 ∶ D∼ , (12)

with : 𝝉∼
𝐽 = 𝝉̇∼ + 𝝉∼𝛀∼ −𝛀∼ 𝝉∼, (13)

where 𝛀∼ = L∼
𝑠𝑘𝑒𝑤 = 1

2
(L∼ − L∼

𝑇 ) and D∼ = L∼
𝑠𝑦𝑚 = 1

2
(L∼ + L∼

𝑇 ).
Then 

≈
in Equation (7) and 

≈
𝜏 are linked by:


≈
= 1
𝐽

[

≈
𝜏 + 1

2
(I∼⊠ 𝝉∼ − 𝝉∼⊠ I∼ − I∼⊞ 𝝉∼ − 𝝉∼⊞ I∼)

]
, (14)

where “⊞” denotes the dyadic product defined by:

(A∼ ⊞ B∼)𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑙𝐵𝑗𝑘. (15)
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In this case, for an associative flow rule, 
≈
𝜏 possesses major and minor symmetries and 

≈
major symmetry only.

The latter property leads to the existence of a velocity potential.24 For this reason, this formulation will be preferred in
the present work instead of the following corotational formulation based on the Cauchy stress. It should be noted that
the Jaumann formulation may not be the most suitable format to formulate constitutive laws for highly compressible
elastoplastic materials like foams.25 In fact the full constitutive model including hardening laws in particular must be
reconsidered for each material for model calibration.

2.2.2 Corotational formulation for the Cauchy stress
The definition of a corotational formulation of the constitutive law based on the Jaumann derivative of the Cauchy stress
tensor is given by:

𝝈∼
𝐽 = 

≈
𝜎 ∶ D∼ , (16)

with : 𝝈∼
𝐽 = 𝝈̇∼ + 𝝈∼𝛀∼ −𝛀∼𝝈∼ . (17)

Then 
≈

in Equation (7) and 
≈
𝜎 are linked by:


≈
= 

≈
𝜎 + 1

2
(I∼⊠ 𝝈∼ − 𝝈∼ ⊠ I∼ − I∼⊞ 𝝈∼ − 𝝈∼ ⊞ I∼) + 𝝈∼ ⊗ I∼, (18)

where “⊗” denotes the dyadic product:

(A∼ ⊗ B∼)𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑗𝐵𝑘𝑙, (19)

In this case, for an associative flow rule, 
≈
𝜎 possesses major and minor symmetries and 

≈
does not possess any

symmetry.

2.3 Loss of ellipticity and loss of strong ellipticity
Depending on the symmetry of the tangent operator, two material stability criteria are commonly derived, namely loss of
ellipticity and loss of strong ellipticity.

2.3.1 Loss of ellipticity
Consider the existence of a surface Sl in Ω0 with a normal N exhibiting a jump of the Lagrangian velocity gradient Ḟ∼ .
Hadamard's compatibility condition requires that:

⟦Ḟ∼⟧ = g⊗N, (20)

where g is an unknown vector, and [⋅] denotes the jump of a quantity through the surface Sl. The equilibrium condition
on the stress rates then gives:

⟦Ṡ∼⟧N = 0. (21)
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Combining Equations (6), (20), and (21), and assuming that the tangent operator is the same on both sides of Sl,∗ one
gets:

(N ⊙ 
≈
𝑆 ⋅ N)g = 0, (22)

where “⊙” denotes the product† defined by:

(a⊙
≈
)𝑖𝑗𝑘 = 𝑎𝑙𝑖𝑙𝑗𝑘, (23)

N ⊙ 
≈
𝑆 ⋅ N is the acoustic tensor.

Knowing that the material is initially elastic, and therefore det(N ⊙ 
≈
𝑆 ⋅ N) is initially strictly positive, Equation (22)

is satisfied as soon as:

det(N ⊙ 
≈
𝑆 ⋅ N) = 0. (24)

This condition can be reformulated in the current configuration by using Nanson's formula given in Equation (25):

n ds = JF∼
−𝑇N dS, (25)

where N is the unit normal to dS, a surface element in the reference configuration; and n is the unit normal to ds, the same
surface element in the current configuration. Combining Equations (24) and (25) gives the equivalent Eulerian condition
(26):

det(n⊙ 
≈
⋅ n) = 0. (26)

Note that while the following equations are derived within a Lagrangian framework, Equation (26) is the one solved
to get the normal in the current configuration, the one that will be observed in reality.

2.3.2 Loss of strong ellipticity
A similar criterion can be formulated starting from the positive definiteness of the second order work which is given by:

Ṡ∼ ∶ Ḟ∼ > 0 ∀Ḟ∼ = g⊗N. (27)

This condition is violated when

det((N ⊙ 
≈
𝑆 ⋅ N)sym) = 0, (28)

where (A∼)
sym denotes the symmetric part of the tensor A∼ . This is the loss of strong ellipticity criterion. Note that

Equations (24) and (28) are equivalent when 
≈
𝑆 possesses major symmetry.

∗Both sides fulfill the plastic loading condition.
†This notation is unnecessary in a small deformation framework since the tangent operator possesses minor symmetries, nor is it necessary when
using the nominal stress tensor N∼ = S∼

𝑇 , then 
𝑁
𝑗𝑖𝑘𝑙 = 

𝑆
𝑖𝑗𝑘𝑙 .
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3 GENERAL ALGORITHM FOR NUMERICAL DETECTION OF
LOSS OF ELLIPTICITY

In an FEM framework, the evaluation of the loss of ellipticity criterion is reduced to the solution of a minimization
problem after the global convergence of each load increment at each Gauss point of the mesh. Since solving so many
minimization problems can be very expensive, it is important to establish an efficient method. In addition, it is necessary
to ensure that the global minimum is found in order to properly evaluate this criterion.

3.1 Minimization problem
As shown in Section 2.3, the loss of ellipticity criterion is formulated in terms of vanishing eigenvalues of the acoustic
tensor that depends on a normal N.

∃N, ||N|| = 1 ∶ det(N ⊙ 
≈
𝑆 ⋅ N) = 0. (29)

As discussed in References 16, 19, 26, since 
≈
𝑆 is initially the elasticity tensor,‡ it is sufficient to evaluate the sign of

the smallest determinant and check if:

min||N||=1

(
det(N ⊙ 

≈
𝑆 ⋅ N)

)
≤ 0. (30)

Formulated in a Cartesian coordinate system, this is a three-dimensional minimization problem with constraint. In
order to reduce the size of the system, one can choose a spherical coordinate system such that the constraint on the norm
of N is automatically fulfilled:

N({𝜽}) =
⎛⎜⎜⎜⎝
cos(𝜃1) sin(𝜃2)
sin(𝜃1) sin(𝜃2)

cos(𝜃2)

⎞⎟⎟⎟⎠ with {𝜽} =

{
𝜃1

𝜃2

}
. (31)

The problem (30) then becomes:

min
{𝜽}

(det(N ⊙ 
≈
𝑆 ⋅ N)) ≤ 0. (32)

Note that N ⊙ 
≈
𝑆 ⋅ N is an even expression of N. Therefore, it is not necessary to analyze the whole unit sphere, but

only one half of it. This leads to:

𝜃1 ∈ [0; 𝜋[, 𝜃2 ∈ [0; 𝜋[. (33)

This leads to a two-dimensional minimization problem:

𝜕 det(N ⊙ 
≈
𝑆 ⋅ N)

𝜕𝜃𝑖
= 0 𝑖 = 1, 2. (34)

‡The fourth order tensor of elastic moduli is definite positive. Then det(N ⊙ 
≈
𝑆 ⋅ N) > 0 ∀N, ||N|| = 1.
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Using the chain rule, one gets:

⎧⎪⎨⎪⎩
𝜕 det(N ⊙ 

≈
𝑆 ⋅N)

𝜕N

⎫⎪⎬⎪⎭
𝑇

⋅
[
𝜕N
𝜕{𝜽}

]
= {0}, (35)

where

𝜕(det(N ⊙ 
≈
𝑆 ⋅ N))

𝜕𝑁𝑝
=

[
det(N ⊙ 

≈
𝑆 ⋅ N)

]
(N ⊙ 

≈
𝑆 ⋅ N)−1

𝑗𝑖 (
𝑆
𝑖𝑝𝑗𝑙 + 

𝑆
𝑖𝑙𝑗𝑝)𝑁𝑙, (36)

and

[
𝜕N
𝜕{𝜽}

]
=

⎡⎢⎢⎢⎣
− sin(𝜃1) sin(𝜃2) cos(𝜃1) cos(𝜃2)

cos(𝜃1) sin(𝜃2) sin(𝜃1) cos(𝜃2)

0 − sin(𝜃2)

⎤⎥⎥⎥⎦ , (37)

To simplify the coming derivations, the following notations are introduced:

(C∼)𝑝𝑙 = (N ⊙ 
≈
𝑆 ⋅ N)−1

𝑗𝑖 (
𝑆
𝑖𝑝𝑗𝑙 + 

𝑆
𝑖𝑙𝑗𝑝), (38)

A =
𝜕(det(N ⊙ 

≈
𝑆 ⋅ N))

𝜕N
= det(N ⊙ 

≈
𝑆 ⋅ N)C∼ ⋅ N, (39)

{a} = {A}𝑇
[
𝜕N
𝜕{𝜽}

]
=

⎧⎪⎨⎪⎩
𝜕(det(N ⊙

≈
𝑆 ⋅ N))

𝜕{𝜽}

⎫⎪⎬⎪⎭ . (40)

3.2 Numerical minimization algorithm
Solving Equation (35) leads to the evaluation of extrema or saddle points. Some optimization methods, like the gradient
method, avoid maxima by always taking a descent direction. Others, like a standard Newton-Raphson (NR) method, pro-
vide a quadratic convergence, but only search for a vanishing gradient and therefore can include maxima. Thus, in order
to capture a minimum, one needs to initialize the algorithm close to the solution.19 However, this requires performing
some expensive computations to select a “good starting point” and even this is not sufficient to ensure the evaluation
of the global minimum.§ In this paper, we propose to reduce the initialization flaw by setting multiple starting points in
Section 3.2.3.

3.2.1 Sphere discretization for starting points
First, setting multiple starting points means discretizing the half unit sphere. Previous approaches16,17,19,26 are based on
a regular discretization of the Euler angle space. However this method does not provide a strictly isotropic distribution
in all directions, as discussed in Reference 20 for composites and Reference 27 in the context of fatigue life assessment.
In order to have a uniform discretization and avoid clustering at the poles, only 𝜃2 is regularly discretized. For a given
discretization parameter 𝑛𝜃2 ∈ N, 𝑛𝜃2 regularly spaced points are taken in ]0, 𝜋[. Then, in order to discretize 𝜃1, for a

§In some cases, a multiplicity of equivalent global minima exist, as shown in Figure 1.
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F I G U R E 1 On the left, the spherical coordinate system; On the right, det(n⊙ 
≈
⋅ n) surface plotted after stereographic projection in

the (𝑂, e
𝑧
, e
𝑥
) plane for an elastoplastic shear problem

given 𝜃2 (that defines a circle on the unit sphere, see Figure 1) 𝛿𝜃1 is computed in order to keep a constant surface
element:

𝛿𝜃2 = 𝜋

𝑛𝜃2

, (41)

𝛿𝜃1(𝜃2) =
𝛿𝜃2| sin(𝜃2)| . (42)

Finally, to avoid singularities when 𝜃2 = 0[𝜋], a single point at the pole is added separately to the discretization.
Implementation remark: we take 𝑛𝜃1 =

⟨
𝜋

𝛿𝜃1

⟩
(where “⟨⋅⟩” denotes the integer part), then 𝛿𝜃1 is recomputed as 𝜋

𝑛𝜃1
.

As shown in Figure 2, this method has the advantage of providing an isotropic distribution as well as reducing the
number of discretization points.¶

3.2.2 Newton-Raphson scheme
This section mainly aims to introduce the expression of the necessary Hessian matrix and the related notations for the
implementation of the NR algorithm. Computation of this matrix requires subfactors that have already been computed
along the process beforehand, in Section 3.1.

Given a starting point {𝜽}k, an increment {Δ𝜽}k+1 is searched such that:

{a({𝜽}k + {Δ𝜽}k+1)} = {0}. (43)

Considering a linear extrapolation with reference to {𝜽}k, next increment {Δ𝜽}k+1 is obtained by solving:

{𝚫𝜽}𝑘+1 = −[h({𝜽}k)]−1 ⋅ {a({𝜽}k)}, (44)

[h({𝜽}k)] = 𝜕{a({𝜽}k)}
𝜕{𝜽}

(45)

¶In fact, the number of points tends to 2
𝜋
𝑛2
𝜃2

for constant surface element discretization, when angular discretization has n2 points.
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F I G U R E 2 In red dots, discretization obtained for constant surface element discretization; in blue dots, discretization obtained for
regular angular discretization. On the left, 𝑛𝜃2

= 5; on the right, 𝑛𝜃2
= 36. Top, sphere seen from top; bottom, global view

where [h] denotes the Hessian matrix. Usually this method is avoided in minimization methodologies, because it can
have two major flaws:

1. One cannot ensure convergence to a minimum depending on the starting point and the convexity properties of the
problem; in our case, this would be a major flaw;

2. Computation and inversion of the second derivative (Hessian matrix) can be very expensive depending on the size of
the problem.

While the first flaw cannot be avoided with a simple NR scheme,‖ other than by taking multiple starting points, the
second flaw is of no concern in our case. The problem to solve for each iteration is two-dimensional: The Hessian matrix
is a 2 × 2 matrix which is easy to invert. In addition, most of the Hessian matrix's terms have already been computed
while evaluating the gradient of det(N ⊙ 

≈
𝑆 ⋅ N) (see Equations (38), (39), and (40)). In fact, the second derivative ([h])

is given by:

[h] = {a} ⋅ {a}𝑇

det(N ⊙ 
≈
𝑆 ⋅ N)

+ [𝜼] + det(N ⊙ 
≈
𝑆 ⋅ N)

[
𝜕N
𝜕{𝜽}

]𝑇 [
C∼ − (TB∼ ∶ B∼

T)
] [ 𝜕N
𝜕{𝜽}

]
, (46)

𝜂𝛼𝛽 = 𝐴𝑖
𝜕2𝑁𝑖

𝜕𝜃𝛼𝜕𝜃𝛽
, (47)

‖In order to overcome this difficulty, the NR scheme is coupled with a line-search in Reference 19.
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F I G U R E 3 Proposed minimization algorithm

[
𝜕

𝜕𝜃1

(
𝜕𝑁𝑖

𝜕𝜃𝛼

)]
=

⎡⎢⎢⎢⎢⎣
− cos(𝜃1) sin(𝜃2) − sin(𝜃1) cos(𝜃2)

− sin(𝜃1) sin(𝜃2) cos(𝜃1) cos(𝜃2)

0 0

⎤⎥⎥⎥⎥⎦
and

[
𝜕

𝜕𝜃2

(
𝜕𝑁𝑖

𝜕𝜃𝛼

)]
=

⎡⎢⎢⎢⎢⎣
− sin(𝜃1) cos(𝜃2) − cos(𝜃1) sin(𝜃2)

cos(𝜃1) cos(𝜃2) − sin(𝜃1) sin(𝜃2)

0 − cos(𝜃2)

⎤⎥⎥⎥⎥⎦
,

(48)

where 𝐵𝑗𝑝𝑠 = 𝐵𝑠𝑝𝑗 = (N ⊙ 
≈
𝑆 ⋅ N)−1

𝑠𝑖
(𝑆𝑖𝑝𝑗𝑙 + 

𝑆
𝑖𝑙𝑗𝑝)𝑁𝑙 is the only quantity that has to be computed (other terms are given

in Equations (38), (39), and (40)).
Implementation remark: Given such expressions, from a numerical point of view, an efficient evaluation of the ten-

sor/matrix products is necessary to limit computation cost. In fact, these terms are not necessarily expensive to evaluate
since they can be evaluated in a direct computation: there are no conditionals to evaluate and all factors can be directly
computed. For some programming languages, like C++, the use of “inline” functions is recommended. This remark is
of the utmost importance in the performances given later in this paper.

3.2.3 Initialization and general scheme
A multipoint initialization scheme is necessary to ensure the evaluation of the global minimum. Fortunately, the sixth
order polynomial surfaces are very smooth,∗∗ see Figure 1, so for any “good starting point” a basic NR scheme converges
in very few iterations (4 to 5 for a tolerance of 10−8 on the gradient's norm). Therefore, in the scheme presented in Figure 3,
multiple starting points are considered while keeping a low number of iterations for the NR Scheme.

Yet, it is important to note that this algorithm captures both minima and maxima. The determinant of the Hessian
matrix would inform us about the nature of the extremum. It is, however, computationally expensive and does not help to
reach the global minimum. Instead, several starting points are considered. By taking enough starting points, the smallest
solution found should capture the global minimum. A discretization parameter 𝑛𝜃2 = 5 (cf. Section 3.2.1) has been found
to be sufficient for the isotropic materials considered in the present work. Using up to 6 or 7 is expected to be enough for
anisotropic materials.

The algorithm is validated with a simple shear loading test using a finite deformation framework. Performance and
robustness are shown with comparison to the method proposed in Reference 19 on a more complex loading condition.

3.3 Validation
A shear loading case is studied in order to validate the method on a reference case. The simulation is run on a single
Gauss point, and loading is prescribed through the deformation gradient:

F∼ = 0.2𝑡(e
𝑥
⊗ e

𝑦
+ e

𝑦
⊗ e

𝑥
) + I∼, (49)

where t is the fictitious time (loading parameter). The parameter 𝑛𝜃2 is fixed to 6. For this simulation, a material charac-
terized by a von Mises yield function is adopted and formulated within the corotational framework using the Kirchhoff

∗∗det(N ⊙ 
≈
𝑆 ⋅ N) is a sixth order polynomial of the components of N. For most materials, this polynomial is by construction smooth.
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stress tensor, with nonlinear isotropic hardening. The yield function f and the plastic flow rule are given by:

𝑓 (𝝉∼, 𝑅) =
√

3
2
𝝉∼
𝑑𝑒𝑣 ∶ 𝝉∼

𝑑𝑒𝑣 − 𝑅(𝑝), (50)

D∼
𝑝 = 𝑝̇ 𝜕𝑓

𝜕𝝉∼
= 𝑝̇P∼ , (51)

where p denotes the cumulative plastic strain, and R(p) the yield stress.
The hypoelastic law, the Young modulus, the Poisson ratio and the isotropic hardening for our simulations are

respectively given by:

𝝉∼
𝐽 = 𝜦

≈
∶ (D∼ − D∼

𝑝), (52)

𝐸 = 200 GPa, 𝜈 = 0.33, (53)

𝑅(𝑝) = 1000 + 100(1 − 𝑒−300𝑝) − 700𝑝, (54)

where 𝝉∼
𝑑𝑒𝑣 = 𝝉∼ −

Tr (𝝉∼)

3
I∼ denotes the deviatoric part of the Kirchhoff stress tensor, and 𝜦

≈
is the isotropic fourth order

elasticity tensor. The function R(p), expressed in MPa, defines the current yield stress and accounts for nonlinear isotropic
hardening.

The Jaumann derivative is used in the hypoelastic relation (52). Replacing the Jaumann derivative by another objective
derivative like Green-Naghdi's derivative would lead to a different constitutive law. However, in the present case of ductile
metals, the elastic strains remain small. Numerical simulations using both derivatives lead to the same response for the
torsion loading considered in the validation section, so that essentially the same localization behavior is expected. Finally,
combining Equations (50) to (52) gives:


≈
𝜏 = 𝜦

≈
−

⎧⎪⎨⎪⎩
0 if P∼ ∶ 𝜦

≈
∶ D∼ < 0

(P∼∶𝜦≈)⊗(𝜦≈∶P∼)

𝐻+P∼∶𝜦≈∶P∼
if P∼ ∶ 𝜦

≈
∶ D∼ ≥ 0

, (55)

where 𝐻 = 𝑑𝑅

𝑑𝑝
is the hardening modulus. Within a small deformation framework, it is known, for such loading and

material,3 that the loss of ellipticity criterion is first fulfilled when:

𝐻 = 0; n = e
𝑥

or n = e
𝑦
, (56)

see Figure 4 for the definition of axes. In this case, it occurs for 𝑝 = log
(

300
7

)
∕300 ≃ 0.0125. Since strains are very small

before loss of ellipticity, the results given in Equation (56) are valid even in a finite deformation framework. Numerical
results are shown in Figures 5 and 6. Three solutions are equivalently obtained: ±e

𝑥
and e

𝑦
.

3.4 Performance and robustness
In the previous section, robustness with respect to the existence of two equivalent minima has been illustrated for the
proposed algorithm (see Figures 5 and 6). In the following example, the proposed method is compared with another
method from the literature in terms of performance and robustness when there exist multiple local minima associated to
different normals n but only one single global minimum.

As discussed in detail in Reference 28, the methods available in the literature propose a two-step process: first, a
sampling over the unit sphere (unit cube for the method proposed in Reference 28) is performed to choose a starting point
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F I G U R E 4 Simple shear: localization band with
normals e

𝑥
and e

𝑦

F I G U R E 5 Surface det(N ⊙ 
≈
𝑆 ⋅ N) plotted after stereographic projection in the (0, e

𝑧
, e
𝑥
) plane for visualization purposes. The red

dots indicate the three solutions of the minimization problem at various load increments. All three solutions for shear loading are captured
by the algorithm

close to the minimum; then, a minimization algorithm is applied. To do this, many authors propose to discretize the
sphere, by regularly discretizing the spherical angles.16,17,19,26

In this section, it is shown that this two step process is not robust enough to always capture the global minimum.
The comparison is made between: 𝑛𝜃2 = 6 (cf. Section 3.2.1) as the discretization parameter of the proposed method; and
for the angular discretization of the spherical angles n = 36 to be consistent with the methods proposed in the literature
(“every 5◦”).†† Using these parameters leads to almost equivalent computation time for both algorithms: the proposed
method being faster by 10% for 𝑛𝜃2 = 6 and 40% for 𝑛𝜃2 = 5.

In the following example the material properties are given by:

𝐸 = 20 GPa, 𝜈 = 0.33, (57)

𝑅(𝑝) = 1000 + 100(1 − 𝑒−25𝑝) − 300𝑝. (58)

The simulation is run on a single material point, and loading is prescribed through the deformation gradient:

F∼ = I∼ + 0.075𝑡e
𝑥
⊗ e

𝑦
+ 0.225𝑡e

𝑦
⊗ e

𝑥
. (59)

Numerical results are shown in Figures 7 and 8. The proposed method with multiple initialization points is denoted
“multistart” and the method based on sampling is denoted “sampling.” The solution is the same for both methods in the

††Only one half of the unit sphere is discretized for symmetry reasons. This discretization parameter is consistent with what is usually proposed, as in
References 16, 18, 19.



14 AL KOTOB et al.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
p

0.00

0.25

0.50

0.75

1.00

R
R0

H
H0

det(nLn )
det(nEn )

loss of ellipticity

0.00 0.01
p

−1.0

−0.5

0.0

0.5

1.0

nx

0.00 0.01
p

−1.0

−0.5

0.0

0.5

1.0

ny

0.00 0.01
p

−1.0

−0.5

0.0

0.5

1.0

nz

F I G U R E 6 On top, the evolution of the
hardening modulus (H) and the minimum of
det(n⊙ 

≈
⋅ n); both vanish for p = 0.0125. On

bottom, the component of the normal
minimizing det(n⊙ 

≈
⋅ n); two solutions are

found: ±e
𝑥

and e
𝑦

(e
𝑥

and −e
𝑥

are equivalent
solutions). One can remark that both solutions
are equivalently obtained while
min(det(n⊙ 

≈
⋅ n)) evolves smoothly

F I G U R E 7 Left, The surface det(n⊙ 
≈
⋅ n) is plotted after stereographic projection in the (0, e

𝑧
, e
𝑥
) plane in the elastic regime (left)

and in the plastic regime (right). Red dots denote the solutions obtained with the proposed algorithm; white triangles indicate the solutions
obtained using the sampling method

elastic regime (existence of a unique global minimum), but the results differ in the plastic regime (existence of two local
minima with slightly different amplitudes). Not only do they lead to different loadings at loss of ellipticity, but also to very
different normal vectors. Only the multistart method captured the global minimum. Thus, the proposed method is found
to be more robust than the algorithms available in the literature for capturing the global minimum. The simulation with
the loading condition (59) which exhibits no special symmetry property proves that the existence of multiple local minima
with different critical strains at loss of ellipticity and distinct band orientations is a general feature of finite elatoplasticity.
This underlines the importance of a multistart algorithm to avoid attraction by a single well. This is illustrated here in the
case of isotropic von Mises plasticity but is expected for more general anisotropic yield criteria.

4 APPLICATION TO A TUBE LOADED IN TORSION

In order to demonstrate the efficiency and robustness of the proposed algorithm when applied to a structure, two exam-
ples are given in this section. Some fundamental results given in Reference 29 about the uniqueness of the solution
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F I G U R E 8 Comparison between the proposed method based on multiple initialization (multistart) and the method available in the
literature based on sampling (sampling): (A) evolution of min(det(n⊙ 

≈
⋅ n)) for the different algorithms; (B) Zoom of (A) around loss of

ellipticity; (C), (D), and (E) components of argmin(det(n⊙ 
≈
⋅ n)) for the different algorithms. Results differ in the plastic regime where two

local minima exist

are illustrated. The implementation of the proposed algorithm and the simulations are performed in the Zset software
(http://www.zset-software.com/) environment.30

4.1 Application to a simple tube
A tube of external diameter D = 1 mm, thickness t = 0.1 mm and length L = 0.5 mm is loaded in torsion. The tube is
oriented along the (𝑂, e

𝑦
) axis and its lower and upper surfaces are respectively denoted S0 and SL, as shown in Figure 9.

On the bottom surface S0, all displacements are fixed; on the top surface SL, displacements are imposed to describe a
rotation as follows:

u = 0 ∀X ∈ 𝑆0, (60)

u = (R∼(𝜃) − I∼)X ∀X ∈ 𝑆𝐿. (61)

An exponential hardening material is described by a corotational formulation for the Kirchhoff stress tensor (see
Section 2.2) endowed with a von Mises yield function such that:

𝐸 = 200 GPa, 𝜈 = 0.33, (62)

𝑓 (𝝉∼, 𝑅) =
√

3
2
𝝉∼
𝑑𝑒𝑣 ∶ 𝝉∼

𝑑𝑒𝑣 − (1000 + 300(1 − 𝑒−5000𝑝)). (63)

Four mesh refinements will be studied, see Figure 10. They are made of regular hexahedral elements with 20 nodes,
27 integration points, that is, quadratic interpolation and full integration. This element type is chosen to avoid hourglass
modes and locking behavior. For large isochoric plastic deformations it is more usual to resort to reduced integration
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F I G U R E 9 Geometry and boundary conditions. S0 is fixed in all directions, a rotation around (𝑂, e
𝑦
) is prescribed to the nodes on SL

F I G U R E 10 From left to right, meshes are numbered from 1 to 4: 125 (h = 0.1 mm), 1000 (h = 0.05 mm), 8080 (h = 0.025 mm), 64320
(h = 0.0125 mm) quadratic elements (20 nodes, 27 Gauss points)

F I G U R E 11 Plot of the longitudinal stress 𝜎yy in MPa in the tube
at 𝜃 = 0.01◦

instead of full integration in order to limit checkerboard effect of the hydrostatic stress. However, this effect is not
significant in the presented torsion simulations at limited strain levels.

4.1.1 Swift effect
In the following simulations, no defect is introduced in the mesh to trigger localization. However, since all displacements
are imposed on S0 and SL the solution naturally displays some gradient along the longitudinal direction as shown in
Figure 11. This is known as the “Swift effect” when simulating a simple torsion test on a tube at finite deformation.31

Localization occurs in the middle section of the tube as a consequence of this nonhomogeneous field. Such concentration
in the middle section can be observed in some experimental setups in References 1, 32.
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F I G U R E 12 From left to right and top to bottom: Evolution of accumulated plastic strain and min(det(N ⊙ 
≈
𝑆 ⋅ N)) in the lower half

of the tube for 𝜃 = {0.12◦, 0.45◦, 0.81◦, 0.89◦, 0.8935◦, 0.8975◦, 0.94875◦, 1.0◦}. The solution of the minimization problem is plotted with rods
colored by the amplitude of the minimum obtained with the proposed method in each Gauss point; red indicates loss of ellipticity. For
visualization purposes, not all Gauss points are represented on these plots

4.1.2 Evolution of loss of ellipticity
The evolution of loss of ellipticity in the thickness of the tube is presented in this section. Numerical results are given in
Figure 12 for the second coarsest mesh of Figure 10: 2 elements through the thickness, 10 along the length and 50 around
the circumference. The computation using the proposed minimization algorithm lasts 324 s for 100 load increments‡‡:
119𝜇s per Gauss point per increment with 𝑛𝜃2 = 5.

The tube is initially elastic and the solution of the minimization problem is constant and positive with n = ±(
√

2∕2e
𝜃
−√

2∕2e
𝑦
). When 𝜃 = 0.45◦, plasticity starts on the outer skin of the tube, ±e

𝜃
and ±e

𝑦
become equivalent minimizers of

det(N ⊙ 
≈
𝑆 ⋅ N). Ellipticity is first lost on the outer-skin when 𝜃 = 0.81◦. Then, plastic strain quickly increases in the

middle section once the loss of ellipticity reaches the inner-skin (𝜃 > 0.8975◦). This occurs in the middle section of the
tube due to the longitudinal compression and tension stresses (cf. Figure 11). In fact, the strain localization in the middle
section can be observed in some experimental setups.32 Finally, once localization starts in the middle section of the tube,
the rest of the structure elastically unloads.

As presented in section 2.3, the loss of ellipticity criterion (det(n⊙ 
≈
⋅ n) ≤ 0) is linked to the emergence of jumps in

strain rates across a surface of normal n. In the present case (shear), both e
𝜃

and e
𝑦

are directions that fulfill the latter
criterion. Due to the robustness of the minimization algorithm both solutions are captured. The jumps in strain rates
occur through a surface of normal e

𝑦
(the surface is a transverse section of the tube). If only one solution was obtained by

‡‡Performed on CPU : Intel Xeon E5-2680 v3 (Haswell), 12 cores, 2.50 GHz processors.
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F I G U R E 13 From left to right and top to bottom: Evolution of accumulated plastic strain and min(det(N ⊙ 
≈
𝑆 ⋅ N)) in the lower half of

the tube for models 1 to 4 at 𝜃 = 1◦. The solution of the minimization problem is plotted with rods colored by the amplitude of the minimum
obtained in each Gauss point; red indicates loss of ellipticity. For visualization purposes not all Gauss points are represented on these plots

the minimization algorithm, for example e
𝜃
, it might not be possible to link the emergence of the localization bands

with a normal e
𝑦

to the loss of ellipticity criterion. Thus, this example highlights the utmost importance for the algorithm
to be robust with respect to the existence of multiple equivalent minima.

4.1.3 Mesh and time-stepping sensitivity
In this section one of the main characteristics of loss of ellipticity is observed, namely the sensitivity of the results with
respect to mesh and time step sizes. For this purpose, four meshes are investigated (shown in Figure 10). From coarsest
to finest, meshes are numbered from 1 to 4.

The evolution of accumulated plastic strain and min(det(N ⊙ 
≈
𝑆 ⋅ N)) in the lower half of the tube depending on the

mesh size is described by the Figures 13 and 14. No mesh dependence of the torque-angle curves is observed before ellip-
ticity is lost through the whole thickness of the tube. This interval between first occurrence of loss of ellipticity and the
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F I G U R E 14 Torsion test: On the left, torques obtained for the different mesh sizes (h); on the right, zoom at maximum torque
(𝜃 ∈ [0.8, 1.0])
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spreading of this zone through the thickness is visible on the curves of Figure 14. After this critical point, the thickness
and location of bands depend on the specific mesh size. A rigorous size of localized zones cannot be properly defined.
When localization occurs, there exist multiple modes leading to various band widths. However, the smallest localization
band possible is defined by the Gauss point size. Thin bands with half an element thickness are visible in Figure 13
(mesh 3 for instance) and also in Figure 15 (mesh 2). The mesh size only slightly influences the rate of decrease of the
torque in Figure 14

F I G U R E 15 Results in terms
of accumulated plastic strain and loss
of ellipticity for 𝜃 = 1◦, using mesh
of model 2. Top, constant load-steps
(0.01◦); bottom, refined load-steps.
For the same loading and same
mesh, results differ in terms of plastic
strain: The first case has a maximum
plastic strain of 𝑝max = 0.011, and the
second case has a maximum plastic
strain of 𝑝max = 0.015 due to a
thinner shear localization band
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F I G U R E 16 Torsion test: On the left, torques obtained for constant and refined time-steps; on the right, zoom at maximum torque
(𝜃 ∈ [0.8, 1.0])
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Structured meshes only are considered in the present work, see Figure 10. Mesh dependence is also expected with
respect to the shape and orientation of finite elements. Regular, oriented and random meshes have been compared in
Reference 33 and shown to lead to very different postlocalization patterns. For the sake of brevity, such an investigation
is not untaken here.

The time-step sensitivity of the results is illustrated by Figures 15 and 16. For given mesh size, the effect of time
step refinement remains small except that larger plastic strain values are found in some localization bands. The effect
of time discretization on the torque-angle curves is visible once ellipticity is lost through the whole thickness. These
effects can be further interpreted by performing an additional analysis related to loss of uniqueness, as done in the next
Section 4.1.4.

4.1.4 Loss of uniqueness of the FEM problem
In an infinite functional space, uniqueness of the rate boundary value problem is lost as soon as det(n⊙ 

≈
⋅ n) < 0 for

at least one n in an arbitrary small area. However, in a discretized problem such instability modes cannot necessarily
emerge due to the kinematics imposed by the shape functions defined in the elements. In the present example it will be
shown that the loss of uniqueness of the discretized problem occurs only once ellipticity is lost in a region crossing the
whole thickness of the tube.

It is known that the uniqueness of the rate boundary value problem is lost as soon as the smallest eigenvalue
of the global stiffness matrix becomes negative.5,8,29,34,35 Therefore, in order to analyze the uniqueness of the com-
puted solution, the smallest eigenvalues of the global stiffness matrix of the FEM problem have been extracted. It is
shown in Figure 17 that all eigenvalues are positive for 𝜃 ≤ 0.89◦ and nine eigenvalues become negative for the next
step 𝜃 = 0.9◦, which corresponds to the loading step for which ellipticity is lost through the whole thickness of the
tube.
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F I G U R E 17 Evolution of the
ten smallest eigenvalues of the
global stiffness matrix. Nine
eigenvalues become negative as
soon as ellipticity is lost through the
thickness of the tube

F I G U R E 18 Sign of the det(n⊙ 
≈
⋅ n) in the tube

loaded in torsion at 𝜃 = 0.9◦
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F I G U R E 19 Eigen-modes associated to the nine vanishing eigenvalues from Figure 17 at 𝜃 = 0.9◦ for the torsion of a tube loaded in
torsion. Zoom on the area in blue dashes where ellipticity is lost in Figure 18

F I G U R E 20 Geometry of the torsion sample. A regular mesh (quadratic interpolation) is used in the gauge length. Flat surfaces are cut
on the sample's heads in order to apply the torsion load

The part of the structure in which ellipticity is lost before localization occurs has a finite thickness regardless of
the mesh size, as shown in Figure 18. This leads to the existence of multiple localization bands of various thicknesses,
infinitely many in an infinite functional space, but limited by the number of layers of elements in a FEM model. The
number of instability modes is consistent with the number of Gauss point layers that are contained in the nonelliptic zone
of Figure 18. Finally, the instability modes form a basis for all possible localization bands in the sense of Rice that could
emerge in the FEM problem, as shown in Figure 19.

As proposed in Reference 29, once a “disk-like” zone in which ellipticity is lost has fully developed, localization in the
sense of Rice (bands) occurs.∗ In fact, loss of ellipticity in a single Gauss point is not enough for the FEM model to fail,29

yet it is an indicator of a weak, most likely critical, zone in the structure.36

∗In Reference 29, the author also discusses some geometrical compatibility with the boundary conditions, which is met in this case: The rotation of
the upper surface is consistent with the shear band in the middle section.



22 AL KOTOB et al.

Another fundamental result is observed. Once localization in the sense of Rice occurs, the rest of the structure elas-
tically unloads.2,3,13 This usually leads to a sudden drop in the structure's stiffness, yet shear has almost zero geometric
consequences in terms of effective cross-section. Therefore, this leads to a slightly decreasing torque2 (cf. Figure 14).

4.2 Application to an experimental torsion sample
In this section, the analysis of loss of ellipticity is applied to a real torsion sample in order to detect a shear localiza-
tion band. The geometry and mesh are shown in Figure 20. The experimental results using this sample are taken in
Reference 1.

This sample has been loaded in torsion, and exhibits, for the material properties given in Reference 1, a localization
band in the gauge length due to loss of ellipticity. These results are shown in Figures 21 to 23.
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F I G U R E 21 Evolution of normalized torque as a function of the loading angle for the whole loading process. Comparison between
FEM simulation and experimental results. T denotes the torque, D the external diameter, Re and Ri, the external and internal radii, and 𝜃 the
torsion angle in degrees. In squares, the instants shown in Figure 23; the red triangle shows the maximum torque
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F I G U R E 22 Evolution of torques as a function of the loading angle zoom around the localization point. Comparison FEM/experiment.
In squares, the instants shown in Figure 23; the red triangle shows the maximum torque
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F I G U R E 23 From left to right, top to bottom: Evolution of loss of ellipticity and cumulative plastic strain in the gauge length of the
sample. The solution of the minimization problem at each Gauss point is plotted in rods; red rods for loss of ellipticity

It is shown that the sample has the same kind of behavior regarding the evolution of loss of ellipticity as the simple
tube studied in Section 4. Yet, a difference can be observed due to the sample's geometry. The flat surfaces added to the
heads for testing purposes break the axial symmetry. This leads to the existence of two zones where elastic unloading
occurs later. In fine, the plastic strain localized in a narrow band. As it can be seen in Figures 21 and 22, the applied
torque keeps on increasing after the first loss of ellipticity. Once ellipticity is lost through the thickness of the mid-
dle section and once there is elastic unloading in the rest of the gauge length, the maximum torque is reached. Then,
although the material is nonsoftening, the applied torque decreases. Such localization bands were observed experimen-
tally in Reference 1. It is shown in Figures 21 and 22 that the numerical results correlate well with the experimental
observations.

5 CONCLUSIONS

A new general algorithm based on a Newton-Raphson scheme is proposed for evaluating the loss of ellipticity criterion. It
is derived in the most general case and it does not depend explicitly on the formulation or on the associativity of the plastic
flow. This algorithm has been shown to be more robust and more efficient than methods available in the literature. In
order to reach maximal efficiency, a method to discretize the unit sphere has been proposed, which has the twin benefits
of providing an isotropic distribution as well as reducing the number of discretization points. This proposed multistart
method has been compared to the classical sampling method found in the literature.19 It is shown to be more robust when
multiple minima exist while requiring a shorter computation time than other methods. The existence of multiple local
minima was found to be generic for the various investigated loading conditions.

The new method was applied in a structural FEM problem to evaluate the failure of a tube loaded in torsion. It has
been shown that, while the material of the tube is nonsoftening and possesses an associative flow, the loss of ellipticity
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criterion is met and localization emerges in the simulation. Also, the use of the multistart algorithm proposed in this
paper, which is robust when there are multiple equivalent global minima, allowed both solutions to be captured and
properly interpret the results in Section 4. The last application on a complex torsion sample shows that this method of
failure detection is amenable to industrial applications in spite of the demanding computational effort associated with
nonlinear minimization algorithms.

The use of loss of ellipticity criterion can be advantageously combined with conditions for loss of uniqueness in order
to gain more insight on the emergence of localization modes and interpret the observations made in Section 4. It was
shown in Section 4.1.4 that the instability modes were as numerous as the number of possible localization bands (in
the sense of Rice) that could kinematically emerge in the nonelliptic domain of the FE mesh. This links to the fact that
kinematically admissible fields are restricted by the FEM shape functions and such localization modes were observed
only once ellipticity was lost through the whole thickness of the tube. This is an interesting outcome of the proposed
study which requires further work especially regarding the use of finer and finer mesh sizes allowing for fine structured
localization modes.

As a conclusion, the originality of the work is three-fold: (i) An efficient and robust algorithm to detect localization
modes was presented; (ii) The failure detection method is amenable to the computation of industrial-like samples in
contrast to existing applications that are limited to volume elements or mesh subdomains; and (iii) The observed shear
localization modes are interpreted by means of combined loss of uniqueness and loss of ellipticity criteria showing that
loss of ellipticity through the whole thickness of the tube is required for full localization to occur.

It has been observed in a structural problem that loss of ellipticity in a part of the structure in an FEM problem is not
enough for the discretized problem to lose regularity. In fact, localized shear bands appear in the tube only once ellipticity
has been lost through the whole thickness of the tube. Also, the cross-section in which loss of ellipticity occurs is parallel
to the surfaces of application of the boundary conditions, and the normals minimizing det(n⊙ 

≈
⋅ n) are perpendicular

to that surface. All together, these conditions allow the emergence of shear strain localization bands. Finally, this method
has been applied to a real torsion sample used in1 to detect the emergence of a localization bands during a torsion test.

Nonproportional loading can occur in structural components so that the difference between isotropic and kinematic
hardening can result in distinct localization behavior. This can be investigated within the proposed method. Some ele-
ments of localization analysis at finite elastoplastic deformation using isotropic and kinematic hardening have been
provided in.37 This constitutive feature was not considered in the present work which concentrates on validation examples
for high strength steels displaying little hardening so that the differences resulting from the use of isotropic or kinematic
models are expected to be small. Extensions of the present work towards the analysis of curvature surface effects will
require the consideration of isotropic/kinematic hardenings.

The simulations presented in this work do not show strain levels larger than 0.1. However the full finite deformation
framework is needed for loss of ellipticity to occur in materials displaying hardening or perfect plasticity. The postlo-
calization behavior was not considered in the work due to the loss of regularity of the solution. Regularization methods
are required for the simulation of the postlocalization structural response, for instance using strain gradient plasticity at
large deformations.22 The presented algorithm is used here to detect loss of ellipticity in order to know when to stop the
computation. The engineering applications mentioned in the paper deal with high strength steels that are prone to shear
band localization after a small amount of strain. The method can be applied efficiently to predict the onset of failure in
components made of such alloys.
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