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A link is established between a phenomenological Cosserat model of crystal
plasticity and recent results obtained in the statistical theory of dislocations.
The existence of a back-stress related to the divergence of the couple stress tensor
is derived. According to several dislocation-based models of single slip, the
kinematic hardening modulus is found to be inversely proportional to the
dislocation density. Phenomenological extensions to multislip situations can be
proposed based on these generalized continuum approaches.

Keywords: strain gradient plasticity; Cosserat; size effect; internal stress; couple
stress; crystal plasticity

1. Introduction

First links between the continuum theory of dislocations and the mechanics of generalized
continua were established in the pioneering works of Kröner and Mura [1,2].
The connection between the dislocation density tensor and the rotational part of the
plastic deformation was an incentive for the development of strain gradient crystal
plasticity theories, based on the second gradient medium as proposed in [3]. On the other
hand, the relation between the dislocation density tensor and lattice curvature derived by
Nye [4] prompted several authors, as recorded in [5], to formulate a Cosserat model for
crystal plasticity. Since then a plethora of strain gradient plasticity models have been
proposed without clear classification nor guidelines for assessing the fundamental
differences between them. One of the objectives of this work is to show that the
Cosserat theory and strain gradient plasticity models based on the introduction of the curl
of the plastic strain share major common features and belong to the same class of
generalized crystal plasticity models.

Recent formulations of generalized continuum models incorporating the effect of the
curl of the plastic deformation within the framework of continuum thermomechanics
show that this additional contribution to hardening, compared to classical crystal
plasticity, arises as a gradient-dependent internal stress or back-stress in the constitutive
Equations [6–8].

In the meantime, the statistical theory of dislocations has made significant progress
since the early attempts like [9]. In particular, higher order gradient terms in the continuum
description have been derived in [10,11] from spatial correlations of short-range
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dislocation–dislocation interactions, at least in the case of populations of straight parallel
edge dislocations. This contribution was shown to be adequately represented by a back-

stress component, which is inversely proportional to the dislocation density. Closely
related scaling laws were established for specific distributions of dislocations in relation to
the Cosserat continuum theory [1,12,13].

Comparisons with numerical simulations based on two-dimensional dislocation
dynamics support the pertinence of this formulation for gradient-dependent internal
stresses [14]. This contribution is essentially proportional to the second derivative of the

slip in the slip direction. The objective of the present work is to show that the mentioned
Cosserat and strain gradient plasticity models lead to the same formulation of internal
stresses, from purely phenomenological arguments, thus bridging a gap between statistical
and constitutive theories, at least in the case of single slip.

Extensions of the continuum model to multiple slip currently remain on a heuristic
basis. Such extensions were recently proposed in [15,16]. The phenomenological

constitutive approach making use of generalized continua also systematically provides
such 3D formulations. It will be shown in the present work that the phenomenological and
statistical approaches share several common features in the case of single slip.
Accordingly, it is worth comparing the 3D formulations of both classes of models. Such

gradient dependent internal stresses can be embedded in more comprehensive and realistic
constitutive models for the deformation of metals and alloys, as shown recently in [17].

We start by recalling the Cosserat crystal plasticity framework focusing on the relation
between the Cosserat microrotation and crystal lattice rotation. In particular, one
additional elastic parameter of the Cosserat model will be interpreted as a Lagrange
multiplier to make both rotations coincide. A Schmid law is then formulated in Section 4

based on the generally non-symmetric Cosserat force stress tensor. It is shown to lead to
the existence of a back-stress expressed in terms of couple stresses. The resulting internal
stresses are made explicit in the case of single slip in Section 5 and compared to results
from a statistical description of dislocation behavior in Section 8.

The derivations of the generalized continuum models are presented within the small
deformation framework for the sake of simplicity. Extensions to finite deformation

formulations are straightforward following the lines of [5,18–20].
In this work, zeroth, first, second, third and fourth order tensors are denoted by

a, a , a
�
, a
�
, a
�
respectively. The simple and double contractions are written ., :. In index

form with respect to an orthonormal Cartesian basis, these notations correspond to
a � b ¼ aibi, a

�
: b
�
¼ aijbij, where repeated indices are summed up. The tensor product

is denoted by �. The nabla operator is denoted by r. For example, the component ijk of
;A
�
is Aij,k. For full clarity, both intrinsic and index notations are given at several places in

the text.

2. Cosserat crystal plasticity at small deformation

The degrees of freedom of the theory are the displacement vector u and the rotation
pseudo-vector ( which is associated with the skew-symmetric part of the microrotation

tensor R
�

in the case of small rotations:

R
�
’ 1

�
� �

�
�(, Rij ’ �ij � �ijk�k ð1Þ
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where �ijk denotes the permutation tensor. The deformation measures of the Cosserat

theory are the relative deformation tensor e
�
and the torsion-curvature tensor j

�
:

e
�
¼ ;u þ �

�
�(, j

�
¼ ;( ð2Þ

eij ¼ ui, j þ �ijk�k, �ij ¼ �i, j: ð3Þ

The stress measures associated with the deformation rates in the power of internal forces

are the force stress tensor r
�

and the couple stress tensor m
�
. They are generally not

symmetric. They must satisfy the balance equations for momentum and balance of

momentum, written in the static case:

div r
�
¼ 0, �ij, j ¼ 0 ð4Þ

div m
�
þ 2 r

�
¼ 0, mij, j � �ikl�kl ¼ 0, ð5Þ

where volume forces and couples are excluded for brevity. The axial vector associated with

the skew-symmetric part of the stress tensor is denoted by

r
�
¼ �

1

2
�
�

: r
�
, �
�

i ¼ �
1

2
�ikl�kl: ð6Þ

It couples the balance of momentum and moment of momentum equations. Exponents
s and a are introduced to respectively denote the symmetric and skew-symmetric parts of

the corresponding tensor:

r
�
¼ r

�

s
þ r

�

a, r
�

a
¼ � �

�
� r
�
¼

1

2
�
�
� �
’

: r
�

ð7Þ

�aij ¼ ��ijk�
�

k ¼
1

2
�ijk�kmn�mn: ð8Þ

The traction vector t and couple stress vector m acting on a surface element must fulfil the

following boundary conditions:

t ¼ r
�
:n , ti ¼ �ijnj ð9Þ

m ¼ m
�
� n , mi ¼ mijnj, ð10Þ

where n is the outward oriented normal vector at any point of the boundary of the body.

The relative deformation can be split into elastic and plastic parts,

e
�
¼ e

�

e
þ e

�

p, eij ¼ eeij þ e
p
ij: ð11Þ

Such a decomposition is not introduced in this work for the total curvature j
�

for the

sake of simplicity. A partition of curvature was considered in [5,21] and it is not

recalled here. The elastic deformation and the total curvature tensors are assumed to be
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linked with the force and couple stress tensors, respectively, by a generalized

Hooke law:

r
�
¼ E

�
: e
�

e, �ij ¼ Eijkle
e
kl ð12Þ

m
�
¼ C

�
: j
�
, mij ¼ Cijkl�kl, ð13Þ

where E
�
is the fourth order tensor of elastic moduli (unit MPa) and C

�
are secant moduli

of torsion and bending stiffness (unit MPa.mm2). In the isotropic case, these tensors are

built from six independent elastic moduli:

r
�
¼ �ðtrace e

�

e
Þ 1
�
þ 2� e

�

es
þ 2�c e

�

ea
ð14Þ

m
�
¼ �ðtrace j

�
Þ 1
�
þ 2	 j

�

s
þ 2
 j

�

a: ð15Þ

The Lamé constants are � and �. The coupling modulus �c relates the skew-symmetric

part of the relative deformation tensor to the skew-symmetric part of the stress tensor.

The additional Cosserat parameters �, 	, 
 are intrinsic torsion and bending stiffnesses.

We adopt the simplification 	¼ 
 as in [22].
The kinematics of plastic flow is dictated by the orientation tensors P

�

s associated with

the crystallography of the N slip systems:

_e
�

p
¼
XN
�¼1

_
� P
�

�, with P
�

�
¼ l � � n �, ð16Þ

where l � and n �, respectively, are the slip direction and the normal to the slip plane vectors

for slip system number �. For each slip system, the increment of plastic slip is _
�.

3. Cosserat microrotation and lattice rotation

The lattice rotation rate w
�

e is defined as the difference between the material rotation rate

w
�

and the plastic rotation rate represented by the skew-symmetric part of plastic

deformation [23]:

w
�

e
¼ ð; _u Þa � _e

�

pa
ð17Þ

¼ _e
�

a
� �

�
� _( � _e

�

pa
ð18Þ

¼ _e
�

ea
� �

�
� _( , ð19Þ

which provides a relation between the lattice rotation rate w
�

e and the Cosserat

microrotation rate � �
�
� _( . Accordingly, the Cosserat microrotation can be identified with

the lattice rotation if and only if the following internal constraint is enforced:

_e
�

ea
� 0: ð20Þ

That is, when the skew-symmetric part of the elastic relative deformation vanishes. In the

works [13,21], this constraint was enforced by a penalty method which consists in setting

a high enough value of the constitutive parameter �c. This parameter could also be treated

3552 S. Forest

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
o
r
e
s
t
,
 
S
a
m
u
e
l
]
 
A
t
:
 
1
7
:
5
4
 
1
8
 
D
e
c
e
m
b
e
r
 
2
0
0
8



as a Lagrange multiplier to ensure the identification between Cosserat rotation and lattice

rotation. In that case, the skew-symmetric part of the force stress tensor must be regarded

as a reaction force associated with the internal constraint. A similar (but different)

situation is met in the so-called Koiter or couple stress theory, for which the Cosserat

microrotation coincides with the material rotation itself [24].
When the constraint (20) is enforced, the Cosserat directors are lattice vectors. In that

case, the following relationship is obtained between Cosserat, material and lattice

rotations:

� �
�
� _( ¼ w

�

e
¼ w

�
� w

�

p, ð21Þ

where w
�
¼ ð; _u Þa, w

�

p
¼ _e

�

pa are the skew-symmetric parts of the total and plastic

deformation rates respectively. The associated rotation vectors therefore satisfy the

relation:

_( ¼ w
�
�w
� p: ð22Þ

4. Schmid law with a non-symmetric stress tensor

Plastic slip is activated when the resolved shear stress on a given slip system reaches

a critical value. The resolved shear stress �s is the component of the traction vector acting

on the slip plane in the slip direction:

�� ¼ ð r
�
� n �Þ � l � ¼ r

�
: P
�

�
¼ r

�

s : P
�

�s
þ r

�

a : P
�

�a
ð23Þ

¼ �sym� � x�: ð24Þ

A decomposition of the total resolved shear stress is found into a component �sym, which is

nothing but the resolved shear stress computed with the symmetrized stress tensor, and an

internal stress variable xs defined as

x� ¼ �r
�

a : P
�

�a
¼ r
�
�ðl � ^ n �Þ, ð25Þ

where ^ denotes the vector product. The additional contribution associated with the

skew-symmetric part of the stress will therefore act as a back-stress in the yield criterion.

An alternative expression of the internal stress can be worked out by taking the balance of

moment of momentum Equation (5) into account:

x� ¼ �
1

2
ðdivm

�
Þ � ð l � ^ n �Þ, ð26Þ

which relates the internal stress x� to a projection of the divergence of the couple stress

tensor.
The slip activation criterion for slip system � is

f �ð r
�
, ��c Þ ¼ j�

�j � ��c ¼ j�
sym� � x�j � ��c ¼ 0: ð27Þ
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This criterion involves the critical resolved shear stress ��c , for which usual hardening laws

of crystal plasticity can be used. At this stage, the evolution of ��c can be limited to the

effect of so-called statistically stored dislocations (density �S). The effect of the dislocation
density tensor, or equivalently so-called geometrically necessary dislocation densities

(GND), enters the model via the back-stress xs related to couple stresses and, therefore, to

lattice curvature, as a result of the celebrated Nye relation connecting the dislocation

density tensor and lattice curvature [4]. This is at variance with the quite common

modification of Taylor’s rule, namely �c proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S þ �G

p
, where different

dislocation density measures are combined in the friction stress [25].
A viscoplastic flow rule is adopted to compute the amount of plastic glide:

_
 ¼
f

K

� �n
signð��Þ ð28Þ

in the form of a power law involving the viscosity parameter K and the power n.

The brackets denote the positive part of the quantity.

5. Application to single slip

We derive here the special form of the previous constitutive and balance equations when

plastic deformation proceeds through single slip in a plane of normal n in the direction l :

_e
�

p
¼ _
 l � n : ð29Þ

We adopt a Cartesian coordinate system such that the third vector of the basis is

e 3 ¼ l ^ n : ð30Þ

We assume that no gradient will develop along the out of plane direction. In this two-

dimensional situation, lattice rotation will take place with respect to the third axis:

( ¼ �3e 3: ð31Þ

We assume that loading is such that this holds also for the material rotation rate:

w
�
¼ w3e 3: ð32Þ

In this context, the second elasticity law (15) reduces to

m
�
¼ 2	 j

�
, m3i ¼ 2	�3, i with i ¼ 1, 2 with i ¼ 1, 2 ð33Þ

The internal stress x is then related to the third component of the divergence of the couple

stress tensor:

x ¼ �
1

2
ðdivm

�
Þ3 ¼ �

1

2
ðm31, 1 þm32, 2Þ ¼ �	��3, ð34Þ

where � is the Laplace operator.
The lattice rotation can be expressed in terms of the material and plastic rotation

following (21) which becomes

_( ¼ w
�
�w
� p, with w

� p ¼ �
1

2
�
’

: ðl � n Þ: ð35Þ
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In the single slip case, the only non-vanishing component is

_�3 ¼ w
�

3 þ
_


2
: ð36Þ

Accordingly, the Schmid law (27) can be written as

� ¼ 	�c ¼ �
sym � x ¼ �sym þ 	��3 ð37Þ

so that

�sym ¼ 	�c � 	��3 ¼ 	�c � 	 �!
�

3 þ
1

2
�


� �
, ð38Þ

where !
�

3 is obtained by time integration of w
�

3. The internal stress is found to depend on

the Laplacian of material rotation and amount of slip.
It is important to check that there is no effect of a pure gradient of slip normal to the

slip plane in the model. This is due to the fact that such a gradient of the slip does not

induce any lattice rotation. To see that, we consider the following kinematics of single glide
�
ðx2Þ, which depends on the coordinate normal to the glide plane u ¼ �
ðx2Þx2e 1, where �

is the prescribed non-homogeneous shear. The gradient of displacement and the plastic

deformation take the form

;u ¼ ð �
, 2x2 þ �
Þ e 1 � e 2, e
�

p
¼ 
 e 1 � e 2: ð39Þ

As a result of Equation (36), the lattice rotation is

�3 ¼ �
1

2
ð �
, 2x2 þ �
Þ þ




2
ð40Þ

and the total Cosserat deformation

e
�
¼

1

2
ð �
, 2x2 þ �
 þ 
Þ e 1 � e 2 �

1

2
ð �
, 2x2 þ �
Þ e 2 � e 1 ð41Þ

¼ ðee12 þ 
Þ e 1 � e 2 þ ee21 e 2 � e 1: ð42Þ

The balance of force stresses requires that the stress component �12 does not depend on x2,

which in turn implies that

ee12 ¼
1

2
ð �
, 2x2 þ �
 � 
Þ ¼ ��3 ð43Þ

is constant. The curvature �32¼�3,2 therefore vanishes.
In other words, this feature of the model shows that the proposed Cosserat theory

includes only the effect of geometrically necessary dislocations, contrary to the full second

gradient model in [3].

6. Relation to strain gradient plasticity models

There is a link between lattice curvature and the rotational part of plastic deformation,

related to the dislocation density tensor. This relation can be obtained by applying the
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curl operator to the following expression of total Cosserat deformation rate, within the

context of small deformations and rotations:

_e
�
¼ ; _u � w

�

e
¼ _e

�

e
þ _e

�

p: ð44Þ

The elastic deformation e
�

e is symmetric when the constraint (20) that the Cosserat

microrotation coincides with the lattice rotation is enforced. We get

�curl w
�

e
¼ curl _e

�

e
þ curl _e

�

p: ð45Þ

The curl of the lattice rotation rate is equal to the transpose of the curvature rate tensor by

curl w
�

e
¼ ð;w

� eÞ
T
¼ ð; _( ÞT ¼ _�

�

T: ð46Þ

In the strain gradient crystal plasticity theories proposed in [6,8], the curl of the plastic

deformation is introduced into the free energy function. These theories turn out to be

identical to the present Cosserat model if the curl of the elastic strain is neglected in (45), as

initially done by Nye [4] to derive a direct relation between the dislocation density tensor

and lattice curvature.
In the case of single slip, the curl of the plastic deformation is computed as

curl _e
�

p
h i

¼

0 0 _
, 2n1n2 � _
, 1n
2
2

0 0 � _
, 2n
2
1 þ _
, 1n1n2

0 0 0

2
64

3
75, ð47Þ

where n1 and n2, n3¼ 0 are the components of the normal vector to the slip plane.

The couple stress tensor can be approximated by

m
�
¼ 2	 j

�
’ �2	ðcurl e

�

p
Þ
T

ð48Þ

so that

ðdivm
�
Þ3 ’ �2	ð2
, 12n1n2 � 
, 11n

2
2 � 
, 22n

2
1Þ ð49Þ

and

x ¼ �
1

2
ðdivm

�
Þ3 ’ 	ð2
, 12n1n2 � 
, 11n

2
2 � 
, 22n

2
1Þ: ð50Þ

This expression, when inserted into (27), gives a yield condition involving the second

derivative of the amount of slip in the spirit of the model proposed by [26].

7. Generalized kinematic hardening modulus

The material parameter 	 appearing in (34) can be regarded as a generalized kinematic

hardening modulus, with the physical dimension MPa.mm2. It has been evaluated by

Kröner as the bending stiffness of a crystal element containing a rectangular array of edge

dislocations. The existence of couple stresses in a dislocated crystal was put forward by

Kröner [1] by considering the residual stress field after bending and torsion of single

crystals. Kröner derived the expression of a material constant linking a couple-stress
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component to the corresponding lattice curvature tensor component, in the special case

depicted in Figure 1. This derivation can be interpreted as follows: to maintain a zero

plane curvature in a box inside the dislocated crystal of Figure 1, a torque must be applied.

Conversely, in the absence of couple stresses acting on the volume element, lattice planes

are curved due to the excess of dislocations of a definite sign. The characteristic length

which goes into this constant is the glide plane distance d between dislocations. Using the

present notations, Kröner’s relation reads

m31 ¼
2

6

�

1� �
d2�31, ð51Þ

corresponding to the following value of the parameter 	 from (33):

	 ¼
2

12

�

1� �
d2 ¼

2

12

�

1� �

1

�
, ð52Þ

where � and � respectively are the shear modulus and Poisson ratio of the crystal, and d

the distance between dislocations estimated as the inverse of the square root of the

dislocation density � of geometrically necessary dislocations.
The presence of non-homogeneous couple-stresses induces the building up of skew-

symmetric force stresses as noticed in [27] following the balance Equation (5).
Another interpretation of the parameter 	 has been given in [12,13] considering

a continuous distribution of screw dislocations bowing in a channel undergoing single slip

between hard elastic layers, see Figure 2. The slip plane is assumed to be perpendicular to

the interfaces. During shear in a direction perpendicular to the interfaces, the dislocations

continuously bow out in the channel and induce a pile-up of edge parts at the interfaces.

It has been shown in [12,13] that the Cosserat model (together with other strain gradient

plasticity models) can capture the non-homogeneous distribution of plastic slip in

Figure 1. Rectangular array of parallel edge dislocations considered by Kröner [1].
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the channel. The Cosserat model has been identified from the dislocation model, with the
estimation:

	 ¼
2�

�
: ð53Þ

Let us take, for instance, �¼ 40000MPa and �¼ 1012m�2; then we get
	¼ 0.08 Pa �m2

¼ 0.08MPa �mm2.
Both dislocation-based models indicate that the characteristic length associated with

the overall Cosserat or strain gradient plasticity models:

lc ¼

ffiffiffiffi
	

�

s
ð54Þ

should not be a constant one but should evolve with deformation. Both models provide an
inverse dependence of the generalized kinematic hardening modulus on the dislocation
density, that can be used in the phenomenological Cosserat or gradient theories.

8. Relation to a statistical mechanics based dislocation model

A statistical theory of dislocations has been developed for single slip in [10,28]. It starts
from the equation of motion of individual dislocations and shows that the influence of
the short range dislocation–dislocation interactions can be well described by a local
back-stress that includes a so-called ‘non-local diffusion-like term’, in the spirit of [26].
The model has been compared successfully with two-dimensional discrete dislocation
dynamics (DDD) simulations in [14]. A closed set of constitutive equations was formulated
and incorporated into the continuum crystal plasticity framework by these authors in
the form:

_"
�

p
¼ _


1

2
ðl � n þ n � l Þ, _
 ¼ �b :v ð55Þ

v ¼
b

B
ð� � xÞ ð56Þ

x ¼
D�b

2ð1� �Þ�
�
@�

@r
, ð57Þ

h s

b

τ

τ
1

2

3

0

Figure 2. Dislocation bowing in the soft phase. A part of the loop gliding in the plane 1-3 is shown,
with the curved (originally screw) section and edge segments at the soft/hard phase interface.
The resolved shear stress � and Burgers vector b are indicated. Labels s and h are used to designate
the soft and hard phase, respectively.
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where B, D are material parameters. The Burgers vector is b . The total and excess

dislocation densities �¼ �þþ ��, �¼ �þ� ��, fulfil the following evolution partial

differential equations:

_�þ divð�v Þ ¼ f ð58Þ

_�þ divð�v Þ ¼ 0, ð59Þ

where the function f accounts for dislocation creation and annihilation.
In the case of single slip with v ¼ ve 1 and b ¼ be 1 ¼ bl , Equation (59) reduces to

_�þ
1

b
_
, 1 ¼ 0 ð60Þ

so that the back-stress takes the form:

x ¼ �
��

�

, 11 ð61Þ

with � a material parameter. This relation is to be compared to (34) and (50) derived

in the Cosserat model. In particular, setting n1¼ 0 in (50), i.e. for a slip plane normal

to direction 2, the same dependence on 
 ,11 is retrieved. The inverse dependence of

the generalized kinematic hardening modulus with � is in accordance with the

estimations of the bending stiffness 	 in Section 7, but obtained here in a more

general context.

9. Cyclic plasticity in a two-phase laminate

The problem of the mechanical behavior of the two-phase laminate of Figure 2 initially

studied in [12,13], is reexamined here in the context of cyclic deformation and derivation of

the resulting global kinematic hardening. Screw dislocations are gliding in a channel along

a glide plane perpendicular to the plane parallel interfaces, under the action of a shear

stress �¼ �12. They deposit edge parts along the interface inducing non-homogeneous

plastic deformation in the direction 1 in the channel, and internal stresses associated with

the pile-ups. The test is controlled by the prescribed mean total amount of glide �
.
The displacement field in the channel is of the form:

u ¼ �
x2 e 1 þ u2ðx1Þ e 2, ( ¼ �3ðx1Þ e 3 ð62Þ

with periodicity conditions for the fluctuation u2(x1) and the microrotation �3

(see Figure 2 for the geometry and coordinate system of the studied microstructure).

The hard phase is regarded as an elastic Cosserat medium with a characteristic length

much smaller than the one associated with the soft phase. This allows the transmission of

the force and couple traction vectors and the continuity of displacement and

microrotation, at the interface between hard and soft phases. In the elastic hard phase,

the microrotation coincides with the material rotation. The active component of the

curvature tensor inside the plastic zone is

�31 ¼ 2	�3, 1: ð63Þ
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According to the balance of momentum equation �21,1¼ 0, the stress component �21 is

constant. The Schmid law (27) indicates that the stress component �12¼ �c is constant.

When applied to the equation of balance of moment of momentum (5), and assuming

a constant parameter 	, this gives

m31, 1 � �12 þ �21 ¼ 0¼)m31, 11 ¼ 0¼)�3, 111 ¼ 0, ð64Þ

which leads to a parabolic profile of lattice rotation in the channel. This is the same

qualitative result as in [13], where, however, only the symmetric part of the stress was

considered for the evaluation of Schmid law. This periodic boundary value problem has

also been solved based on the finite element method, as shown in Figure 3 for cyclic

1

2

0 0.003 0.006 0.009 0.012 0.015

Figure 3. (Color online). Periodic shearing of a two-phase laminate microstructure. From top to
bottom: initial finite element mesh (hard phase in white), prescribed glide E12¼ 0.01 according to
classical crystal plasticity, prescribed glide E12¼ 0.01 according to Cosserat crystal plasticity,
prescribed glide E12¼�0.01 according to Cosserat crystal plasticity. The plotted field is j
j.
The material parameters are �¼ 26920MPa, �c¼ 10MPa, 	¼ 10MPa �mm2.
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loading �
 ¼ 	0:01. In particular the field 
(x1) is given in Figure 3. The curvature effects
in the channel are clearly visible.

The effective properties of such a laminate material can be derived from the periodic
unit cell by proper averaging procedures. Such homogenization techniques have been
developed for heterogeneous Cosserat media in [29]. The nature of the effective medium
depends on the ratio of the Cosserat characteristic lengths and on the size of constituents.
We use the averaging relations obtained for an effective Cosserat medium:

�12 ¼ h�12i ¼
1

V

Z
V

�12 dV, E12 ¼ hu1, 2i ¼
1

V

Z
V

u1, 2 dV ¼ �
: ð65Þ

The stress–strain loop obtained for �
 ¼ 	0:01 is shown in Figure 4, revealing effective
linear kinematic hardening, induced by the internal stresses in the channel. The observed
effective kinematic hardening modulus is found to be directly proportional to the
parameter 	.

The generated linear kinematic hardening is similar to the one derived by Tanaka and
Mura in the case of a regular distribution of pile-ups in a grain [30], as analyzed in [13].
The kinematic hardening modulus scales with the inverse of the channel width s.

10. Conclusions

Two main links between available phenomenological generalized continuum crystal
plasticity models and the statistical approach to dislocation dynamics have been found:

. In the Cosserat model, the skew-symmetric part of the force stress tensor induces
a local back-stress in the generalized Schmid law. This back-stress is a projection
of the divergence of couple stresses. A similar contribution exists in strain gradient
plasticity models involving the effect of the curl of the plastic deformation. In the
case of single slip, the latter form of the internal stress is identical to the
contribution found in the statistical theory of dislocations of [10,28].

E12

Σ 1
2

(M
Pa

)

0.010.0050–0.005–0.01

20

15

10

5

0

–5

–10

–15

–20

Figure 4. Mean stress–strain curve for the cycling shearing of a two-phase laminate microstructure
(�¼ 26920MPa, �c¼ 10MPa, 	¼ 10MPa �mm2).
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. Dislocation models based either on square arrays of edge dislocations or on the
glide of screw dislocations in a channel systematically lead to the existence of
a generalized linear kinematic hardening modulus, which is proportional to the
inverse of dislocation density. This dependence can be directly implemented in
the phenomenological generalized continuum model. It is also in accordance with
the prediction of the statistical approach.

The analysis of the simple case of heterogeneous plastic slip in a channel shows that the
internal stresses result in an effective linear classical kinematic hardening on the overall
stress–strain curve. Non-linearity can be introduced when the dependence of parameter 	
on dislocation density is implemented. In the given examples, the total dislocation density
coincides with the GND content. In more general cases, it is conjectured that the
generalized kinematic hardening modulus should depend on the GND part only.

The question arises of the limit case when � is going to zero. The kinematic hardening
modulus 	 increases for decreasing �. On the other hand, the curvature is going to zero
when density of dislocations in excess decreases. This may result in an indeterminate value
of the couple stress according to (33). In the statistical theory of dislocations, it is not
excluded that the dislocation density � appearing in the expression of back-stress may
include parts of both statistical and geometric contents. One may consider the case of
a fixed dislocation density �S and a vanishing curvature, or equivalently, density �G! 0,
which leads to vanishing couple stresses and associated back-stress.

For single slip, most strain gradient plasticity models coincide in predicting a back-
stress related to the second derivative of the slip in the slip direction. Extensions to the
multislip case are currently mainly heuristic and the phenomenological approach based on
generalized continua can help formulating them in a consistent manner. Formulations that
explicitly introduce the gradient of individual slip or dislocation densities [15,16,31] share
the drawback that (dis-)continuity conditions at grain boundaries cannot be formulated
unambiguously because the variables 
�, �� are defined in each grain only up to a crystal
symmetry [32]. In contrast, plausible extensions can be proposed based on the rotational
part of the full plastic deformation, i.e. the full dislocation density tensor in [8,17], or on
the lattice torsion-curvature tensor [5,21]. These extensions also have the advantage that
the number of degrees of freedom does not increase when the number of slip systems
increases. In the Cosserat model for instance, the number of degrees of freedom remains
equal to 3, the three components of the lattice rotation vector, irrespective of the
crystallography of the studied system. The specific crystallographic structure of the studied
materials enters the model via the number of internal variables, for instance the number of
slip variables 
s, which depends on the number of slip systems.
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[13] S. Forest and R. Sedláček, Phil. Mag. A 83 (2003) p.245.
[14] S. Yefimov, I. Groma and E. Van der Giessen, J. Mech. Phys. Solids 52 (2004) p.279.

[15] S. Yefimov and E. Van der Giessen, Int. J. Solids Struct. 42 (2005) p.3375.
[16] C.J. Bayley, W.A.M. Brekelmans and M.G.D. Geers, Int. J. Solids Struct. 43 (2006) p.7268.
[17] E.M. Viatkina, W.A.M. Brekelmans and M.G.D. Geers, Eur. J. Mech. A–Solids 26

(2007) p.982.
[18] P. Cermelli and M.E. Gurtin, J. Mech. Phys. Solids 49 (2001) p.1539.
[19] B. Svendsen, J. Mech. Phys. Solids 50 (2002) p.1297.

[20] S. Forest and R. Sievert, Acta Mechanica 160 (2003) p.71.
[21] S. Forest, F. Barbe and G. Cailletaud, Int. J. Solids Struct. 37 (2000) p.7105.
[22] R. de Borst, Engng Comput. 8 (1991) p.317.
[23] C. Teodosiu, Large Plastic Deformation of Crystalline Aggregates, CISM Courses and Lectures

No. 376, Udine, Springer-Verlag, Berlin, 1997.
[24] W.T. Koiter, Proc. K. Ned. Akad. Wet B67 (1963) p.17.
[25] H. Gao, Y. Huang, W.D. Nix, et al. J. Mech. Phys. Solids 47 (1999) p.1239.

[26] E.C. Aifantis, Int. J. Plast. 3 (1987) p.211.
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