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An interpretation of intrinsic length scale in materials containing plastically soft and hard phases
is proposed, based on the idea that dislocations gliding in the soft phase have to bow between
the hard phase. Accordingly, the self-energy (line-tension) of the bowing dislocations is intro-
duced into the continuum mechanics description of the plastic deformation. A direct relation be-
tween a simple dislocation-based and a Cosserat model is established, allowing for identification
of the Cosserat intrinsic length, rotation and curvature. Attention is also paid to the question
whether the geometrically necessary dislocations contribute primarily to isotropic or to kinematic
hardening.

1. Introduction

At the scale of micrometers, size effects have been observed in various modes of plastic
deformation. Roughly speaking, the smaller is some characteristic length associated
with the deformation field, the stronger is the response [1]. As classical continuum the-
ories of plasticity cannot describe such effects, non-local theories have been revived
recently to account for them. In these strain gradient [1-3] or Cosserat theories [4, 5],
intrinsic length scales are introduced for dimensional consistency. The size effect is re-
vealed when the intrinsic length scale is not too different from the characteristic length
of the deformation field. The intrinsic length can thus be fitted by comparing predic-
tions of the theory with experimental results [1, 3]. A precise physical interpretation of
the intrinsic length scale introduced in this way remains unclear, but the size effects are
usually related to the enhanced hardening caused by storage of geometrically necessary
dislocations [6], which is directly related to the plastic strain gradients. It is commonly
assumed that this additional hardening is similar in nature to the isotropic (forest) hard-
ening caused by statistically stored dislocations, that is, it can simply be related to (the
square root of) their scalar density.

In an alternative strain gradient model [7], the size effect in metal-matrix composites
has been attributed to the bowing of dislocations between particles. Although no direct
relation between the proposed dislocation model [8] and the continuum theory was
established, this interpretation is supported by the well known empirical Orowan and
Hall-Petch relations between flow stress and obstacle spacing which were found to be
valid in various microstructures. Recently, the dislocation density tensor was introduced
into the theory [9]. As a result, expressions for the plastic spin and back stress could be



584 R. SEDLACEK and S. FOREST

obtained, the latter suggesting that the geometrically necessary dislocations contribute
to kinematic hardening.

The purpose of this paper is to elaborate the physical interpretation of the intrinsic
length scale in materials containing plastically soft and hard phases and to establish a
direct relation between a dislocation-based and a Cosserat model. Also, attention will be
paid to the question whether the geometrically necessary dislocations contribute primar-
ily to isotropic or to kinematic hardening. The underlying idea is that in the course of
plastic deformation, the dislocations gliding in the soft phase have to bow between the
hard phase. Accordingly, the self-energy (line-tension) of the bowing dislocations is in-
troduced into the continuum mechanics description of the plastic deformation. Thus, the
intrinsic length scale is related to line tension and density of the bowing dislocations
while the characteristic length of the deformation field is given by the spacing between
the hard phase. The size effect depends on the ratio between these two lengths.

This concept applies not only to metal-matrix composites or other truly two-phase
materials, but even to single crystals of metals which exhibit deformation-induced dislo-
cation structures: cells [10], subgrains [11, 12], persistent slip bands (PSBs) [13-15],
veins [16]. Despite of the quite different geometrical arrangements of the above men-
tioned microstructures, we try to capture the main features common to all of them by
means of a case study, utilizing simple one-dimensional models.

The plan of the paper is as follows. In Section 2, a simple dislocation-based model of
plastic deformation of a two-phase structure is recalled [17, 18] and completed to ac-
count for lattice rotation and curvature. As the model is formulated within the classical
framework [14] it accounts for the build-up of back stress in the soft phase, i.e. for
kinematic hardening. Being enriched by the assumption that the plastic deformation is
carried by curved dislocations, cf. [15, 16], the model accounts also for non-local effects
and yields an intrinsic length scale. The numerically computed results of the full model
are carefully compared with limit cases which can be solved analytically: (i) a linearized
model for mild dislocation bowing (anelasticity) [17, 18], (ii) an Orowan-type model for
the full plastic flow, cf. [13, 19], and (iii) the classical composite model [14]. The Cosser-
at formalism is employed in Section 3 to set up an alternative simple model of non-
local plasticity of two-phase materials. By comparison with the linearized dislocation-
based model, the intrinsic length scale, rotation and curvature of the Cosserat conti-
nuum are interpreted. Basic equations of the continuum theory of dislocations [20] and
of Cosserat continuum for small strains and small rotations are summarized in Appen-
dices A and B.

2. Dislocation-Based Model

A two-phase structure consisting of a plastically hard phase and a plastically soft phase
is modelled as a one-dimensional periodic elastic—plastic continuum. Single slip is con-
sidered for simplicity, Voigt approximation of homogenization theory is utilized, parallel
shearing (iso-strain) is assumed. To allow for a non-trivial distribution of stresses even
in this one-dimensional formulation, the stress equilibrium is fulfilled only on average.
This one-dimensional model thus mimics the behaviour of a non-homogeneous two-
dimensional structure with internal stresses, cf. [14].

In the Voigt approximation, only one non-zero component u, = ¥y of the material
displacement field u is considered, which yields a homogeneous material shear ¥ as the
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only non-zero component of the material displacement gradient §, cf. eq. (A1),
ﬁxy = ay”x = 37 . (1)

The homogeneous — and therefore compatible — material shear y is decomposed into
its elastic and plastic parts, cf. eq. (A2),

7 =)+ (x), )
each of them being in general incompatible. Dislocations must be stored in the non-
homogeneously plastically deformed crystal to enable the compatibility of the material

shear deformation [20, 21]. The density o = a,, of these geometrically necessary dislo-
cations follows according to eq. (A3) from the elastic shear,

a=—0y°. 3)
These continuously distributed dislocations are aligned with the z axis, their Burgers

vector is in the x direction. Non-zero components of the elastic strain € and the elastic
rotation w° are, cf. eq. (A4),

1
Exy T Eyx T Wyy = _w;x = 2 Ve : (4)

Just one non-zero component ¢ = ¢, of the axial vector of lattice rotation follows ac-
cording to eq. (AS5) from the skew-symmetric tensor of the elastic rotation m°,

1 &
p=-57 (5)
Lattice curvature x = i, results from the lattice rotation ¢, eq. (A6),
K=0yp. (6)

Note that plastic rotation and curvature can be defined in an analogous way using the
plastic shear strain yP. However, as the plastic deformation by glide of dislocations
causes the material to rotate but not the lattice, the plastic rotation and curvature deter-
mine the lattice rotation and curvature only indirectly via the compatibility requirement
and the resulting elastic deformation [22].

Because of the one-dimensional formulation of the model, the exact stress equili-
brium (A8) would lead to a trivial stress distribution. To mimic a two-dimensional peri-
odic structure with internal stresses, the stress equilibrium is considered only on aver-
age. In the case of the periodic arrangement of a soft phase (width s) and a hard phase
(width k) sheared in parallel by virtue of an applied stress 7, it follows from eq. (A9),

1 _
| =z, )
(s+h)

where 7 is the shear component of the symmetric stress tensor o, eq. (A7),
T =0y = Oy . (8)

The classical framework is completed by Hooke’s law for the elastic shear strain,

€
r:ZG%, 9)

G is the elastic shear modulus.
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Plastic deformation sets in and continues as long as a local yield stress is exceeded.
The yield stresses of the unbounded hard and soft phases fulfil the relation 7y, > 75. For
the following considerations it is sufficient to assume that the yield stress of the
unbounded soft phase is negligible, 75 =~ 0. The size dependence of the flow stress of
the soft phase bounded in the composite will be accounted for by explicitly considering
the bowing of dislocations between the hard phase.

2.1 Full curvature model

The plastic shear is supposed to be carried by dislocation loops lying in the xOz glide
plane and having the Burgers vector with the only non-zero component +b,, Fig. 1. For
simplicity, only straight screw parts of the dislocation loops extending across the soft
phase at zero applied stress are considered. They cause no long-range internal stresses,
for their net Burgers vector vanishes on average. Upon applying a stress increment 7,
the screw dislocations start to bow out, the soft phase being sheared plastically non-
homogeneously. The form of the bowed-out dislocations ¢(x) is determined by equilib-
rium of the forces acting on them: the Peach-Koehler force due to the local shear stress
75(x) and the self-force due to their line tension 7,

T
rs(x)b+m70, (10)
with R(x) = (1 + (0:@)*)” 2/92¢ being the local radius of curvature of the bowed-out
dislocation lines. The increment of plastic shear deformation in the soft phase caused

by the bowing-out of the mobile dislocations with density g, is

7e(x) = omb @(x) . (11)
As Ty > T, the hard phase is sheared only elastically. The decomposition (2) combined
with Hooke’s law (9) then requires

75(x) = — GYP(x). (12)

2.1.1 Numerical solution

A simplified version of the numerical method introduced in Ref. [23] has been used to
solve the system of egs. (10), (11) and (12) with the stress equilibrium (7). The dis-
location line ¢(x) is parametrized by the angle u, Fig. 1. The two components of the
mapping (¢, (u), ¢, (u)) are approximated by cubic splines [24], so that the curvature
1/R(u) = (¢ 9y — 9,90/l ¢' |> can easily be computed. The analytical solution of the

—,z-_> /

h s Fig. 1. Sketch of a dislocation bowing be-
tween the hard phase. A part of the loop glid-
ing in the xOz plane is shown, with the curved
(originally screw) section @(x) and edge seg-
ments at the soft’/hard phase interface. The re-
solved shear stress 7, Burgers vector b and the
angle u used for parametrization of the dislo-
cation line are indicated
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linearized model introduced below is used as an initial estimate of the dislocation
shape. Then, the stress 75(x) follows from eqs. (11), (12) and (7), the integration in eq.
(7) being performed with the help of the trapezoidal rule [24]. The dislocation shape
@(u) and stress 75(x) are updated in small increments until the unbalanced force result-
ing from the left hand side of eq. (10) is relaxed.

The following model parameters have been used: shear modulus G = 10 GPa, Bur-
gers vector magnitude b =0.1 nm, applied axial stress ¢ =20 MPa; line tension
T ~ Gb? [25], density of mobile dislocations o, ~ (7/ Gb)2 [26], resolved shear stress
7 = /3. Volume fraction of the hard phase was kept constant at i/(s + k) = 0.1, while
the width of the soft phase was varied to cover the range s/4 from 2 to 100. The intrin-
sic length A is introduced in eq. (15) below.

2.1.2 Results

The computed results are shown in Figs. 2 and 3. The local stress 75(x) decreases with
growing distance from the interface down to the local yield stress 7 ~ 0. The decrease
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Fig. 2. Results of the numerical solution of the full curvature model (solid lines, Sec. 2.1) com-
pared with the analytical solution of the linearized model (dotted lines, Sec. 2.2). Top: Profile of
the stress in the soft phase 7(x) normalized by the applied stress 7 with the magnitude of the
stress in the hard phase 7,/7 indicated (squares). Middle: Plastic shear strain y§(x). Bottom: Den-
sity of geometrically necessary dislocations a,(x) normalized by density of mobile dislocations o,,
times Burgers vector b with the surface dislocation density corresponding to the step-like differ-
ence in plastic strain AyP indicated (L). Spacings between the hard phase s normalized by the
intrinsic length A considered are (from left to right) 5, 10, and 20, cf. Fig. 3
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Fig. 3. Size-dependent stress in the hard phase 7, normalized by applied stress T plotted against
the spacing between the hard phase s normalized by the characteristic length 1. Results of the full
curvature model (Sec. 2.1), linearized model (eq. (18);), Orowan model (Sec. 2.3), and classical
limit (Sec. 2.4)

is enforced by the back stress in the soft phase (kinematic hardening) and compares
well with experimental observations. Consider the following two examples of experi-
mentally determined stress profiles: (i) Figure 12 in Ref. [12] showing the stress profile
in subgrains formed during elevated temperature creep which corresponds to s/1 ~ 60
(subgrain size s~ 30 um, dislocation density g, ~4 x 10> m~2, intrinsic length
A= +/1/0,, = 0.5 um). One should note that the values 7,/T ~ 10 to 25 in Ref. [12]
cannot be directly compared with the values in Fig. 3 because the volume fraction of
the subgrain boundaries is much smaller than 0.1, thus pushing the stress in the bound-
aries upwards, eq. (7); (ii) Figure 3 in Ref. [14] showing the stress profile in a channel
in PSB which corresponds to s/A = 4.5 (wall-to-wall spacing s~ 1.4 um, dislocation
density o, ~ 10" m~2, intrinsic length 1 ~ \/1/0,, ~ 0.3 um). In this case, the experi-
mentally found value 7,/7 =3 agrees reasonably well with the computed value
Ty /T &~ 2.5, since the same volume fraction 0.1 of the hard phase was considered.

The profile of plastic shear deformation Y (x) is directly connected to the dislocation
shape, eq. (11). It shows clearly the transition from anelasticity (initial bowing of the
screw dislocations) to full plastic flow (glide of the bowed-out dislocations depositing
edge segments at the boundaries) with growing s/A.

The geometrically necessary dislocations as(x), eq. (3), are represented by the edge
content of the bowed-out (originally screw) mobile dislocations in the soft phase. The
Burgers vector density thus formally corresponds to edge dislocations that pile-up
against the interface. The layer of volume density of geometrically necessary disloca-
tions which is responsible for the size effect concentrates in the vicinity of the interface
with increasing s/A. Moreover, a surface density of geometrically necessary dislocations
appears at the interface as s/4 grows. It accommodates the step-like plastic mismatch
AyP between the two phases, cf. [14]. The surface density of geometrically necessary
dislocations thus coincides with the edge dislocations deposited at the interface in the
course of the full plastic flow and increases with the growing s/A. The geometrically
necessary dislocations contribute to hardening in an organized way, namely by building-
up a long-range internal back stress in the soft phase (kinematic hardening), rather
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than by acting as direct obstacles to dislocation glide (isotropic hardening) as the statis-
tically stored dislocations do, cf. [27]. This statement may need correction in multislip
conditions, cf. [28].

2.2 Linearized model

To be able to discuss the proposed model in terms of simple analytical expressions, the
dislocation curvature 1/R(x) in eq. (10) is linearized,

()b + TP p(x) =0. (13)

Strictly speaking, the linearization restricts the applicability of the model to small ampli-
tudes of bowing (0, < 1). At larger amplitudes, the linearized eq. (13) describes the
shape of the dislocations qualitatively incorrectly. This is caused by the fact that the
non-linear eq. (10) describes the balance of forces acting on the dislocation correctly,
i.e. perpendicular to the dislocation line, whereas the linearized eq. (13) accounts only
for the force component perpendicular to the x direction.
Equations (11), (12) and (13) combine, yielding a linear differential equation for the
plastic deformation in the soft phase y¥{ (x),
1 T
TN =3 == (14)

with the coefficient 1 (dimension of length) given by

[ T

We conclude that the enrichment of the continuum mechanics framework by consider-
ing the bowing of dislocations between the hard phase described by eq. (13) introduces
the intrinsic length 4, eq. (15), into the classical model. It should be noted that eq. (13)
has been originally used to introduce a length scale into a model of dislocation pattern
formation [29].

The magnitude of A can roughly be estimated by utilizing the approximate relations
T ~ Gb* [25] and 1/,/o,, =~ Gb /G, the latter corresponding to the mean distance be-
tween glide dislocations [26]. With the order-of-magnitude estimates G = 10 GPa,
b = 0.1 nm and & ~ 10 MPa, the intrinsic length A ~ 0.1 um results.

It is interesting to compare the intrinsic length 4, eq. (15), with the one introduced in
a physically based Cosserat model of shear band formation [30]. In that model, tips of
microbands of a shear band are analogous to dislocations and their spacing corresponds
to the dislocation spacing. The spacing between microbands enters the expression for
the Cosserat length and serves (along with an elementary amount of slip analogous to
the Burgers vector) as a convenient intrinsic length scale.

2.2.1 Analytical solution

Solution to eq. (14) with boundary condition

2(+3) -0 &
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which reflects the continuity of the plastic deformation carried by the bowed disloca-
tions reads [17, 18]

h
P_0 P(y)= (1 B3 17
yh ) }/s(x) G( Coshi . ( )

The magnitude of the solution is controlled by the stress in the hard phase 7, which
results from the approximate stress equilibrium (7), where the stress profile in the soft
phase is given by eq. (12),

= f.(s + h) cosh 5; 7 ro(x) = T, cosh § . (18)
2/ sinh 55 4 h cosh 5; cosh 5;
The lattice rotation ¢ follows from eq. (5),
T __Th cosh 7
Pn= 2G’ 9s(x) = 2G cosh 57’ (19)
the lattice curvature « from eq. (6),
Ty sinh §
= = 5 s 2
=0, #es(x) 2GA cosh 3’ (20)
and the density of geometrically necessary dislocations a from eq. (3),
Ty sinh %
= () = ———72. 21
=0, %(x) GA cosh 3 1)

2.2.2 Results

The results are plotted and compared with the full curvature model in Figs. 2 and 3. In
the range s/A <5 the solution of the linearized model almost coincides with the solu-
tion of the full curvature model. Surprisingly, the stress profile in the soft phase 75(x) is
relatively well described by the linearized model even for s/4 > 5. Also the distribution
of the geometrically necessary dislocations in the soft phase a,(x) is relatively well
accounted for by the linearized model. However, the above mentioned transition from
anelasticity to full plastic flow cannot be described by the linearized model, for the
dislocations cannot reach the edge orientation at the interface. Therefore, the size effect
is overestimated, which is reflected by the too slow advancing of the linearized disloca-
tion model towards the classical limit in Fig. 3.

2.3 Orowan model

If the soft phase yields fully plastically, its flow stress can be estimated as the Orowan
stress, 7or ~ 1.5 Gb/s [13], while the local yield stress of the unbounded soft phase
73~ 0 is still assumed. Given an applied stress 7, the stress in the hard phase
7, results upon using the Orowan stress with the rule of mixtures [14],
T(s + h) = Tors + tnh. The size effect in this phenomenological description is due to
the same physical mechanism (bowing of dislocations between the hard phase) as in
the above non-local dislocation model, but the explicit dependence of the flow stress
on the soft phase dimension is assumed a priori. This model cannot give any informa-
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tion concerning the shape of the glide dislocations, stress profiles, and distribution of
geometrically necessary dislocations. However, it yields an estimate of the size-depen-
dent stress in the hard phase.

The results of the Orowan-type and dislocation-based models are compared in Fig. 3.
Both the dislocation-based and the Orowan model approach the classical limit with
increasing s (the volume fraction of the hard phase 4/(s+ h) = 0.1 is kept constant).
The Orowan model enables a good estimate of the internal stresses in the range of
widely spaced hard phase, s/A > 50. With decreasing s/, 7, should approach 7, because
the dislocations cannot penetrate between the narrowly spaced hard phase. This is cor-
rectly described by the dislocation model. However, the Orowan model assumes full
plastic flow of the soft phase and it is thus unable to model the mild bowing of disloca-
tions (anelasticity): 1, — —oo with decreasing s/A.

2.4 Classical limit

The classical limit is approached on increasing the spacing s between the hard phase
normalized by the intrinsic length A, Fig. 3. In the limit cases which are (i) due to
neglecting the self-energy of the bowing dislocations, 7' — 0 (i.e. A — 0, eq. (15)), or (ii)
due to increasing the spacing between the hard phase, s — oo, the classical composite
model [14] is recovered.

This can be understood in the following way. With T = 0, the loops in the soft phase
would not resist to curvature, so they would become square-like with their edge parts
deposited directly at the interface. In other words, the volume density of geometrically
necessary dislocations as(x) responsible for the size effect would condense to the sur-
face density at the interface. Similarly, as the geometrically necessary dislocations con-
centrate in the vicinity of the interface with increasing s/A, Fig. 2, they will finally con-
dense to the classical surface density [14] in the limit s — oo.

The length of these edge dislocations deposited at the interface is given by egs. (11),
(14) with 2 =0 as ¢ = 11,/(Go,,b). Their total length per unit area of the interface, go,,
(m™1), corresponds to the surface density of the interface dislocations in the classical
composite model [14]. In view of the simplifying assumption 75 ~ 0, the plastic deforma-
tion in the soft phase then correctly results from eq. (11), y§ = y¢ = 7,/G. Finally, the
stress in the hard phase follows from eq. (7), w, = 7(s + &)/h. Comparing this classical
result with eq. (18);, we see that the size effect has disappeared and only the volume-
fraction dependence remains, cf. Fig. 3.

3. Cosserat Model

Still in the Voigt approximation, a linear one-dimensional Cosserat medium will be
considered and applied to the two-phase structure sheared in parallel. It will appear
that an identification with the above linearized dislocation model is possible, since the
governing equations derived below have the same mathematical structure.

3.1 Cosserat continuum

A one-dimensional Cosserat continuum described by the material displacement field
u, =7y and a rotation field @ = &,(x) is considered. The non-zero components of the
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Cosserat deformation tensor (B1) are

exy:7+@a

22
ey = —D. (22)

The curvature of the medium k = k., is, cf. eq. (B2),
k=0,D. (23)

The relation (B3) for the couple stress x4 = u,, becomes
Ot — (Oxy - ny) =0. (24)
At first, we are not able to distinguish between the elastic and plastic parts of the

material deformation. The Cosserat framework is therefore tentatively completed by
linearized material constitutive equations,

vy :2G%+2GC (g+ qs) ,
_ _ (25)
=~V ~ (7
=2G%-2Gc (5+ D
Oyx 2 C <2 + > )
G is a classical material (secant) shear modulus, Gc its Cosserat counterpart. In egs.
(25), one recognizes the symmetric and skew-symmetric parts of the Cosserat deforma-

tion tensor (22). The couple stress u is also related to the curvature k of the Cosserat
medium (23) by a linearized constitutive equation,

u=4Gc Pk, (26)

[ is a Cosserat intrinsic length.

3.2 Identification with the dislocation model

The Cosserat framework will now be applied to the one-dimensional two-phase peri-
odic structure sheared in parallel. As it is a priori clear that the non-classical behaviour
must be related to plasticity which is in the present model restricted to the soft phase,
the hard phase remains classically elastic, cf. eq. (9),

__Tn
_ T 27
V=5 (27)
Equations (23) to (27) now yield a differential equation for the Cosserat rotation @,
1
PP - p=_0 (28)

e 22G”
This equation has the same form as eq. (14) which describes the profile y§(x) of the
plastic shear in the soft phase in the non-local dislocation model. Comparing the two
equations, we see that the Cosserat intrinsic length / equals the intrinsic length 1 of the
dislocation model,

1=12, (29)

and that the Cosserat rotation @ is the axial vector of plastic rotation in the soft phase,

Ple) = 3 ), (30)
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cf. eq. (5). Thus, the Cosserat rotation @ appears to be fully plastic. In view of the

decomposition (2), we are now able to separate the elastic and plastic parts of the

Cosserat deformation tensor e, eq. (22),
€, =v, ="+,

— po— _
e, =0, e =—o.

(31)

As for the curvature of the Cosserat medium k, it is fully plastic as well, and it follows from
egs. (23), (30) and in view of egs. (2), (6) that it is the negative of the lattice curvature r,

k=—x. (32)

3.3 Elastic Cosserat model

It turns out that in the present application, it is sufficient to consider elastic constitutive
relations alone to get an even more straightforward identification with the dislocation
model. To understand this, consider the material constitutive eqs. (25) and recognize
that (i) /2 + @ = —¢, cf. egs. (2), (5), (30) and (ii) the term Gy played no role in
deriving eq. (28). The elastic constitutive equations are

€

Oy = 2G’”7 —2Gco,
(33)

,ye
Oy = ZG?—i— 2Gco,

where the skew-symmetric part of the elastic Cosserat deformation tensor (31) was re-
written with the help of eq. (5). G is the classical elastic shear modulus, G¢ is its Cos-
serat counterpart. In view of egs. (26), (29), (32), the couple stress u can be related to
the lattice curvature x using the intrinsic length 4,

p=—4Gc k. (34)

The material relation (23) is replaced by the elastic relation (6). From egs. (24), (33),
(34) and (6), a differential equation for the lattice rotation in the soft phase follows,

1
P — /1_2¢ =0. (35)
From egs. (5) and (27), eq. (19); can be deduced. Accordingly, the boundary condition

Sy Th

#(+3) =~ 26 (36)
reflects continuity of the lattice rotation across the soft’/hard phase interface. Solution to
eq. (35) with boundary condition (36) reproduces the result (19),. The elastic shear in
the soft phase now follows from eq. (5) and the plastic one from the decomposition (2).
The shear stress in the hard phase t, follows from the approximate stress equilibrium
(B4) which takes the form

1 _

o | oW o). (37)

(s+h)
with o,, and o, being given by eqgs. (33). It can be checked easily that the result (18),
is reproduced. Similarly, the lattice curvature x, eq. (20), and the density of geometri-
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cally necessary dislocations «, eq. (21), follow correctly from the elastic Cosserat model.
The Cosserat elastic modulus G¢ and therefore the couple stress u, however, remain
undetermined by the above interpretation of the Cosserat framework. To be able to
identify G¢, more complex dislocation distributions must be imagined, cf. [31].

4. Concluding Remarks

A simple continuum mechanics model of plastic deformation of two-phase materials has
been recalled in Section 2. It has been shown that the self-energy (line tension) of disloca-
tions bowing between the plastically hard phase renders the model non-local. With in-
creasing spacing s between the hard phase, the non-local behaviour starts with the initial
mild bowing of dislocations (anelasticity), covers the range of full plastic flow (large bow-
ing of dislocations depositing segments at the interfaces), and approaches the size-inde-
pendent classical limit, Figs. 2 and 3. Because of the non-linear expression for the disloca-
tion curvature in eq. (10), the equations of the full model have been solved numerically.
In order to discuss the results in terms of analytical expressions, the analytical solution of
the linearized model with eq. (13) replacing eq. (10) has been given as well. Strictly
speaking, the linearized model correctly describes only mild bowing of dislocations be-
tween the hard phase (anelasticity). Although the linearized model overestimates the size
effect for large bowing of dislocations (plasticity), cf. Fig. 3, the comparison in Fig. 2 show-
ing that it accounts reasonably well for the size-dependent distributions of stresses,
strains, lattice rotations, and geometrically necessary dislocations, justifies the discussion.

The non-local effect is introduced into the linearized model via the second-order
plastic strain gradient in eq. (14). With the usual estimate of line tension T ~ Gb?* [25],
the intrinsic length A, eq. (15), equals the mean spacing between mobile dislocations
A =1/,/0- Thus, contrary to the conventional strain gradient theories, the intrinsic
length varies in the course of plastic deformation. Since the width of the soft phase s
corresponds to the characteristic length of the deformation field, the size-dependent
response is determined by the ratio s/A.

An interpretation of the Cosserat intrinsic length scale, rotation and curvature has
been proposed, based on comparison of the linearized dislocation-based model with the
Cosserat model introduced in Section 3. The intrinsic length A resulting from the dislo-
cation-based model directly determines the Cosserat intrinsic length /, eq. (29). The
Cosserat rotation @ has been identified as the axial vector of plastic rotation caused by
the bowing of dislocations in the soft phase, eq. (30). Because of the strong coupling
between elastic and plastic shear, eq. (2), the Cosserat model could also be formulated
entirely in the Cosserat-elastic framework. Then, the Cosserat rotation equals the elas-
tic lattice rotation ¢, the Cosserat curvature is the lattice curvature x. The Cosserat
elastic modulus G¢ could not be identified and therefore the couple stress u remains
undetermined, suggesting that the Cosserat model is still more general than the pro-
posed dislocation-based model which is actually reminiscent of the gradient theory with
symmetric stress tensor [7].
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Appendix A Continuum Theory of Dislocations

In the classical continuum theory of dislocations [20], the compatible material deforma-
tion is described by a continuous and differentiable displacement field u. The displace-
ment gradient f3,

p =gradu, By = i, (A1)
consists of an elastic and a plastic part,

b=+, By =5+ 0 (A2)
The former yields the dislocation density tensor a in the form

o = curl f°, Qjm = €ximO) ﬁfk ) (A3)

where €, is the Levi-Civita permutation tensor. The elastic part of the displacement
gradient (and, similarly, the plastic one) can be decomposed into the symmetric elastic
material strain ¢° and the skew-symmetric elastic material rotation ®°®,

B¢ =¢ + o0, ﬁ?j:e;—i-w;. (A4)

The axial vector ¢ of the elastic rotation describes the rotation of the lattice,

O=0, ¢,=— %ek,mw;,. (AS)
Lattice curvature k follows in the form

k= grad ¢, Kij = 0i; . (A6)
The stress tensor ¢ is symmetric,

6=0¢', o0;=0;. (A7)

Stress equilibrium reads

dive =0, 005 =0. (A8)
As the average of internal stresses vanishes in an infinitely extended medium, the aver-
age stress equals the applied one,

VIEIDlC %JO’,‘,‘ dv = 5,']'. (Ag)

|4

Appendix B Cosserat Continuum

Cosserat continuum is described by the displacement field u and an independent rota-
tion field ®. The Cosserat deformation tensor reads

e=gradu+ed, e = Oju; + €j Dy . (B1)
The curvature k of the medium is related to the rotation field,
k = grad®, kij = 0P; . (B2)

Rather than the symmetry of the force stress tensor (A7), the balance of moment of
momentum now yields a relation for the couple stress u,

divm+26 =0,  Ju; — oy =0, (B3)
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6 is the axial vector of the skew-symmetric part of the force stress tensor o. The stress
equilibrium (AS) still holds. In the two-phase model, the applied averaged stress is sym-
metric, 6;; = 0j;. It equals the average of the symmetric part of the force stress tensor in
the infinitely extended medium [32],

.1 _
‘}51016 WJ(Gij + O'j,') dv = Oijj . (B4)
|4
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