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The present work provides an original consistent framework for combining different
constitutive laws, possibly nonlinear, within diffuse interface models (phase field) by
homogenization rather than by mixing the material parameters, such as to offer a greater
flexibility. The framework relies on the choice of relevant thermodynamic potentials such
that the homogenization schemes are natural choices in the thermodynamic formulation.
Thus, it justifies previously proposed classic schemes (Ammar et al., 2009b) and gives
clues to explore new schemes (Durga et al., 2013; Mosler et al., 2014) by defining relevant
potentials. The proposed framework is illustrated by addressing two issues. First, Reuss
and Voigt homogenization schemes are shown to deliver the same kinetics of diffusion-
controlled transformations in the pure elastic case in the limit of vanishing diffuse in-
terface width. Second, using the Voigt homogenization scheme, we demonstrate that the
influence of viscoplasticity, either isotropic or crystalline, on diffusion-controlled trans-
formations is non-trivial and cannot be inferred from simple qualitative arguments. De-
pending on the competition between the time scales of diffusion and viscoplasticity, the
growth kinetics may exhibit intermediate behaviors between purely chemical and elastic
cases. Moreover, it is shown how viscoplasticity can change the morphological stability of
growing circular precipitates.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The phase field approach has become a ubiquitous tool to simulate microstructure evolutions in materials undergoing
phase transformations (Steinbach, 2009; Finel et al., 2010). Phases are described by continuous fields where each one is
endowed with a transport equation, or phase field equation. Such fields vary rapidly inside the phase boundaries over a
given width, which is also called the interface thickness. The interface is then said to be diffuse, which can have a physical
justification when the thickness comes close to a few inter-atomic distances. The transport equations associated to the phase
field variables allow us to predict the evolving morphology of new phases, and naturally embed the phase transformation
kinetics. For many diffusion-controlled phase transformations, stresses can play a significant role in both the transformation
kinetics and the morphology evolution of the growing phases. The transport equations for phase fields were firstly coupled
to Cauchy's first law of motion restricted to the elastic behavior of the phases in Wang et al. (1993) and Dreyer and Müller
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(2000). More recently, the attention was focused on the extension to plasticity and viscoplasticity, as done by Guo et al.
(2005), Ubachs et al. (2005), Uehara et al. (2007), Gaubert et al. (2008, 2010), Yamanaka et al. (2008), Ammar et al. (2009b),
and Schmitt et al. (2014).

Two main approaches have been proposed to determine the effective behavior of the interface. They are namely the
interpolation and homogenization approaches according to the terminology by Ammar et al. (2009b, 2011, 2014). These
methods are closely related to the “coarse-graining” and the “two-phase” approaches mentioned in Plapp (2011), respec-
tively. In the latter reference, and in the “two-phase” approach, the diffuse interface is “seen as a mixture of two phases that
each retain their macroscopic properties”, and for which standard homogenization methods coming for instance from the
mechanics of heterogeneous materials (Sanchez-Palencia and Zaoui, 1987; Zaoui, 2002; Qu and Cherkaoui, 2006; François
et al., 2012), can be used to derive the effective response. In this case, the phase field parameter then plays a role akin to the
volume fraction of one phase within the diffuse interface. In contrast, a single constitutive behavior is used for both phases
in the interpolation approach for which the corresponding material parameters are interpolated between the bounding
values reached in each phase.

The choice of an homogenization relation for the interface effective behavior originates from the work of Tiaden et al.
(1998) who introduced two concentration fields on the basis of the mixture theory. Kim et al. (1999) have then recognized
that such a solute partitioning, combined with a Reuss like assumption called quasi-equilibrium condition, could remove a
spurious contribution to the interfacial energy scaling with the interface thickness. Later on, by analogy to the work of Kim
et al. (1999) and Steinbach and Apel (2006) have used the Reuss assumption to describe the elastic behavior within diffuse
interfaces. Ammar et al. (2009b, 2011, 2014) also applied the Voigt homogenization scheme that relies on identical strain
values taken by both phases at each material point. Very recently, mixed schemes as they arise in laminate microstructures
have been proposed by Durga et al. (2013) and Mosler et al. (2014) in order to reduce spurious stress concentration within
the interface. Nevertheless, the popularity of the interpolation method, known as Katchaturyan's approach, was such that
the first attempts to introduce nonlinear material behavior of phases relied on the interpolation method, see for instance
Guo et al. (2005), Gaubert et al. (2008, 2010) and Cottura et al. (2012).

The choice of a suitable homogenization scheme generally depends on the morphology of the mixture of phases within
the diffuse interface. As such a mixture very often does not correspond to a physical reality of actual interfaces. This is why
various schemes have been applied without reference to the real structure of the interface. But the homogenization and
interpolation schemes can be of practical importance with respect to the convergence of the diffuse interface problem on
the sharp interface problem. It is now admitted that the Reuss-like assumption done in Kim et al. (1999) improves such a
convergence. Finally, Ammar et al. (2014) highlighted the paradigm of the interpolation and homogenization method
though the concept of inheritance. The interpolation method embeds inheritance of the internal variables during the phase
transformation. On the contrary, the homogenization method makes the internal variables of each phase independent from
each other. Nevertheless, inheritance can be added or discarded by the use of suitable evolutionary laws for the internal
variables.

Although there have been significant recent advances along this line, in particular in Durga et al. (2013) and in Mosler
et al. (2014) for purely elastic and elasto-plastic behaviors respectively, the present study addresses two novel aspects that
have not been dealt with so far:

(i) we settle the thermodynamic foundations for the formulation of homogenization based phase field models;
(ii) we perform a systematic computational analysis of the response of the proposed models in the presence of crystal

viscoplasticity.

Hence, we first present in Sections 2–4 the constitutive setting based on an original thermodynamic framework extending
the continuum thermodynamic framework used in nonlinear mechanics of materials to the phase field approach (Germain
et al., 1983; Maugin, 1992, 1999). Second, based on the implementation of Ammar et al. (2009a), this framework is applied in
Section 5 to investigate the diffusion controlled growth of precipitates associated with eigenstrains responsible for the
activation of plasticity during transformation. Finally, the major achievements are summarized in the conclusion together
with a few remaining issues to address.
2. Phase field modeling within the homogenization approach

In the present work, the role of thermodynamics is emphasized, and especially the second law or entropy principle, in
selecting suitable homogenization schemes in the phase field models. The constitutive setting is presented based on an
original thermodynamic framework extending the continuum thermodynamic framework used in nonlinear mechanics of
materials to the phase field approach (Germain et al., 1983; Maugin, 1992, 1999). It heavily relies on the exploitation of the
second principle of thermodynamics in order to formulate constitutive assumptions systematically ensuring the positivity of
the dissipation rate at each time and at each material point. This represents an alternative to the use of variational deri-
vatives of the free energy function as done classically in phase field approaches since the pioneering work by Cahn and
Hilliard (1958). It has the advantage that the theory can be readily applied to finite bodies with specific and unambiguous
boundary conditions, in contrast to usual periodic or infinite microstructures and corresponding vanishing boundary
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conditions used in the latter reference. The space of state variables is extended to include internal variables accounting for
material work-hardening. Mechanical dissipation then results from the competition between energy storage due to the
multiplication of dislocations and to dissipation induced by dislocation motion. The theory is suitable for the material
evolution at a mesoscale where individual dislocations are not resolved but rather represented by suitable densities. It
typically applies at the grain scale in a polycrystal where the continuum crystal plasticity has proved in many cases to
provide a reliable description of slip processes. The introduction of crystal plasticity into phase field models goes back to
works by Gaubert et al. (2008, 2010) and Cottura et al. (2012) for single crystals and by Abrivard et al. (2012a, 2012b) for
polycrystals, including grain boundary migration.

The framework also encompasses the consideration of continuum damage mechanics because the additional internal
variables can account for material weakening by cavity growth or micro-cracking (Lemaitre and Chaboche, 1994; Lemaitre
and Desmorat, 2004; Besson, 2004; Besson et al., 2009). In this field, phase field approaches meet gradient damage me-
chanical models as recognised recently in the literature (Forest, 2009; Miehe et al., 2010; Aslan and Forest, 2011; Forest et al.,
2011, 2014). A common thermodynamic framework exists that reconciles gradient damage and phase field approaches as
used in recent works by Hofacker and Miehe (2012, 2013), Borden et al. (2012), Voyiadjis and Mozaffari (2013), Vignollet
et al. (2014), and Ambati et al. (2015) for isotropic materials and Aslan and Forest (2009) and Aslan et al. (2011b, 2011a) in
combination with crystal plasticity. However, the discussion in the present work is limited to viscoplasticity, leaving open
the possibility of applying the proposed framework for damage applications.
2.1. Description of a two-phase multicomponent material

The present phase field framework is based on the introduction of a phase field parameter ϕ accounting for a two-phase
system α–β, with constant values ϕ = 1 and ϕ = 0, respectively in α and β. The phase field varies rapidly and continuously
from 0 to 1 in the diffuse interface zone over a thickness δ as defined in Kim et al. (1999). The physical degrees of freedom
attributed to each material point in the continuum are the concentration ci of a given chemical element i, and the dis-
placement vector u with the corresponding strain tensor ε∼ defined as the symmetric part of the gradient of the dis-
placement field.

Following the homogenization method, all of the chosen energy potentials along with their respective state variables,
fluxes and conjugates are interpolated as follows:

Ξ ϕ Ξ ϕ Ξ= ( ) + ¯ ( ) ( )α βh h , 1i i i

where Ξ can be the Helmholtz free energy density f or the Gibbs free energy density g, the concentration ci of component i
with the conjugate diffusion potential μi along with mass flux J i

, or the strain ε∼ and stress σ∼. Accordingly, the quantities Ξα

and Ξβ: αci ,
βci , ε∼

α, etc., can be regarded as fictitious or auxiliary variables in the theory according to Kim et al. (1999) and
Ammar et al. (2009b). However, their introduction has been shown to be decisive for a better control of the interfacial
properties, in particular when the numerical interface becomes thicker than the physical one. It is worth emphasizing once
again that real interfaces at the atomic scale are not two-phase media, and that the general mixture rule Eq. (1) must be
seen as a convenient way to gain a better control of interfacial properties and behaviors, rather than ensuing from some
volume averaging. Following the earlier phase field models for phase transformations, e.g. Wang et al. (1993), it is required
that the weighting function h does not change the position of the minima of the relevant thermodynamic potential (see
Sections 3 and 4) with respect to ϕ. Hence, ϕ( )h , which formally plays the role of a phase fraction in conventional
homogenization schemes, must fulfill the additional following requirements:

ϕ
ϕ ϕ

ϕ
( ) = ( ) = ′( ) =

= =
> < < ( )

⎧⎨⎩h h h1 1, 0 0,
0, if 1 or 0,

0, if 0 1. 2

The complementing function h̄ is defined as ϕ ϕ¯ ( ) = − ( )h h1 . The conditions on the derivative of h exclude the linear
function ϕ ϕ( ) =h emerging from volume averaging in classic homogenization theory. A standard choice for h is the fol-
lowing third-order polynomial function:

( )ϕ ϕ ϕ( ) = − ( )h 3 2 . 32

Finally, the total strain tensor attributed to each phase at each material point is split into three distinct mechanical con-
tributions as follows:

ε ε ε ε= + + ( )∼ ∼ ∼ ∼
ψ ψ ψ ψ

⋆ , 4e p

where ψ stands for either α or β (the same convention will be adopted in the sequel), and where the subscripts e stands for
elasticity, p for (visco-)plasticity and ⋆ for a constant and uniform eigenstrain, the latter being assumed, in this work, to be
independent of concentration and temperature, for the sake of brevity.
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2.2. Balance equations

The total concentrations are subjected to the local balance of mass in the form:

̇ + ∇· = ( )Jc 0, 5i i

for each component i, in the absence of source terms. The mass balance equation is associated with Dirichlet or Neumann
conditions at the boundary of the body where the concentration or the normal flux = ·J nj are prescribed, n denoting the
normal surface vector.

The stress tensor fulfils the static balance of momentum equation:

σ∇· = ( )∼ 0, 6

in the absence of body forces for simplicity. The Cauchy balance equation is complemented by displacement or traction
vector, σ= ·∼t n, controlled boundary conditions.

The internal energy density enters the local balance of energy equation

σ ε ξπϕ ϕ∇̇ = ̇ − ̇ + · ̇ ( )∼∼e : , 7

where generalized stresses ξ and π are introduced as dual quantities to the change in phase field parameter ϕ and its
gradient, following Gurtin (1996) and Ammar et al. (2009a). The first term in the right-hand side is the classical mechanical
power of internal forces whereas the second and third terms account for additional internal energy change associated with
boundary motion.

The generalized stresses are postulated to fulfil an additional balance equation in the form:

ξπ + ∇· = ( )0. 8

The balance of generalized stresses is associated with Dirichlet or Neumann boundary conditions where the phase field
parameter or the generalized stress vector, ξ·n, are prescribed at the boundary.

In the spirit of homogenization theory, the partial quantities ψci , σ∼
ψ are not subjected to similar balance equations. This is

in contrast to mixture theories as discussed by Müller (2001).
The variational formulation of balance equations (6) and (8) constitutes the generalized principle of virtual power

∫ ∫( ) ( )σ ξ σ ξπϕ ϕ ϕ∇ + − ·∇ = · · − · ( )∼ ∼
⁎ ⁎ ⁎ ⁎ ⁎u n u ndV dS: , 9V S

using the virtual velocity fields ϕ{ }⁎ ⁎u , , as discussed in Ammar et al. (2009a).
The generalized principle of virtual power is complemented by the variational formulation of the balance of mass

equation (5):

( ) ( )∫ ∫̇ − ·∇ = · ( )
⁎ ⁎ ⁎J J nc c c dV c dS, 10V S

i i i i i i

for the field of virtual concentration rates ⁎ci .
The previous variational formulations are directly applicable to the finite element method. The implementation and the

discretization of these equations presented previously in Ammar et al. (2009a) are recalled and extended in Appendices A
and B.
3. Constitutive framework based on the Helmholtz free energy potential

Thermodynamic principles are inoperative as long as the state and internal variables of the theory are not defined. This is
why the setting up of a constitutive theory starts with the proper definition of the state and internal variables. The internal
energy, e, and Helmholtz free energy, f, functions differ by one argument, namely the entropy variable, s, entering the
internal energy function and the temperature variable, T, arising in the free energy. They are related by the corresponding
Legendre transform:

= − ( )f e s T . 11

These functions are defined per unit volume in the present work.
The approach is exposed in the case of a two-phase multicomponent system made of solid crystalline materials, as

defined in the previous section. To render the model more transparent, its presentation is specialized to the case of a single
crystal phase β undergoing plastic slip according to crystal plasticity theory, see Asaro and Lubarda (2006) and Besson et al.
(2009), coexisting with phase α which exhibits an isotropic elasto-viscoplastic behavior with no hardening. This does not
limit our approach to such a configuration, and it is straightforward to adopt any combination of nonlinear constitutive laws,
as will be demonstrated in Section 5.
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3.1. State and internal variables

The considered space of state and internal variables for the two-phase α–β system is chosen as:

ε εϕ ϕ ρ= { ∇ } ( )∼ ∼
α α β β β βc c xSTATE , , , , , , , , 12e e s si i

where ϕ is a smooth phase indicator field, ψci are site fractions occupied by the chemical species i, ε∼
ψ

e
is the elastic strain

tensor attributed to each phase at each material point. The internal variables of the model are represented by the hardening
variables, ρβ

s and βxs , where the subscript s indicates the slip system number according to the crystal plasticity model. The
variable ρβ

s is akin to a dislocation density measure directly related to the critical resolved shear stress for the activation of
slip system s according to Schmid's law, whereas xs accounts for kinematic hardening needed for cyclic plasticity. Let N
denote the total number of slip systems characterizing the single crystalline phase β, typically N¼12 in f.c.c. crystals. For
simplicity, no hardening variable is introduced in the phase α, without restriction to the generality of the constitutive
formulation that allows for distinct behavior laws for both phases. Under general anisothermal conditions, the previous set
should be complemented by the temperature variable.

The dual set is composed of the thermodynamic forces associated to the state and internal variables following the
framework of continuum thermodynamics:

ξ σ σπ μ μ= {− } ( )∼ ∼
α α β β β βR XFORCES , , , , , , , , 13s si i

where π and ξ are the generalized stresses introduced by Gurtin (1996) and Ammar et al. (2009a), μ ψ
i and σ∼

ψ are re-
spectively the diffusion potentials and stress tensors of phase ψ, βRs is the slip resistance and βXs the back-stress as described
in Busso and Cailletaud (2005) and Besson et al. (2009) for each slip system s in phase β.

3.2. Decomposition of the free energy density function

The volumetric free energy density f of the two-phase material is decomposed at each material point into diffuse in-
terface, chemical and mechanical parts, respectively called ϕf , fc, εf :

∑= + +
( )

ϕ εf f f f .
14i

ci

The interface contribution of the free energy density is defined by Kim et al. (1999) as:

ϕ ϕ γ
λ

ϕ λ ϕ( ∇ ) = ( ) + ∥∇ ∥
( )ϕ

⎛
⎝⎜

⎞
⎠⎟f W, 3

1
,

15
2

with γ the interface energy, λ δ= ( )z/ 2 where δ is the diffuse interface thickness defined between ϕ =− 0.05 and ϕ =+ 0.95, z a
parameter defined as ϕ ϕ= ( )+ −z log / and W the double well function defined as:

( )ϕ ϕ ϕ( ) = − ( )W 1 . 162 2

Bulk free energies are coupled by means of the phase field variable using the same averaging relations as in Section 2 for the
state variables, thermodynamic forces and fluxes (1):

ϕ ϕ ϕ( ) = ( ) ( ) + ¯ ( ) ( ) ( )
α β α α β βf c c h f c h f c, , , 17c c ci i i ii i i

ε ε ε εϕ ρ ϕ ϕ ρ( ) = ( ) ( ) + ¯ ( ) ( ) ( )∼ ∼ ∼ ∼ε
α β β β

ε
α α

ε
β β β βf x h f h f x, , , , , , . 18e e s s e e s s

Possible dependence of εf on concentrations can be added in the latter equation but is not considered here for simplicity,
without restriction to the proposed general framework. As a result of the coupling with the phase field variable ϕ shown in
Eq. (18), the minimization of the free energy may lead to two phases in equilibrium and, thus, to the construction of
diagrams corresponding to chemical equilibrium under mechanical stress, as studied extensively in the references (Cahn
and Larché, 1984; Johnson, 1987; Frolov and Mishin, 2012).

3.3. State laws relating thermodynamic variables and their associated forces

The local form of the second principle of thermodynamics is written as:

Φ̇ ≥ ∇· ( )s , 19

where s is the volumetric entropy density and Φ the entropy density flux. The time derivative of (11) in the isothermal case
allows us to rewrite (19) into:

Φ̇ − ̇ ≥ ∇· ( )e f T . 20
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The free energy density is a function of the state variables (12). Its time derivative can be expanded according to the chain
rule:

∑ ∑ ∑ ∑
ε

ε
ε

ε
ϕ

ϕ
ϕ

ϕ
ρ

ρ̇ = ∂
∂

̇ + ∂
∂∇

·∇ ̇ + ∂
∂

̇ + ∂
∂

̇ + ∂
∂

̇ + ∂
∂

̇ + ∂
∂

̇ + ∂
∂

̇
( )∼

∼
∼

∼α
α

β
β

α
α

β
β

β
β

β
βf

f f f
c

c
f

c
c

f f f f
x

x: : .
21i i e

e
e

e
s s

s
s s

s
i

i
i

i

The entropy flux is related to the mass entropy flux and the diffusion potential, following de Groot and Mazur (1962),
Coleman and Noll (1963) Ammar et al. (2009a) and Villani et al. (2014):

∑ μΦ =
( )

J
T
1

.
22i

i i

Expanding Eqs. (20)–(22) and using the mass and energy balance equations (5) and (7) combined with the averaging
relations (18) lead to the Clausius–Duhem inequality:

∑ ∑

∑ ∑

ξ σ ε
ε

ε
ε

ε

π
ϕ

ϕ
ϕ

ϕ μ μ

ρ
ρ

− + ∂
∂

̇ + − ∂
∂∇

·∇ ̇ + ̇ − ∂
∂

̇ − ¯ ∂
∂

̇ − ·∇ + ̇ − ∂
∂

̇ − ¯ ∂
∂

̇ − ¯ ∂
∂

̇ − ¯ ∂
∂

̇ ≥
( )

∼
∼

∼
∼

∼

∼
α

α
α

β

β
β

α

α
α

β

β

β
β

β
β

β

β
β

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ J

f f
c h

f
c

c h
f
c

c h
f

h
f

h
f

h
f
x

x

: :

: 0.
23

i i e
e

e

e
s s

s
s s

s

i i
i

i
i

i i i

The previous inequality is first exploited for the individual phases. The particular case ϕ = 1 corresponds to the pure phase
α:

∑ ∑ σ
ε

ε σ εμ μ− ∂
∂

̇ − ·∇ + − ∂
∂

̇ + ̇ ≥
( )∼

∼ ∼∼ ∼
α

α

α
α α α α

α

α
α α α

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J

f
c

c
f

: : 0,
24i i e

e pi
i

i i i

whereas the particular case for the phase β, ϕ = 0, reads:

∑ ∑ ∑ ∑σ
ε

ε σ εμ μ
ρ

ρ− ∂
∂

̇ − ·∇ + − ∂
∂

̇ + ̇ − ∂
∂

̇ − ∂
∂

̇ ≥
( )∼

∼ ∼∼ ∼
β

β

β
β β β β

β

β
β β β

β

β
β

β

β
β

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J

f
c

c
f f f

x
x: : 0.

25i i e
e p

s s
s

s s
si

i
i i i

Assuming that the diffusion potentials and the stress tensors do not depend explicitly on ̇αci , ̇ βci , ε ̇∼
α
e
and ε ̇∼

β
e
, the left-hand

sides of the two previous inequalities are linear forms with respect to the concentration and elastic strain increments.
Following Coleman and Noll (1963), their positivity requires that the cofactors must vanish:

σ
ε

σ
ε

μ μ= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂ ( )∼ ∼

∼ ∼
α

α

α
β

β

β
α

α

α
β

β

β
f
c

f
c

f f
, , , .

26e e
i

i
i

i

The thermodynamic forces associated with the hardening variables are then defined as:

ρ
= ∂

∂
= ∂

∂ ( )
β

β

β
β

β

βR
f

X
f
x

, .
27

s
s

s
s

The residual dissipation rate inequality is obtained after combining (23) with (26), (27) and (1):

( )( ) ( ) ( )∑ ∑ ∑

∑ ∑

ξ σ σ ε σ σ

ε σ ε σ ε

π ϕ
ϕ

ϕ μ μ μ μ μ

ρ

− ̇ + − ∂
∂∇

·∇ ̇ + − ̇ + ¯ − ̇ − ·∇ + − ̇ + ¯ −

̇ + ̇ + ¯ ̇ − ¯ ̇ − ¯ ̇ ≥
( )

∼

∼ ∼ ∼

∼ ∼ ∼ ∼

∼ ∼

α α β β α α β

β α β β β β β

♯
⎛
⎝⎜

⎞
⎠⎟ J

f
h c h c h h

h h h R h X x

:

: : : 0,
28

i i i
e

e p p
s

s s
s

s s

i i i i i i i i

where π ♯ is defined as

∑ σ ε επ π
ϕ

μ= + ∂
∂

− ′ − + −
( )∼ ∼∼

α β α β♯
⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

f
h c c : .

29i
i i i

and is similar to the dissipative microforce introduced by Gurtin (1996).
At this point, it is still assumed that the diffusion potential and stress tensor functions do not explicitly depend on the

rates ̇αci , ̇ βci and ε ̇∼
α
e

and ε ̇∼
β

e
. In that case, it follows that the following conditions must hold to ensure positivity of the

dissipation rate:

σ σ σμ μ μ= = = = ( )∼ ∼ ∼
β α α β, . 30i i i

The first condition of equal partial diffusion potentials was adopted as a starting point by Kim et al. (1999). The equality of
partial stresses associated with each phase at a material point corresponds to the well-known Reuss approximation in the
mechanical homogenization theory and was first applied by Steinbach and Apel (2006) and discussed in Ammar et al.
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(2009b), Durga et al. (2013) and Mosler et al. (2014).
Finally, following Gurtin (1996), the generalized stress vector ξ is assumed to be independent of ϕ∇ ,̇ which provides the

last state law:

ξ
ϕ

= ∂
∂∇ ( )

f
.

31

As a result, the residual dissipation inequality reads:

∑ ∑σ ε σ επ ϕ μ ρ− ̇ − ·∇ + ̇ + ¯ ̇ − ̇ − ̇ ≥
( )∼ ∼∼ ∼

α β β β β β♯
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J h h R X x: : 0.

32
p p

s
s s

s
s si i

The mechanical contributions in the previous inequality contain the plastic power and the possible energy storage by means
of increase of internal variables.

At this stage, specific choices for the bulk volumetric free energy densities can be introduced in the form of quadratic
potentials for the purpose of illustration. The chemical contributions

( )( ) = − ^
( )

ψ ψ ψ ψ ψ
f c k c c

1
2

, 33c ii i i
2

i

correspond to elliptic paraboloids with minimum at ̂ψci and curvature given by ψki . The elasticity contribution for the α phase

ε ε εΛ( ) = ( )͠͠∼ ∼ ∼ε
α α α α αf

1
2

: : , 34e e e

involves the fourth-order tensor of elastic moduli of the bulk phase, Λ∼∼
α . The energy stored by elasticity and hardening for the

phase β is taken from Busso and Cailletaud (2005) and Besson et al. (2009):

( )∑ ∑ε ε ε ρ ρΛ( ) = + +
( )͠͠∼ ∼ ∼ε

β β β β β β β β β β βf b Q H C x
1
2

: :
1
2

1
2

.
35

e e e
s r

sr
s r

s
s

,

2

The hardening parameters are βQ , βb and βC . The interaction matrix Hsr accounts for self and latent hardening induced by
dislocation interactions.

Based on the previous quadratic potentials, the state laws (26), (27) and (31) combined with (30) provide:

( )μ μ= − ^ = ( )
ψ ψ ψ ψ

k c c , 36i i i i i

along with

σ ε σΛ= = ( )͠͠ ∼∼ ∼
ψ ψ ψ: , 37e

∑ ρ= =
( )

β β β β β β βR b Q H X C x, .
38

s
r

sr
r s s

The generalized stress vector is proportional to the gradient of the phase field variable, following (15) and (31):

ξ γλ ϕ= ∇ ( )6 . 39

3.4. Constitutive laws from the dissipation potential

The positivity of the dissipation rate in (32) can be identically fulfilled by introducing a convex dissipation potential
depending on the generalized stresses, conjugate to the flow of phase field, concentration, plastic strain and hardening
variables:

σ σΩ Ω π μ μ ϕ= ( ∇ ∇ ) ( )∼ ∼
α β α β β β♯ R X, , , , , , ; . 40s si i

The dissipation potential Ω is a function of thermodynamic forces and may also depend on the thermodynamic variables
that have to be considered as parameters, according to Germain et al. (1983). Here ϕ is used in the decomposition of the
dissipation potential in weighted contributions of the individual phases, as done for the free energy density function:

σ σΩ Ω π ϕ Ω μ ϕ Ω μ= ( ) + ( ) (∇ ) + ¯ ( ) (∇ ) ( )∼ ∼π
α α α β β β β β♯ h h R X, , , , . 41s si i

Looking at (24)–(27), quadratic dissipation potentials can be chosen in the form:
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σ
σ σ

σ
σ

Ω π π

Ω μ μ

Ω μ μ

( ) = ( )

(∇ ) = |∇ | +
−

( )

(∇ ) = |∇ | + ∑
| − | − −

( )

∼
∼ ∼

∼
∼

π ϕ

α α α α α
α α α

α

β β β β β β β
β β β β β

β

♯ ♯

+

+

+

+

α
α

α

β

β

β

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪
m

M

M
R

K

R X M
X R R

K

, 42

,
1
2

3/2 :
, 43

, , ,
1
2

:
. 44

i
K

n

n

i s s i
K

n s
s s s

n

2

i i
2

1
dev dev 0

1

i
2

1
0

1

ϕM and ψMi are the mobility parameters respectively for the phase-field and diffusion in phase ψ. For simplicity, cross terms
between the different species are not considered (the matrix of mobility is diagonal) and the mobilities are taken isotropic.
The brackets 〈 〉. denote the Macaulay brackets, they deliver the positive part of the concerned quantity. A von Mises yield
criterion with constant threshold αR0 is chosen for the α phase whereas the Schmid law is adopted in the β phase, βR0 being
the initial critical resolved shear stress and βRs the hardening variable for each slip system. The deviatoric stress tensors are
called σ∼

ψ
dev

. The crystallographic orientation tensor
͠

βms is the tensor product of the slip direction and normal to the slip
plane for slip system s, see Asaro and Lubarda (2006). The material parameters ψK and ψn account for the generally nonlinear
viscous properties of both phases.

The dissipation potential is used to derive the flow rules for diffusion and viscoplasticity. The mass flux vectors present in
the Clausius–Duhem inequalities obtained in (24) and (25) are derived from the dissipation potential for ϕ = 1 and ϕ = 0 as
follows:

Ω
μ

μ Ω
μ

μ= − ∂
∂∇

= − ∇ = − ∂
∂∇

= − ∇
( )

α
α

α
α α β

β

β
β βJ JM M,

45
i ii

i
i i

i
i

where the diffusion mobilities ψLi can be related to the diffusivities ψDi as follows, in order to retrieve the generalized Fick
law of diffusion:

= ∂
∂ ( )

ψ ψ
ψ

ψ

−⎛
⎝⎜

⎞
⎠⎟L D

f
c

.
46

i i

2

i
2

1

Using then the flux averaging relations (1) and (30), one obtains:

( )ϕ ϕ μ= − ( ) + ¯ ( ) ∇ ( )
α βJ h L h L , 47i ii i

so that effective mobilities can be defined as the average of the bulk diffusivities of the phases:

ϕ ϕ ϕ( ) = ( ) + ¯ ( ) ( )α βL h L h L . 48i i i

The plastic flow and hardening rules can also be derived from the dissipation potential following the theory of standard
generalized materials (Besson et al., 2009):

ε
σ

σ σ σ

σ σ

Ω
̇ =

∂
∂

=
−

( )
∼

∼

∼ ∼ ∼

∼ ∼

α
α

α

α α α

α

α

α α

α
R

K

3/2 : 3/2

3/2, :
.

49
p

p

n

dev dev 0 dev

dev dev

This corresponds to usual von Mises power-law viscoplasticity with threshold αR0 . As for the phase β:

( )∑ ∑ε
σ

σ
σ

Ω
γ̇ =

∂
∂

=
| − | −

− = ̇
( )∼

∼
∼

∼
β

β

β

β β β β
β β β β β

β
m

m m m
X R

K
X

:
sign : ,

50p
p

s

s s s
n

s s s
s

s s

where γα̇ is the slip rate for the slip system number s. The double contraction of the stress tensor σ∼
β and the orientation

͠
βms

is called the resolved shear stress on slip system s and is the driving force for slip activation in the presence of a back-stress
βXs .
The evolution laws for nonlinear hardening are defined following Busso and Cailletaud (2005) and Besson et al. (2009):

( ) ( )σρ ρ γ γ̇ = − | ̇ | ̇ = ( − ) − | ̇ | ( )∼
β β β β β β β β βmb x X d x1 , sign : . 51s s s s s s s s

More sophisticated evolution laws like Kocks–Mecking equations for the dislocation densities can be used in the model,
instead of (51)1.

Finally, the evolution of the phase field variable is derived from the quadratic part of the dissipation potential depending
on π ♯ as follows:

ϕ Ω
π

π̇ = − ∂
∂

= − ( )ϕ♯
♯M . 52

The latter equation can be reformulated into the well-known Allen–Cahn equation by introducing the generalized stress
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balance equation (8) and the state law (31) combined with (29):

∑ σ ε εϕ γλ ϕ
ϕ

μ
̇
= Δ − ∂

∂
+ ′ − + −

( )
∼ ∼∼

ϕ

α β α β
⎡
⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥
⎥M

f
h c c6 : .

53i
i i i

It is convenient to rewrite the enhanced Allen–Cahn equation (53) by introducing ϕFR as follows:

ϕ γ λ ϕ
λ

̇
= Δ − ′ − ′

( )ϕ
ϕ

⎛
⎝⎜

⎞
⎠⎟M

W h F3 2
1

,
54

R

where

( ) ( )∑ σ ε εμ= − − − − −
( )∼ ∼∼ϕ

α β α β α βF f f c c : .
55

R

i
i i i

It can be noted that when =ϕF 0R the equilibrium condition in Frolov and Mishin (2012) Eq. (29) is recovered, see also
Spatschek and Eidel (2013). The above constitutive laws are then consistent with a positive dissipation rate at each material
point and at each time. Note that Eq. (55) is valid for any form of the free energy function. In the particular case of quadratic
elastic and chemical potentials, Eq. (55) becomes:

( ) ( )∑ σ ε εμ= − − − −
( )∼ ∼∼ϕ

α β α βF c c
1
2

1
2

: .
56

R

i
i i i

4. Constitutive framework based on the Gibbs free energy potential

It has been shown in Section 3 that the restrictions implied by the entropy principle on the form of the constitutive and
state laws based on the homogenization approach from the volumetric free energy density have lead us to select the Reuss
homogenization scheme regarding stresses and diffusion potentials attached to each phase at each material point. Following
a similar reasoning as in Plapp (2011), an alternative formulation is put forward in this section, based on the use of the Gibbs
free energy or free enthalpy that will prompt us to introduce an alternative homogenization scheme for the mechanical part
of the model. The volumetric Gibbs energy density function g is defined as the double Legendre transform of the volumetric
internal energy density e:

σ ε= − − ( )∼∼g e Ts : . 57

4.1. State and internal variables

While entropy and strain are the canonical variables of the internal energy density function, temperature and stress are
the arguments of the free enthalpy. Accordingly, the state space (12) designed for the Helmholtz free energy must be
modified into:

σ ε σ εϕ ϕ ρ= { ∇ } ( )∼ ∼∼ ∼
α α α β β β β βc c xSTATE , , , , , , , , , , 58p p s si i

where the plastic strain tensors ε∼
ψ
p
enter as internal variables, together with the hardening variables already introduced in

(12) for reasons that will become apparent in the sequel.

4.2. Partition of the Gibbs energy density function

The volumetric free enthalpy density g is decomposed into interface, chemical and mechanical parts, respectively ϕg , gci
and σg as follows:

σ ε σ εϕ ϕ ϕ ϕ ρ= ( ∇ ) + ( ) + ( ) ( )∼ ∼∼ ∼ϕ
α β

σ
α α β β β βg g g c c g x, , , , , , , , , , 59c p p s si ii

where the diffuse interface excess enthalpy ϕg is identical to (15).
Bulk free energies are coupled by means of the phase field variable using the same averaging rules as used for the state

variables, thermodynamic forces and fluxes (1):

ϕ ϕ ϕ( ) = ( ) ( ) + ( ) ( ) ( )
α β α α β βg c c h g c h g c, , , 60c c ci i i ii i i

σ σ ε σ ε σ εϕ ρ ϕ ϕ ρ( ) = ( ) ( ) + ( ) ( ) ( )∼ ∼ ∼∼ ∼ ∼ ∼σ
α β β β

α
β

σ
α α α

σ
β β β β

α
βg x h g h g x, , , , , , , , , . 61p s p p s



V. de Rancourt et al. / J. Mech. Phys. Solids 88 (2016) 291–319300
4.3. State laws

The time derivative of (57), considering an isothermal thermodynamic process, is used now to rewrite the second law of
thermodynamics (19) as:

σ ε ε σ Φ̇ − ̇ − ̇ − ̇ ≥ ∇· ( )∼ ∼∼ ∼e g T: : . 62

Taking the local energy balance equation (7) into account leads to the following expression:

ε σ ξπϕ ϕ∇ Φ− ̇ − ̇ + · ̇ − ̇ ≥ ∇· ( )∼ ∼ g T: 63

where the stress rate tensor σ∼̇ can be expanded into:

( )σ σ σ σ σϕ ϕ ϕ ϕ̇ = ( ) ̇ + ¯ ( ) ̇ + ′( ) ̇ − ( )∼ ∼ ∼ ∼ ∼
α β α βh h h . 64

Using the expression (22) for the entropy flux and the chain rule for g, the inequality (63) becomes:

∑ ∑ ∑
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where

∑ ε σ σπ π
ϕ

ϕ μ= + ∂
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− ′( ) − − −
( )∼ ∼ ∼

α β α β⁎
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The particular case ϕ = 1 corresponding to the pure phase α yields:
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The particular case ϕ = 0 corresponding to the pure phase β yields:
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The found dissipation rate is a linear form with respect to ̇αci , ̇ βci and σ∼̇
α and σ∼̇

β . The positivity of dissipation rate then
requires that the conjugate quantities must vanish in both cases (67) and (68):
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and by definition:
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The two last conditions are required for the plastic power to appear in the dissipation rate.
Returning to the general case, given by (65), and using the mixture rules (1) and the state laws (69) and (70), the

dissipation rate inequality becomes:

∑ ∑ ∑
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Additional conditions result from the fact that the previous dissipation rate is a positive linear form with respect to ̇αci , ̇ βci
and σ∼̇

α and σ∼̇
β:

ε ε εμ μ μ= = = = ( )∼ ∼ ∼
β α α β, . 72i i i

The latter strain relations correspond to the Voigt approximation in homogenization theory. Taking these relations into
account and keeping the state law (52) for the gradient of the phase field, the following residual dissipation is obtained from
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(71):
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It differs from Eq. (32) by the contribution π π≠⁎ ♯.
At this stage, specific choices for the free enthalpy potentials are presented as an illustration of possible constitutive

equations within the proposed framework. The following quadratic potentials are retained:

( )( ) = − ^
( )

ψ ψ ψ ψ ψ
g c k c c

1
2
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The chemical potentials are still given by the relations (36), whereas (37) is changed into:

ε
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= + + =
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∼
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ψ σ
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ψ ψ ψ ψ

⋆S
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: ,
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and (38) also remains unchanged.

4.4. Constitutive laws from the dissipation potential

Positivity of the residual dissipation rate can be ensured by choosing a convex dissipation potential Ω⁎ depending on the
generalized forces associated with the flow of phase field, mass and plastic strain:

ε εΩ Ω π μ μ ϕ= ( ∇ ∇ ̇ ̇ ) ( )∼ ∼
α β α β β β⁎ ⁎ ⁎ R X, , , , , , ; . 78p p s si i

The chosen dissipation potential contains contributions from the diffuse interface and from the individual phase dissipative
behavior:

ε εΩ Ω π ϕ Ω μ ϕ Ω μ= ( ) + ( ) (∇ ̇ ) + ¯ ( ) (∇ ̇ ) ( )∼ ∼ϕ
α α α β β β β β⁎ ⁎ ⁎ ⁎ ⁎h h R X, , , , . 79p p s si i

Quadratic individual potentials are chosen for as many physical mechanisms as possible including diffuse interface mobility
and bulk diffusion:
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The constitutive laws for diffusion are the same as in Section 3.4.
The non-quadratic viscoplastic potential Ω ψ⁎

p is the dual potential to (44). It is obtained by a Legendre transform of Ω ψ
p

from (40) according to Halphen and Nguyen (1975) Eq. (20). The dual potential provides the stress as the derivative with
respect to plastic strain rate:
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The hardening laws (51) are still in use in the present context.
Regarding phase transformation, the evolution law for the phase field parameter reads:

ϕ Ω
π
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= − ( )ϕ
⁎

⁎
⁎M , 84

where ϕM is the phase field mobility. The new form of the enhanced Allen–Cahn equation is obtained after substituting
(5) and (31) in the latter evolution equation, as:
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The generalized Allen–Cahn equation (85) can also be rewritten by introducing ϕFV , the counterpart of (54) in Reuss scheme,
which reads:

( ) ( )ε σ σμ= − − − + − ( )∼ ∼ ∼ϕ
α β α β α βF g g c c : . 86

V
i i i

It can be rewritten in terms of Helmholtz's free energy as follows:

( )μ= − − − ( )ϕ
α β α βF f f c c , 87

V
i i i

to be compared with (55) obtained from the Reuss homogenization scheme.
It is worth noting that prior to the choice of a specific homogenization scheme, the equivalence of both models is not

ensured. Indeed, if we introduce the Legendre transformation from the Helmholtz to the Gibbs free energy densities for any
two phased system:

σ ε= − ( )∼∼g f : , 88

Applying the mixture rules (1) to the strain and stress tensors in the previous expression gives:

σ σ ε εϕ ϕ ϕ ϕ= − ( ) + ¯ ( ) ( ) + ¯ ( ) ( )∼ ∼∼ ∼
α β α β⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦g f h h h h: . 89

On the other hand, for each phase, the bulk free enthalpy can also be expressed as:

σ ε= − ( )∼∼
ψ ψ ψ ψg f : . 90

If we apply (90) into the second model based on the interpolation of the bulk Gibbs energies, it comes that:

ϕ ϕ= ( ) + ¯ ( ) ( )α βg h g h g 91

σ ε σ εϕ ϕ ϕ ϕ= ( ) + ¯ ( ) − ( ) + ¯ ( ) ( )∼ ∼∼ ∼
α β α α β β⎡⎣ ⎤⎦g h f h f h h: : 92
Table 1
Dimensionless material parameters.

Chemical equilibrium
Equilibrium concentration
^α
c

1

Equilibrium concentration
^β
c

0

Curvature ˜α
k 100

Curvature ˜ β
k 1

Interface properties
Interface energy γ̃ 0.02

Interface thickness δ̃ Planar precipitates [ ]0.005; 0.025
Circular precipitates 0.025

Mobilities

Diffusivity ˜αD × −8 10 3

Diffusivity ˜ βD 1

Phase field mobility ˜ ϕM ×6.17 106

Elasticity
ε⋆ 0.01

˜ = ˜ = ˜α βE E E 210

ν ν ν= =α β 0.3

Isotropic viscoplasticity

R̃0 Planar precipitates 0
Circular precipitates 0.2

K̃ −0.01 100
n 5

Crystal plasticity

˜ β
R0

0.065

˜ β
Rs

˜ =Q 0.45, b¼3

˜ βX ˜ =C 0.6, d¼20

˜ βK 0.1

βn 5
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σ ε σ εϕ ϕ= − ( ) + ¯ ( ) ( )∼ ∼∼ ∼
α α β β⎡⎣ ⎤⎦g f h h: : , 93

which is a priori not equivalent to (89).
While writing 〈 〉x the average value, or here the interpolated value, of x according to Eq. (1), the equivalence of (89) and

(93) can be also reformulated as follows:

σ ε σ ε〈 〉 〈 〉 = 〈 〉 ( )∼ ∼∼ ∼: : , 94

which is known as the Hill–Mandel principle of macro-homogeneity. In the framework of continuum mechanics, this
condition is used to ensure the scale transition. The homogenization schemes to be used within the present framework are
required to fulfill this condition.
5. Results

The relevance of the proposed framework is illustrated by investigating the diffusion-controlled growth of misfitted
precipitates in supersaturated matrices with different combinations of constitutive laws and different homogenization rules.
Two issues will be addressed in particular in this section. (i) First, we critically examine in what respect the different
homogenization schemes may impact the kinetics of diffusion-controlled transformations. This constitutes an important
point for controlling the outcomes of phase field models applied to transformations at the solid state in order to achieve
quantitative predictions. This issue is already critical when only elasticity is involved, and we will first restrict the analysis to
this case. (ii) Second, for a specific homogenization scheme, we examine how viscoplasticity impacts the kinetics and the
shape evolution of growing precipitates.

For the sake of simplicity, a binary alloy is considered with materials parameters in Table 1. So as to draw general trends
relevant for any micrometer-sized microstructures in metallic materials evolving at high temperature, they are reported in
their dimensionless forms (denoted with tildes), where the length, time and energy scales are defined respectively by L,
commensurate with the system size, the diffusion characteristic time τ = L D/2 with D the chemical diffusivity of the alloying
species, and the ratio γ δ=E / of the interface energy γ to the interface thickness δ. Moreover, the concentrations are scaled
by the difference in concentrations ^ − ^α β

c c (Table 1) between the coexisting phases as given by the phase diagram. For the
sake of illustration, Norton parameters are recast such as to rescale viscosities K by the energy scale, assuming that the
characteristic time entering K is L D/2 (this has no consequence because there is no intrinsic time scale in viscoplasticity
Norton type laws). Nonetheless, particular values have been chosen to comply with the growth of oxide layers at the surface
of stainless steels (de Rancourt, 2015). In that case, typical physical values of the characteristic scales are L¼200 mm,
τ = 700 s and =E 10 J/m9 3.

The expression of the mobility of the phase field proposed by Kim et al. (1999) is used to achieve local equilibrium at the
interface rapidly, i.e. on times much smaller than the duration of the diffusion-controlled process. ˜ ϕM reads:

λ ζ˜ = ˜ ( ˜ ) ( )ϕ
βM D / 6 , 952

with
Fig. 1. Growth kinetics of planar precipitates in an initially supersaturated matrix driven by the diffusion of the alloying species, without elasticity (black)
and with elasticity (blue and orange). The corresponding equilibrium fractions are indicated with horizontal dashed lines. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)



Fig. 2. Evolution of the concentrations at the interface (squares: matrix; triangles: precipitate) during growth, retrieved from the successive concentration
fields by extrapolation from the bulk into the diffuse interface at the level set ϕ = 0.5 (inset). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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In all the subsequent calculations, the initial microstructure is set such that the phase field features an equilibrium profile
in tanh in the direction normal to the interface. The initial concentration field c is defined such as to display the chemical
equilibrium value in the precipitate, i.e. = ^α α

c c , and a supersaturated constant value in the matrix, i.e. > ^β β
c c , sufficient to

promote growth. The following boundary conditions have been considered in all the calculations: ∇ ·→ =c n 0 and ϕ∇ ·→ =n 0,
where→n denotes the outward normal vectors; beside plane strain conditions, zero average in-plane stresses are enforced by
constraining the boundaries to remain flat without resulting forces.

The influence of the mesh size and time step has been systematically investigated for all 1D simulations to ensure that
the results are fully converged with respect to the discretization of the partial differential equations. An automatic time step
has been used ensuring that relative variations between two successive steps remain below upper bounds minimizing the
error associated with time integration. The convergence of all 1D cases with respect to space discretization has been sys-
Fig. 3. Evolution of the driving force for interface motion obtained by integrating the profiles of ϕ̃F (snapshot at ˜ =t 0.5 in the inset) according to Eq. (96):
without elasticity (black), Voigt (orange) and Reuss (blue). (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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tematically checked by performing series of calculations with increasing numbers of linear elements. As usual, the lower
bound is set by the number of elements within the diffuse interface: 10 linear elements have been found to be sufficient to
resolve the interface and prevent grid pinning. The total number of elements is then set by the ratio of the total size over the
interface thickness. In our calculations, the number of elements typically ranges from 500 to 2000. The 2D simulations have
been performed without systematic mesh refinement but the grid and time steps have been wisely selected with respect to
(i) the observations made from the 1D simulations, and (ii) simple test cases that can be compared with analytical pre-
dictions (e.g. the spherical growth worked out in Ammar et al., 2011).

5.1. Influence of the homogenization scheme on diffusion-controlled growth kinetics

First, the influence of the homogenization scheme on the growth kinetics is investigated in the purely elastic case with
respect to the purely chemical case.

For that purpose, a simple planar precipitate of width L/10 in a 1D system is first considered, with length L ( =f 0.10 ). The
matrix is initially supersaturated in the alloying species with concentration = > ^β

c c0.0550 so as to promote the growth of
the precipitate. Indeed, this concentration corresponds to precipitate fractions f¼0.25 and f¼0.197 without and with
elasticity respectively, as predicted by the minimization of the free energy of the equivalent sharp interface system, e.g. Cahn
and Larché (1984) and Ammar et al. (2009b). These values are reported in Fig. 1 with the dashed horizontal lines, along with
the kinetic curves of the corresponding growth processes. All the kinetics follow t laws as expected for diffusion-controlled
processes, during a first stage (˜ <t 0.1) before saturation at the relevant equilibrium phase fractions. These kinetics are
consistent with interfaces reaching rapidly local equilibrium after a short initial transient due to the finite phase field
mobility as shown in Fig. 2, where the interface concentrations have been retrieved by extrapolation of the profiles in the
bulk regions abutting the diffuse interface up to the level set ϕ = 0.5 (inset of Fig. 2). It is worth stressing that both Voigt
(orange) and Reuss (blue) homogenization schemes give the same interface concentrations and consequently the same
kinetics. The slower kinetics observed with elasticity can be attributed to the impact of elasticity on the interface con-
centrations as clearly shown in Fig. 2, in agreement with the predictions of the corresponding sharp interface conditions, e.g.
Johnson and Voorhees (1999), similarly to recent results reported in Ammar et al. (2011). Indeed, the concentration gradient
in the matrix at the interface which drives the precipitate growth according to the interface solute balance is less pro-
nounced than without elasticity. It can also be noted that the concentration in the matrix for the elastic case exhibits a slow
variation during the growth process: this is due to the evolution of stress and strain at the interface impacting the equi-
librium concentrations more significantly in the matrix because of the moderate curvature ˜ β

k (Table 1).
It is observed that, quite unexpectedly, Voigt and Reuss schemes give very close results. Indeed, as shown in Mosler et al.

(2014) and Durga et al. (2013), both schemes display different elastic energy density profiles within the interface which
could lead to different interface conditions and kinetics at first sight. This was suggested in Mosler et al. (2014) where ϕ̃F is
called a driving force. However, ϕ̃F is not the relevant quantity to inspect for the interface motion, but rather its integral
counterpart F̃ given by, e.g. Perevoshchikova (2012):
Fig. 4. Growth kinetics of circular precipitates in an initially supersaturated matrix, predicted with Reuss (blue) and Voigt (orange) schemes, with
δ̃ = [ ]0.035, 0.045, 0.055, 0.065, 0.07, 0.075 . Inset: average relative difference between both kinetics vs. interface thickness. (For interpretation of the re-
ferences to color in this figure caption, the reader is referred to the web version of this paper.)
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which should vanish if the interface is exactly at local equilibrium. Thus, the evolution of F̃ is plotted in Fig. 3 using the
profiles of ϕ̃F at each time step, as illustrated in the inset of Fig. 3. In all cases, a sharp drop is observed at the very beginning
from the initial values corresponding to initial out-of-equilibrium conditions, down to small values corresponding to in-
terfaces close to local equilibrium. The non-zero values observed during the growth process can be attributed to some
residual interface friction (Hillert, 1999; Perevoshchikova et al., 2014). Indeed, as shown in Perevoshchikova (2012) with a
rigorous second-order asymptotics analysis of the model in the pure chemical case, the following relationship holds be-
tween the driving force and the phase field mobility ˜ ϕM provided that the profile of chemical potential μ in the precipitate is
flat:

λ
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with ṽ being the interface velocity, and where the second term on the right hand side is associated with dissipation by trans-
interface diffusion (Hillert, 1999). It must be emphasized that the driving force is evaluated on the precipitate side of the
interface, because it displays a gradient within the diffuse interface when the alloying species mobility M̃ (and D̃) depends
on ϕ. In the particular case of constant D̃, it can be shown that the driving force is constant over the interface up to first
order in λ̃ (Karma and Rappel, 1998) so that the driving force can be related to the interface friction directly, i.e.
˜ = ˜ = ˜ ˜αF F v M/ . Then, the interface friction can be cancelled by a proper choice of the phase field mobility as proposed by Kim
et al. (1999) (Eq. (95)). However, due to the difference in diffusivities of about two order of magnitudes in the present
calculations (Table 1), there remains some residual interface friction linear in ṽ and scaling with λ̃ . With elasticity, even if ϕ̃F
features very different profiles for the Voigt and Reuss schemes as shown in the inset of Fig. 3, the corresponding driving
forces F̃ are nearly the same, in agreement with the formal difference ˜ − ˜

ϕ ϕF F
V R that vanishes like λ̃ (de Rancourt, 2015). This

explains the very good agreement between both schemes in terms of interface conditions and kinetics in the planar case. It
can be noted that because elasticity slows down the growth process, the interface friction is lower than in the chemical case,
but remains of the same order.

To complete the comparison between the Voigt and Reuss homogenization schemes, we have considered the case of a
circular precipitate growing in a supersaturated matrix. Indeed, in this case, two additional contributions due to the in-
terface curvature can modify the interface conditions and consequently the growth kinetics. First, the interface energy
changes the equilibrium concentrations through the Gibbs–Thomson relationship. Second, excess stress and strain can also
be involved in the interface conditions (Johnson and Alexander, 1986). In Fig. 4, the evolution of the precipitate fraction is
plotted for the Voigt and Reuss schemes. Contrary to the planar case, Reuss gives a growth process slightly faster than Voigt,
with a difference in phase fraction of at most 0.2%. When decreasing the interface thickness, both schemes converge toward
the same evolution in between the blue and orange curves. As shown in the inset of Fig. 4, the maximal relative difference
between Reuss and Voigt scales linearly with the interface thickness and vanishes for a sharp interface, as inferred from the
extrapolation of several calculations down to δ̃ = 0. This is in agreement with a second-order asymptotics analysis of a
Fig. 5. Growth kinetics of planar precipitates in an initially supersaturated matrix driven by the diffusion of the alloying species, without elasticity
(squares), with elasticity (dots), and with viscoplastic relaxation (left) in the precipitate, or (right) in the matrix, for different viscosities
˜ ∈ [ ]K 0.1, 1, 5, 18, 50 (from dark blue to turquoise). (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)



Fig. 6. Growth kinetics of planar precipitates in an initially supersaturated matrix driven by the diffusion of the alloying species, without elasticity
(squares), with elasticity (dots), and with viscoplastic relaxation in the matrix for ˜ =K 9 (upper set) and ˜ =K 2 (lower set) and different interface thicknesses
δ̃ : 0.005 (red), 0.01 (green) and 0.025 (blue). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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particular phase field model with elasticity where the deviations from the sharp interface conditions scale linearly with the
interface thickness and involve contributions that are linear in the interface curvature (Appolaire and Le Bouar, 2015).

It can be concluded that the interface conditions delivered by both homogenization schemes are close to each other in
agreement with the corresponding sharp interface conditions in the elastic case. If there is no formal proof that this good
match would be preserved when viscoplasticity is involved, we have nonetheless used only Voigt scheme in the following
investigations for the sake of clarity.

5.2. Influence of viscoplasticity on diffusion-controlled growth kinetics

Next, calculations involving viscoplasticity are performed so as to assess its possible impact on the kinetics of diffusion-
controlled transformations. By comparing to purely chemical and elastic kinetics, we will address an issue which has long
been ignored due to the lack of modeling approach encompassing both phase transformations and plasticity: in what
respect invoking plastic relaxation at high temperature is sufficient to discard any influence of mechanics on the kinetics of
Fig. 7. Profiles of the plastic strain ε∼p
m (dashed line) and ε∼p (continuous line) across the diffuse interface (location x0) at different times (0.2, 11 and 75).

Inset: growth kinetics for the elastic (continuous line) and viscoplastic ( ˜ =K 9, dashed line) cases. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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diffusion-controlled transformations. Moreover, we will take advantage from investigating simple cases to put into evidence
subtle effects related to viscoplasticity in diffuse interfaces. For that purpose, a simple Norton constitutive law is considered
in either α or β phase with parameters in Table 1. It is assumed that all phases are initially elastic, i.e. ε∼ ( ) = ∀x x0,p .
Moreover, it is worth mentioning that within the present framework, the growing phase does not inherit plasticity from the
mother phase, as discussed by Ammar et al. (2014).

First, the growth of a planar viscoplastic precipitate in an elastic matrix is studied. The growth kinetics are plotted in
Fig. 5a with a semi-log scale for different K̃ ranging from 0.1 to 500. They all nearly lie in between the chemical and elastic
kinetics, investigated in the previous section. For large ˜ ≥K 500, the kinetics follows the elastic kinetics. Once the elastic
equilibrium fraction is reached, viscoplastic relaxation induces a slow increase of the precipitate fraction up to the chemical
equilibrium fraction. A quick inspection of the concentration fields (not shown) indicates that, at this stage, the con-
centrations are homogeneous in both phases and evolve according to the interface conditions which are modified by the
plastic strain.

When ˜ ⪅K 5, deviation from the elastic case is observed from the very beginning of the growth process, indicating that the
viscoplasticity relaxation is as fast as the chemical diffusion driving the growth process. For ˜ ⪅K 0.1, the kinetics reaches the
chemical growth kinetics indicating that the viscous effects are negligible and that the plastic relaxation is instantaneous:
this is the regime usually assumed in the diffusion-controlled models used to predict kinetic diagrams of alloys, e.g. Ap-
polaire et al. (2005). The present results clearly show that if this assumption is likely to be valid for slow transformations in
conditions close to equilibrium, it can be questioned for faster transformations where kinetics may be slower than predicted
by conventional model discarding mechanical effects. Moreover, it must be kept in mind that for more complex
morphologies, viscoplasticity may not relax entirely the misfit generated stresses such that the chemical case cannot
constitute the limit case, as shown recently in Cottura et al. (2015).

The opposite case has also been investigated: the growing precipitate remains elastic whereas the matrix is viscoplastic
(Fig. 5b). As in the previous case, the stresses relax very rapidly for ˜ <K 0.1 and the kinetics follows the chemical case. When
increasing the viscosity of the matrix above 5, the growth kinetics starts to follow the elastic kinetics but becomes sur-
prisingly slower than the elastic kinetics at some point: the greater the value of K̃ the later this feature is observed. For K̃
above≈10, this feature is observed after that the elastic equilibrium phase fraction has been reached. Then f decreases below
the elastic equilibrium fraction f¼0.197 down to ≈f 0.183, a value common to all ˜ ⪆K 10. Finally, f increases slowly towards
the chemical equilibrium fraction on a time scale set by the viscoplastic relaxation, as for the viscoplastic precipitates in an
elastic matrix. Actually, the incursions below the limiting curve for pure elasticity are spurious effects due to the diffuse
interface, as shown in Fig. 6 where the same calculations have been performed with different thicknesses, δ̃ = · − −5 10 , 103 2

and · −2.5 10 2. Indeed, for a viscous matrix with large K̃ (>5) featuring a decrease below the elastic equilibrium fraction,
decreasing the interface thickness has a strong impact on the amplitude of the drop. Fortunately, for smaller viscosities,
˜ ≤K 2, associated with characteristic times for viscoplastic relaxation shorter than the growth duration, the influence of the
interface thickness remains negligible. To understand further the origin of this spurious effect, we have inspected the
evolutions of the profiles of ϕF (not shown) between the elastic case and the viscoplastic case with ˜ =K 9: very early in the
growth process, the elastic contribution to ϕF is relaxed within the interface on the precipitate side. This relaxation can be
attributed to the increase in the cumulative plastic strain localized in the diffuse interface on the precipitate side, as shown
in Fig. 7.

Initially, the von Mises equivalent stress is much larger in the precipitate than in the matrix because the initial fraction of
Fig. 8. Snapshots (enlargements of the 4�4 system) of the cumulative equivalent plastic strain (red maximum value¼0.01) at times (1.3e�6, 0.5 and 1.1)
during the diffusion-controlled growth an elastic precipitate in a supersaturated matrix with isotropic viscoplastic behavior. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)



V. de Rancourt et al. / J. Mech. Phys. Solids 88 (2016) 291–319 309
precipitate is small. It is important to recall that, within any phase field framework relying on homogenization, the con-
stitutive laws of a given phase operate in the whole system and not only where this phase is present, as shown in Fig. 7
(dashed lines). Thus, the viscoplastic relaxation associated with the matrix proceeds in the precipitate first. In the simple
case of homogeneous elasticity, the homogenized plastic strain ε∼p simply amounts to ϕ ε¯ ( )∼

βh
p
: the weighting by ϕ¯ ( )h lo-

calizes ε∼p in the diffuse interface on the precipitate side (continuous line in Fig. 7). Then, the peak of plastic strain in the
interface rises faster than the plastic strain in the matrix due to the difference in von Mises stresses (blue and orange
curves): this changes the driving force and slows down the growth kinetics with respect to the pure elastic case. At longer
times, viscoplasticity proceeds also in the matrix and the peak in the interface is overcome, when the kinetics progressively
reaches the chemical curve (red curve). When the matrix displays less viscosity effects, this spurious effect remains minor
because the relaxation in the matrix occurs very early and prevents the peak to be prominent during the transformation. In
the alternative case where the precipitate undergoes viscoplastic relaxation whereas the matrix remains elastic, the same
spurious kinetic effect is likely to be observed in general. But in the present calculations, the fraction of matrix remains
much larger than the fraction of precipitate during the whole growth. Consequently, the von Mises stress remains lower in
the matrix than in the precipitate: viscoplastic relaxation proceeds faster in the precipitate, and the spurious peak is
overcome at the very beginning of growth.

These calculations demonstrate that the coupling of nonlinear constitutive laws with a diffuse interface approach is more
involved than the equivalent homogenization rules in phase field models without mechanics, e.g Kim et al. (1999). Hence, it
seems mandatory to critically analyze any such coupling in simple and well-known situations, as carried out in the present
study. Moreover, it must be emphasized that it is currently not clear if the kind of spurious effects discussed above plagues
only homogenization schemes. Fortunately, from a pragmatic point of view, we have shown that these spurious effects can
be kept within reasonable bounds provided that the viscosity is moderate, such that the time scale for viscoplastic re-
laxation is comparable to or smaller than the time scale for diffusion (in particular for time independent plasticity as
implemented in Ammar et al., 2009b, 2011).

It is also worth mentioning that the spurious effect can be suppressed by imposing ad hoc conditions on the rates of
internal variables, e.g.
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Preliminary calculations have shown that such a scheme can cure the spurious problems although its theoretical founda-
tions remain to be settled rigorously and deserve more extensive investigations deferred to future investigations.

5.3. Influence of viscoplasticity on growth shapes

Finally, the interplay between viscoplasticity and morphological evolutions during the diffusion-controlled growth of
precipitates is investigated. In contrast with recent works addressing issues concerning specific materials and involving
complex situations, such as rafting in Ni-base superalloys (Gaubert et al., 2010; Cottura et al., 2012) or Widmanstätten plate
growth (Cottura et al., 2015), we focus on a simple generic situation by examining the destabilization of a circular precipitate
growing in a supersaturated matrix, which is known to undergo a Mullins–Sekerka morphological destabilization (Mullins
Fig. 9. Snapshots (enlargements of the 4�4 system) of the cumulative equivalent plastic strain (red maximum value¼0.03) at times (1.3e�6, 0.5 and 1.1)
during the diffusion-controlled growth a precipitate with isotropic viscoplastic behavior in an elastic supersaturated matrix. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)



Fig. 10. Snapshots (enlargements of the 4�4 system) of the cumulative equivalent plastic strain (red maximum value¼0.02) at times (2.8e�4, 0.6 and 1.3)
during the diffusion-controlled growth an elastic precipitate in a supersaturated matrix with anisotropic viscoplastic behavior (slip system denoted by A).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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and Sekerka, 1963). It has been shown in Leo and Sekerka (1989) that elasticity may change the critical radius for desta-
bilization, depending on the ratio of shear moduli between the precipitate and the matrix: the destabilization of a hard
precipitate growing inside a soft matrix is delayed whereas the inverse situation is predicted for a soft precipitate in a hard
matrix.

Using the conclusions of the previous section, only moderate viscosities are considered to avoid the spurious effects
associated with the diffuse interface. Moreover, contrary to the previous calculations, a yield stress ˜ =R 0.20 is chosen in the
viscoplastic flow rules so as to comply with the parameters used in the crystal plasticity model (Table 1). Circular misfitting
precipitates of radius ˜ =r 0.150 are located at the center of a 4�4 square matrix supersaturated with =c 0.050 so as to
promote growth. Different combinations of constitutive laws are considered: (i) an elastic precipitate embedded in a matrix
with isotropic viscoplasticity; (ii) a precipitate with isotropic viscoplasticity embedded in an elastic matrix; and (iii) an
elastic precipitate embedded in a matrix endowed with crystal plasticity behavior.

The evolution of the precipitate in the first case is shown in Fig. 8 where the cumulative plastic strain ranges from 0 (light
yellow) to 2% (orange). The precipitate remains circular for the whole growth duration. The plastic strain is localized around
the precipitate in the matrix and is not inherited by the precipitate. Its maximum value, located at the interface, remains
constant, and the radius of the plastic zone increases with the precipitate radius in agreement with the analytical solution
and phase field calculations considering time independent plasticity (Ammar et al., 2011).

In the second case (Fig. 9), the viscoplastic precipitate growing in an elastic matrix undergoes a very different evolution:
the circular shape is rapidly destabilized to give rise to a star shape with four branches aligned with the discretization grid. A
shell of plastic strain develops inside the precipitate close to the interface very early during the growth process. During the
transient stage of destabilization, the increase in plastic strain is slightly lower along the directions of destabilization (lighter
regions in Fig. 9) than in other directions. But rapidly the tips grow at a constant rate along the horizontal and vertical
directions. This is very similar to dendrite growth, observed also at the solid state in alloys with moderate isotropic misfits
partially relaxed by misfit dislocations at the interface, e.g. Husain et al. (1999), mimicked crudely by viscoplasticity in the
present work, see also Appolaire et al. (2010). Note that the unstable modes are selected by the slight anisotropy of interface
energy induced by the discretization grid, e.g. Bösch et al. (1995): indeed, by twisting the square mesh with respect to the
horizontal axis, we have obtained star shaped precipitates with branches no longer aligned horizontally and vertically but
aligned with the mesh (not shown).

The differences between both cases are similar to the differences found by Leo and Sekerka (1989) in the pure elastic case
between hard precipitate in soft matrix and soft precipitate in hard matrix. Indeed, qualitatively, viscoplastic relaxation by a
J2 theory amounts qualitatively to decrease the secant shear modulus, above the yield stress. Then, an elastic precipitate in a
viscoplastic matrix behaves similarly to a hard precipitate in a soft matrix and displays a larger critical radius for mor-
phological destabilization, whereas a viscoplastic circular precipitate behaves like a soft precipitate in an elastic matrix and
destabilizes at a smaller radius. This interpretation is supported by additional calculations, not shown, where strain-
hardening is introduced in the viscoplastic precipitate, and where the destabilization occurs later than without hardening.

Finally, the growth of an elastic precipitate is computed for a matrix that displays anisotropic viscoplasticity along a
single slip system (indicated by letter A in Fig. 10). Very early in the growth process, plastic strain is localized near the
interface in the matrix at 45 with respect to the square box with short horizontal and vertical bands respectively aligned and
perpendicular to the slip direction (slip and kink bands). The resolved shear stress is maximal at this angle around a circular
precipitate with isotropic misfit, e.g. Geslin et al. (2014). The heterogeneous distribution caused by the anisotropy of plastic
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relaxation induces an anisotropic shape evolution with smooth corners developing along the horizontal and vertical di-
rections, where there is no plastic relaxation. This case demonstrates that the symmetries of plastic relaxation can interfere
with the other symmetries that drive the morphology of the microstructures, as already shown in phase field calculations of
rafting in Ni-based superalloys (Gaubert et al., 2010; Cottura et al., 2012). Moreover, it demonstrates that the interplay of
plasticity and diffusion-controlled phase transformations cannot be predicted with simple qualitative arguments: whereas
plasticity promotes growth of a planar interface with respect to elasticity as shown in Section 5.2, it can hinder growth as in
Fig. 10. This complexity which discards any oversimplified arguments based on overall balances, e.g. Embury et al. (2003),
can be related to the indirect influence of mechanics on the morphologies through the boundary conditions of diffusion
driving the evolution processes.
6. Conclusions

A general framework has been established describing diffusion driven phase transformation in elastoviscoplastic mul-
ticomponent materials. It is based on the combination of homogenization and phase field approaches. In contrast to existing
frameworks applied to nonlinear materials, mainly relying on parameter interpolation, it has the advantage that arbitrary
types of material behavior for the different phases can be combined within a consistent thermomechanical theory. The
exploitation of the second law of thermodynamics has been used to motivate two privileged homogenization schemes,
namely the Voigt/Taylor and Reuss/Sachs models, respectively obtained from the consideration of the Helmholtz or Gibbs
free energy density potentials. It extends the strategy initiated by Kim et al. (1999) and limited to the diffusion part of the
model, to the case of nonlinear mechanical behavior of the phases. The thermodynamic consistency of the model ensuring
the positivity of the dissipation rate at each time and each material point was established for a large class of material
behavior, so-called standard generalized materials.

The computational analysis of the model lead to the following main results.

� Voigt and Reuss schemes lead to the same diffusion-controlled growth kinetics of an elastic precipitate within an elastic
matrix at the asymptotic limit of vanishingly small width of the diffuse interface.

� The competition between the characteristic times for chemical diffusion of species and viscoplastic stress relaxation leads
to complex kinetic behaviors compared to the purely chemical and elastic reference cases.

� Viscoplasticity has been shown to play a significant role in the shape bifurcations undergone by growing circular pre-
cipitates, controlling the onset of the Mullins–Sekerka instability.

� Crystal plasticity of the matrix was shown to induce anisotropic growth of the precipitate due to the formation of slip and
kink bands at preferred locations of interfaces.

Even though homogenization phase field models should be designed in such a way that they provide the same sharp
interface asymptotic response, the choice of a specific homogenization scheme in the proposed theory can have a significant
impact on the material response in the following cases. First, in the case of a structured diffuse interface, the homo-
genization scheme should take the morphology of the interface into account (case of a laminate for example). Secondly,
some schemes can exhibit a computational advantage, like improved convergence of an implicit numerical scheme. It is the
case of the Voigt scheme for the implicit finite element method used in the present work in conjunction with a Runge–Kutta
method. Finally, if the phase field model is intended for application at a mesoscopic scale, like that of a polycrystal, so that
thick interfaces are required for computational efficiency, then it is anticipated that the specific choice of the homo-
genization scheme will have a non-negligible effect on kinetics and morphology of phases.

Current applications of the presented theory are dedicated to the modeling of oxide growth in the bulk and in the grain
boundaries of polycrystals. The question of inheritance of plasticity and hardening should also be considered within a
homogenization based phase field approach, as initiated in Ammar et al. (2014). This should however be supported by
relevant experimental data including field measurements of concentration, strain and crystal orientation.
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Appendix A. Finite element implementation

The time evolution of the multiphysical free boundary problem is based on a first-order finite difference time dis-
cretization within a finite element space discretization. The developed elements embed several degrees of freedom, re-
presented by scalar and vector fields, that represent quantities of different physical nature. The evolution of such fields is
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then computed from the constitutive laws obtained in the previous sections, which define the behavior of the material of
interest. At each time step, equilibrium is found by means of an implicit Newton algorithmwhereas the evolution of internal
variables is calculated with an explicit Runge–Kutta algorithm of second order with automatic time stepping.

The natural choice of degrees of freedom regarding finite-element modeling is:

ϕ= { } ( )ucDOF , , , A.1i

but this set is not sufficient to compute all the state laws because αci and βci must be explicitly evaluated. Because (36)

connects αci and βci together, so that αci is then sufficient to evaluate ci, see (1), an appropriate set of degrees of freedom is:
Fig. A1. The Newton algorithm is illustrated in the form of a flow chart for the case of a multiphysical problem containing a phase field ϕ, one or several
concentration fields c and displacements u. The steps located within the dashed gray box call the material behavior, where integrated variables, ther-
modynamic forces along with their derivatives are evaluated at +t dt . Two sets of constitutive laws can be considered that are dependent on the chosen
homogenization scheme, either Voigt and Reuss.
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ϕ= { } ( )α ucDOF , , , A.2i

A.1. Monolithic global resolution of the coupled problem

The time evolution of the multiphysical set of nodal variables is obtained by solving the weak form of the balance
equations (9) and (10), by nullifying their residuals R, defined as the difference between the left and right-hand side of the
weak form of the balance equations, using the Newton algorithm illustrated in Fig. A1.
Fig. A2. Algorithm used in the computation of time integrated variables, thermodynamic forces and derivatives in the case of the Voigt/Taylor approach.
Integrated variables can be used for the control of the global time stepping, e.g. ∫ ̇+

e
t

d dt v
cum must not exceed a given increment for any dt.
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A.2. Local integration of the constitutive equations according to Voigt homogenization scheme

See Fig. A2.
A.3. Local integration of the constitutive equations according to Reuss homogenization scheme

See Fig. A3.
Fig. A3. Algorithm used in the computation of time integrated variables, thermodynamic forces and derivatives in the case of the Reuss/Sachs approach.
The integration of the elastic strain involves external fields such as the order parameter and its derivative, which is known to reduce the accuracy of the
Runge–Kutta scheme.
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Appendix B. Finite element discretization

The numerical approach for the three dimensional finite element modeling of the multiphysical problem is here de-
veloped by first choosing finite elements based on n nodes, each endowed with several degrees of freedom, that can be
either scalar or vector valued. A Gauss integration procedure is performed where integration point values are obtained from
the product of shape functions matrices N, for scalar nodal values and N for vector nodal values, with the nodal values.
Gradients can be computed from the product of the gradient operator B, for scalar nodal values and the deformation matrix
B, for vectorial nodal values, with the nodal values as well. The shape function matrix for scalar valued nodal values:

( )= … … ( )N N N N . B.1k n1

Shape function matrix for vector valued nodal values:

=
… …
… …
… … ( )

⎛

⎝
⎜⎜⎜

⎞
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⎟⎟⎟

N N N
N N N

N N N

N
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

.

B.2

k n

k n

k n

1

1

1

Gradient operator for the gradient of scalar valued nodal values:

=
… …
… …
… … ( )

⎛
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N N N

N N N

N N N
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Gradient operator for the gradient of vector valued nodal values:
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The above gradient operator allow to calculate the symmetric gradient under the form of the Mandel tensor:
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ε
ε
ε
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The stress can then be computed after separating the elastic part of the total strain with the elasticity tensor Λ∼∼
, that can be

here reduced into a 6�6 matrix:

σ εΛ= ( )͠͠ ∼∼ : . B.6e

Balance equations (9) are then evaluated at each element from a Gauss integration procedure:

( )

( )∑ ∑

∑ ∑

∑ ∑

ξ

σ

π ζ( ) ( ){ } − [ ]( )· ( ){ } ( ) = ( ) ( ){ } ( )

̇ ( ) ( ){ } − [ ]( )· ( ){ } ( ) = ( ) ( ){ } ( )

[ ]( )· ( ){ } ( ) = [ ]( )· ( ){ } ( )
( )

∼
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J
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c q N q v q q v W q j r N r v W r

q q W q r r W r

B

B
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,
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The residuals are then defined as follows:
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The multiphysical element has now the following ordering of the degrees of freedom:

ϕ{ }
{ }
{ } ( )
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u
c ,
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which results in the following Jacobian:
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used in the further calculation of the global stiffness matrix, which is not symmetric.
The sub-matrices of J read, regarding the phase field nodal value:
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and, for concentrations:
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and lastly for displacements:
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B.1. Derivatives for the Voigt/Taylor approach

In the Voigt/Taylor approach, π reads:

π ϕ ϕ ϕ= − ̇ − ′( ) − ′( )
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ϕ
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,
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which leads to the following derivatives:
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Then using the state law (31) and (15), it comes:
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The mass balance equation is rewritten taking the mixture rule (1) for ci into account:
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And for the flux (47), (48), (30) and (26):
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Lastly, the Jacobian of the stress reads, recalling that σ σ σ= + ¯
∼ ∼ ∼
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B.2. Derivatives for the Reuss/Sachs approach

The Reuss/Sachs approach differs from the Voigt/Taylor approach for two thermodynamic forces π and σ∼. First π reads:
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Moreover, the stresses are homogeneous, which reads:

σ σ σ= = ( )∼ ∼ ∼
α β B.24

which leads to the following derivatives:
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Finally, the Jacobian of the stress reads:
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