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Preface

For a long time limited computational resources restricted the scale of observation
and modeling of physical systems mostly to one scale in time and space. This modus
operandi was accepted although it was well known that the response at the level of
practical interest is to a large extent determined by processes that occur at scales
which are one to several orders of a magnitude smaller, namely the meso, micro
or even nanoscales. The rapid increase in computer power and the development of
efficient computational methods allow coming closer to the human dream of a con-
tinuous model through all spatial and temporal scales. However seeking solutions
using numerical models simultaneously at the various length scales has proven to be
beyond current computational capabilities. This perception is the starting point for
the development of Multiscale Methods which is currently one of the hot research
topics all over the world. Multiscale Methods either derive properties at the level
of observation by repeated numerical homogenization of more fundamental physical
properties several scales below (upscaling), or they devise concurrent schemes where
those parts of the domain that are of interest are computed with a higher resolution
than parts that are of less interest or where the solution is varying only slowly.

The present volume contains selected papers presented at the International
Colloquium on Multiscale Methods in Computational Mechanics in Rolduc, the
Netherlands, on 11–13 March 2009 (MMCM 2009). The contributions in the first
part address multiscale methods in Computational Fluid Dynamics; in particular
turbulence modeling applying the Variational Multiscale Method is described. The
second part deals with materials having a distinct microstructure such as single- and
poly-crystals, granular materials, aggregates embedded in a matrix, micro-laminates
and nano-composites. Part three focuses on materials and structures and the interac-
tion between their behavior on micro/meso- and macro-scales. Failure of composites
and laminates, material modeling of shotcrete in tunnels, buckling of paperboard on
different scales as well as material and structural optimization are investigated. The
fourth part concentrates on coupled problems and porous media like concrete and
charged hydrated materials.

The mentioned colloquium was organized by the German–Dutch Research Unit
“Multiscale Methods in Computational Mechanics”, in which a group of scientists
in Germany at Universität Stuttgart and TU München and in the Netherlands at TU

ix



x Preface

Delft and TU Eindhoven have joined forces in order to address a variety of problem
areas and computational solution strategies for multiscale methods in mechanics of
structures, materials and flows. This joint project, which serves as a prototype for
research cooperations within Europe, was financially supported by the German Re-
search Foundation (Deutsche Forschungsgemeinschaft, DFG FOG 509), The Neth-
erlands Technology Foundation (STW) and The Netherlands Organization for Sci-
entific Research (NWO). This support is very much appreciated.

We also would like to thank the authors very much for their valuable contribu-
tions. Furthermore our thanks go to Springer for taking over the publication of this
volume in its LNACM series.

January 2010
René de Borst, Technische Universiteit Eindhoven
Ekkehard Ramm, Universität Stuttgart
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The Micromorphic versus Phase Field Approach to
Gradient Plasticity and Damage with Application to
Cracking in Metal Single Crystals

Ozgur Aslan and Samuel Forest

MINES ParisTech, Centre des Matériaux, CNRS UMR 7633
BP 87 91003 Evry Cedex, France; samuel.forest@ensmp.fr

Abstract ��Author, please supply!��

Key words: ��Author, please supply!��

1 Generalized Continua and Material Microstructure

The mechanics of generalized continua represents a way of introducing, in the con-
tinuum description of materials, some characteristic length scales associated with
their microstructure [24]. Such intrinsic lengths and generalized constitutive equa-
tions can be identified in two ways. Direct identification is possible from experi-
mental curves exhibiting clear size effects in plasticity or fracture or from full-field
strain measurements of strongly heterogeneous fields [13]. The effective properties
of such generalized continua can also be derived from scale transition and homogen-
ization techniques by prescribing appropriate boundary conditions on a representat-
ive volume of material with microstructure [5].

The multiplication of generalized continuum model formulations from Cosserat
to strain gradient plasticity in literature may leave an impression of disorder and
inconsistency. Recent accounts have shown, on the contrary, that unifying presenta-
tions of several classes of generalized continuum theories are possible [11, 18]. One
of them, called the micromorphic approach, encompasses most theories incorporat-
ing additional degrees of freedom from the well-established Cosserat, microstretch
and micromorphic continua [9] up to Aifantis and Gurtin strain gradient plasticity
theories.

The objective of this chapter is to present this systematic approach for incorporat-
ing intrinsic lengths in non-linear continuum mechanical models and to illustrate the
efficiency of the method in the case of an anisotropic plasticity and damage model.
The so-called microdamage model takes the crystallography of plasticity and fracture
in metal single crystals.

The micromorphic approach is exposed in Section 2 together with the closely
related phase field approach. Differences and similarities between the micromorphic
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framework and the phase field approach are pointed out following the general frame-
work provided in [17]. A single crystal plasticity and damage model is explored in
Section 3. The finite element implementation and its validation for monotonic crack
growth are shown in the two last sections.

The notations used are the same as the ones given in [11]. For the sake of con-
ciseness, the theory and applications are presented within the framework of small
deformation.

2 Micromorphic Approach

2.1 Thermomechanics with Additional Degrees of Freedom

One starts from an elastoviscoplasticity model formulation within the framework of
the classical Cauchy continuum and classical continuum thermodynamics according
to Germain et al. [16] and Maugin [22]. The material behaviour is characterized by
the reference sets of degrees of freedom and state variables

DOF0 = {u }, ST AT E0 = {ε∼, T , α} (1)

on which the free energy density function ψ may depend. The displacement vector
is u . The strain tensor is denoted by ε∼ whereas α represents the whole set of internal
variables of arbitrary tensorial order accounting for nonlinear processes at work in-
side the material volume element, like isotropic and kinematic hardening variables.
The absolute temperature is T .

Additional degrees of freedom χφ are then introduced in the previous original
model. They may be of any tensorial order and of different physical nature (deform-
ation, plasticity or damage variable). The notation χ indicates that these variables
eventually represent some microstructural features of the material so that we will
call them micromorphic variables or microvariables (microdeformation, microdam-
age, etc.). The DOF and ST AT E spaces are extended as follows:

DOF = {u , χφ}, ST AT E = {ε∼, T , α, χφ, ∇χφ} (2)

Depending on the physical nature of χφ, it may or may not be a state variable. For
instance, if the microvariable is a microrotation as in the Cosserat model, it is not a
state variable for objectivity reasons and will appear in ST AT E only in combination
with the macrorotation. In contrast, if the microvariable is a microplastic equivalent
strain, as in Aifantis model, it can then explicitly appears in the state space.

The virtual power of internal forces is then extended to the power done by the
micromorphic variable and its first gradient:

P (i)(v �,χ φ̇�) = −
∫

D
p(i)(v �,χ φ̇�) dV

p(i)(v �,χ φ̇�) = σ∼ : ∇v � + aχ φ̇� + b · ∇χ φ̇� (3)
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where D is a subdomain of the current configuration � of the body. The Cauchy
stress is σ∼ and a and b are generalized stresses associated with the micromorphic
variable and its first gradient. Similarly, the power of contact forces must be extended
as follows:

P (c)(v �,χ φ̇�) =
∫

D
p(c)(v �,χ φ̇�) dV, p(c)(v �,χ φ̇�) = t · v � + ac χ φ̇� (4)

where t is the traction vector and ac a generalized traction. For conciseness, we do
not extend the power of forces acting at a distance and keep the classical form:

P (e)(v �,χ φ̇�) =
∫

D
p(e)(v �,χ φ̇�) dV, p(e)(v �,χ φ̇�) = ρf · v � (5)

where ρf accounts for given simple body forces. Following Germain [15], given
body couples and double forces working with the gradient of the velocity field, could
also be introduced in the theory. The generalized principle of virtual power with
respect to the velocity and micromorphic variable fields, is presented here in the
static case only:

P (i)(v �,χ φ̇) + P (e)(v �,χ φ̇�) + P (c)(v �,χ φ̇) = 0, ∀D ⊂ �, ∀v �,χ φ̇ (6)

The method of virtual power according to Maugin [21] is used then to derive the
standard local balance of momentum equation:

div σ∼ + ρf = 0, ∀x ∈ � (7)

and the generalized balance of micromorphic momentum equation:

div b − a = 0, ∀x ∈ � (8)

The method also delivers the associated boundary conditions for the simple and gen-
eralized tractions:

t = σ∼ .n , ac = b .n , ∀x ∈ ∂D (9)

The local balance of energy is also enhanced by the generalized micromorphic power
already included in the power of internal forces (3):

ρε̇ = p(i) − div q + ρr (10)

where ε is the specific internal energy, q the heat flux vector and r denotes external
heat sources. The entropy principle takes the usual local form:

−ρ(ψ̇ + ηṪ ) + p(i) − q

T
.∇T ≥ 0 (11)

where it is assumed that the entropy production vector is still equal to the heat vector
divided by temperature, as in classical thermomechanics according to Coleman and
Noll [6]. Again, the enhancement of the theory goes through the enriched power
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density of internal forces (3). The entropy principle is exploited according to classical
continuum thermodynamics to derive the state laws. At this stage it is necessary
to be more specific on the dependence of the state functions ψ, η, σ∼, a, b on state
variables and to distinguish between dissipative and non-dissipative mechanisms.
The introduction of dissipative mechanisms may require an increase in the number of
state variables. These different situations are considered in the following subsections.

2.2 Non-Dissipative Contribution of Generalized Stresses and Micromorphic
Model

Dissipative events are assumed here to enter the model only via the classical mech-
anical part. Total strain is split into elastic and plastic parts:

ε∼ = ε∼
e + ε∼

p (12)

The following constitutive functional dependencies are then introduced:

ψ = ψ̂(ε∼
e, T , α,χφ,∇χφ), σ∼ = σ̂∼(ε∼

e, T , α,χφ,∇χφ), η = η̂(ε∼
e, T , α,χφ,∇χφ)

a = â(ε∼
e, T , α,χφ,∇χφ), b = b̂ (ε∼

e, T , α,χφ,∇χφ) (13)

The entropy inequality (11) can be expanded as(
σ∼ − ρ

∂ψ̂

∂ε∼
e

)
: ε̇∼

e +ρ

(
η + ∂ψ̂

∂T

)
Ṫ +

(
a − ρ

∂ψ̂

∂ χφ

)
χ φ̇ +

(
b − ρ

∂ψ̂

∂∇χφ

)
·∇χ φ̇

+σ∼ : ε̇∼
p − ρ

∂ψ̂

∂α
α̇ − q

T
· ∇T ≥ 0 (14)

Assuming that no dissipation is associated with the four first terms of the previous
inequality, the following state laws are found:

σ∼ = ρ
∂ψ̂

∂ε∼
e
, η = −∂ψ̂

∂T
, X = ρ

∂ψ̂

∂α
(15)

a = ρ
∂ψ̂

∂ χφ
, b = ρ

∂ψ̂

∂∇χφ
(16)

and the residual dissipation is

Dres = Wp − Xα̇ − q

T
.∇T ≥ 0 (17)

where Wp represents the (visco-)plastic power and X the thermodynamic force as-
sociated with the internal variable α. The existence of a convex dissipation potential,
�(σ∼,X) depending on the thermodynamic forces can then be assumed from which
the evolution rules for internal variables are derived, that identically fulfill the en-
tropy inequality, as usually done in classical continuum thermomechanics [16]:

ε̇∼
p = ∂�

∂σ∼
, α̇ = ∂�

∂X
(18)
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Micromorphic Model

After presenting the general approach, we readily give the most simple example
which provides a direct connection to several existing generalized continuum mod-
els. We consider first cases where φ and χφ are observer invariant quantities. The
free energy density function ψ is chosen as a function of the generalized relative
strain variable e defined as:

e = φ −χφ (19)

thus introducing a coupling between macro and micromorphic variables. Assuming
isotropic material behavior for brevity, the additional contributions to the free energy
can be taken as quadratic functions of e and ∇χφ:

ψ(ε∼, T , α,χφ,∇χφ) = ψ(1)(ε∼, T , α) + ψ(2)(e = φ −χφ,∇χφ, T ), with (20)

ρψ(2)(e,∇χφ, T ) = 1

2
Hχ(φ −χφ)2 + 1

2
A∇χφ · ∇χφ (21)

After inserting the state laws (16)

a = ρ
∂ψ

∂χφ
= −Hχ(φ −χφ), b = ρ

∂ψ

∂∇χφ
= A∇χφ (22)

into the additional balance equation (8), the following partial differential equation is
obtained, at least for a homogeneous material under isothermal conditions:

φ =χφ − A

Hχ

�χφ (23)

where � is the Laplace operator. This type of equation is encountered at several
places in the mechanics of generalized continua especially in the linear micro-
morphic theory [7, 9, 23] and in the so-called implicit gradient theory of plasticity
and damage [8, 25, 26]. Note however that this equation corresponds to a special
quadratic potential and represents the simplest micromorphic extension of the clas-
sical theory. It involves a characteristic length scale defined by

l2
c = A

Hχ

(24)

This length is real for positive values of the ratio A/Hχ . The additional material
parameters HX and A are assumed to be positive in this work. This does not exclude
a softening material behaviour that can be induced by the proper evolution of the
internal variables (including φ = α itself).

2.3 Viscous Generalized Stress and Phase Field Model

Generalized stresses can also be associated with dissipation by introducing the vis-
cous part av of a:
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ε∼ = ε∼
e + ε∼

p, a = ae + av (25)

The entropy inequality (11) now becomes
(

σ∼ − ρ
∂ψ̂

∂ε∼
e

)
: ε̇∼

e +ρ

(
η + ∂ψ̂

∂T

)
Ṫ +

(
ae − ρ

∂ψ̂

∂ χφ

)
χ φ̇+

(
b − ρ

∂ψ̂

∂∇χφ

)
·∇χ φ̇

+σ∼ : ε̇∼
p − ρ

∂ψ̂

∂α
α̇ + av χ φ̇ − q

T
· ∇T ≥ 0 (26)

Assuming that no dissipation is associated with the four first terms of the previous
inequality, the following state laws are found:

σ∼ = ρ
∂ψ̂

∂ε∼
e
, η = −∂ψ̂

∂T
, X = ρ

∂ψ̂

∂α
(27)

ae = ρ
∂ψ̂

∂ χφ
, b = ρ

∂ψ̂

∂∇χφ
(28)

and the residual dissipation is

Dres = σ∼ : ε̇∼
p − Xα̇ + av χ φ̇ − q

T
· ∇T ≥ 0 (29)

Evolution rules for viscoplastic strain, internal variables, and the additional degrees
of freedom can be derived from a dissipation potential �(σ∼,X, av):

ε̇∼
p = ∂�

∂σ∼
, α̇ = ∂�

∂X
, χ φ̇ = ∂�

∂av
(30)

Convexity of the dissipation potential then ensures positivity of dissipation rate for
any process.

Note that no dissipative part has been assigned to the generalized stress b since
then exploitation of second principle does not seem to be straightforward. Instead,
the total gradient ∇χφ can be split into elastic and plastic parts, as it will be done in
Section 2.4.

Phase Field Model

The dissipation potential can be decomposed into the various contributions due to
all thermodynamic forces. Let us assume for instance that the contribution of the
viscous generalized stress av is quadratic:

�(σ∼,X, av) = �1(σ∼,X) + �2(a
v), �2(a

v) = 1

2β
av2 (31)

The use of the flow rule (30) and of the additional balance equation (8) then leads to
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β χ φ̇ = av = a − ae = a − ρ
∂ψ̂

∂χφ
= div ρ

∂ψ̂

∂∇χφ
− ρ

∂ψ̂

∂χφ
(32)

One recognizes the Landau–Ginzburg equation that arises in phase field theories.
The previous derivation of Landau–Ginzburg equation is due to Mühlhaus [1] and
Peerlings et al. [17]. The coupling with mechanics is straightforward according to
this procedure and more general dissipative mechanics can be put forward.

2.4 Elasto-Plastic Decomposition of Generalized Strains

Instead of the previous decomposition of generalized stresses, the introduction of
additional dissipative mechanisms can rely on the split of all strain measures into
elastic and plastic parts:

ε∼ = ε∼
e + ε∼

p, χφ =χφe +χφp, κ = ∇χφ = κ e + κ p (33)

The objectivity ofχφ is required for such a unique decomposition to be defined. We
do not require here that

κ e = ∇χφe, κ p = ∇χφp (34)

although such a model also is possible, as illustrated by the gradient of strain theory
put forward in [12]. The Clausius–Duhem inequality then writes
(

σ∼ − ρ
∂ψ̂

∂ε∼
e

)
: ε̇∼

e + ρ

(
η + ∂ψ̂

∂T

)
Ṫ +

(
a − ρ

∂ψ̂

∂ χφ

)
χ φ̇e +

(
b − ρ

∂ψ̂

∂∇χφ

)
· κ̇ e

+σ∼ : ε̇∼
p − ρ

∂ψ̂

∂α
α̇ + aχφ̇p + b · κ̇ p − q

T
· ∇T ≥ 0 (35)

Assuming that no dissipation is associated with the four first terms of the previous
inequality, the following state laws are found:

σ∼ = ρ
∂ψ̂

∂ε∼
e
, η = −∂ψ̂

∂T
, X = ρ

∂ψ̂

∂α
(36)

a = ρ
∂ψ̂

∂ χφe
, b = ρ

∂ψ̂

∂κ e
(37)

and the residual dissipation is

Dres = σ∼ : ε̇∼
p − Xα̇ + aχ φ̇p + b · κ̇ p − q

T
· ∇T ≥ 0 (38)

Evolution rules for viscoplastic strain, internal variables, and the additional degrees
of freedom can be derived from a dissipation potential �(σ∼,X, a, b ):

ε̇∼
p = ∂�

∂σ∼
, α̇ = ∂�

∂X
, χ φ̇p = ∂�

∂a
, κ̇ p = ∂�

∂b
(39)



8 O. Aslan and S. Forest

As a result of the additional balance equation (8) combined with the previous state
laws, the type of derived partial differential equation can be made more specific
by adopting a quadratic free energy potential for b (modulus A) and a quadratic
dissipation potential with respect to a (parameter β). We obtain:

β χ φ̇ = a + β χ φ̇e = div Aκ − div Aκ p + β χ φ̇e (40)

Decompositions of stresses and strains can also be mixed, for instance in the follow-
ing way:

ε∼ = ε∼
e + ε∼

p, a = ae + av, κ = ∇χφ = κ e + κ p (41)

based on which a constitutive theory can be built.

3 Continuum Damage Model for Single Crystals and Its
Regularization

We present here a constitutive model for damaging viscoplastic single crystal be-
haviour aiming at simulating crack initiation and propagation. The micromorphic
approach is then applied to this model in order to obtain a regularized continuum
damage formulation with a view to simulating mesh-independent crack propagation
in single crystals.

3.1 Constitutive Equations

In the proposed crystal plasticity model taken from [20], viscoplasticity and damage
are coupled by introducing an additional damage strain variable ε∼

d , into the strain
rate partition equation:

ε̇∼ = ε̇∼
e + ε̇∼

p + ε̇∼
d (42)

where ε̇∼
e and ε̇∼

p are the elastic and the plastic strain rates, respectively. The flow rule
for plastic part is written at the slip system level by means of the orientation tensor
m∼

s :

m∼
s = 1

2
(n s ⊗ l s + l s ⊗ n s) (43)

where n s is the normal to the plane of slip system s and l s stands for the corres-
ponding slip direction. Then, plastic strain rate reads:

ε̇∼
p =

Nslip∑
s=1

γ̇ sm∼
s (44)

The flow rule on slip system s is a classical Norton rule with threshold.

γ̇ s =
〈 |τ s − xs | − rs

K

〉n

sign(τ s − xs) (45)
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Fig. 1. Illustration of the cleavage and two accommodation systems to be associated to the
crystallographic planes.

where rs and xs are the variables for isotropic and kinematic hardening respectively
and K and n are material parameters to be identified from experimental curves.

Material separation is assumed to take place w.r.t. specific crystallographic
planes, like cleavage planes in single crystals. The word cleavage is written in a
more general sense that its original meaning in physical metallurgy associated with
brittle fracture of non-f.c.c. crystals. In the continuum mechanical model, cleavage
means cracking along a specific crystallographic plane as it is often observed in low
cycle fatigue of f.c.c. crystals like single crystal nickel-base superalloys. The damage
strain ε̇∼

d is decomposed in the following crystallographic contributions:

ε̇∼
d =

Ndamage∑
s=1

δ̇s
cn

s
d ⊗ n s

d + δ̇s
1n

s
d

sym⊗ l s
d1

+ δ̇s
2n

s
d

sym⊗ l s
d2

(46)

where δ̇s , δ̇s
1 and δ̇s

2 are the strain rates for mode I, mode II and mode III crack growth,
respectively and Nd

damage stands for the number of damage planes which are fixed
crystallographic planes depending on the crystal structure. Cleavage damage is rep-
resented by the opening δs of crystallographic cleavage planes with the normal vector
n s . Additional damage systems must be introduced for the in-plane accommodation
along orthogonal directions l s

1 and l s
2, once cleavage has started (Figure 1). Three

damage criteria are associated to one cleavage and two accommodation systems:

f s
c = ∣∣n s

d · σ∼ · n s
d

∣∣ − Y s
c (47)

f s
i =

∣∣∣n s
d · σ∼ · l s

di

∣∣∣ − Y s
i (i = 1, 2) (48)

The critical normal stress Y s for damage decreases as δ increases:

Y s
c = Y s

0 + Hδs
c , Y s

i = Y s
0 + Hδs

i (49)

where Y s
0 is the initial damage stress (usually coupled to plasticity) and H is a negat-

ive modulus which controls material softening due to damage. Finally, evolution of
damage is given by the following equations:
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δ̇s
c =

〈
f s

c

Kd

〉nd

sign
(
n s

d · σ∼ · n s
d

)
(50)

δ̇s
i =

〈
f s

i

Kd

〉nd

sign
(
n s

d · σ∼ · l s
di

)
(51)

where Kd and nd are material parameters.
These equations hold for all conditions except when the crack is closed (δs

c < 0)
and compressive forces are applied (n s

d · σ∼ · n s
d < 0). In this case, damage evolution

stops (δ̇s
c = δ̇s

i = 0), corresponding to the unilateral damage conditions.
Note that the damage variables δ introduced in the model differ from the usual

corresponding variables of standard continuum damage mechanics that vary from 0
to 1. In contrast, the δs are strain-like quantities that can ever increase.

Coupling between plasticity and damage is generated through initial damage
stress Y0 in (49) which is controlled by cumulative slip variable γcum:

γ̇cum =
Nslips∑
s=1

|γ̇ s | (52)

Then, Y0 takes the form:
Y s

0 = σc
n e−dγcum + σult (53)

This formulation suggests an exponential decaying regime from a preferably high
initial cleavage stress value σc

n , to an ultimate stress, σult which is close to but not
equal to zero for numerical reasons and d is a material constant.

This model, complemented by the suitable constitutive equations for viscoplastic
strain, has been used for the simulation of crack growth under complex cyclic loading
at high temperature [19]. Significant mesh dependency of results was found [20].

In the present work, the model is further developed by switching from classical to
microdamage continuum in order to assess the regularization capabilities of a higher
order theory. The coupling of the model with microdamage theory is achieved by
introducing a cumulative damage variable calculated from the damage systems and
a new threshold function Y0(δ, γcum):

δ̇cum =
Nplanes∑

s=1

δ̇s , where δ̇s = |δ̇s
c| + |δ̇s

1| + |δ̇s
2| (54)

Y0 = σc
n e−dγcum−Hδcum + σult (55)

3.2 Microdamage Continuum

The micromorphic medium introduced by Eringen and Suhubi [10] possesses a full
microdeformation field χ

∼
, in addition to the classical displacement field u . Con-

taining additional degrees of freedom and balance equations, the micromorphic con-
tinuum approach can be considered as the main framework for most generalized
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continuum models [11]. Alternative micromorphic variables other than the full strain
tensor can be chosen [2, 11]. The strain gradient effect can for instance be limited to
the damage strain ε∼

d gradient and more specifically to the damage variable δcum

introduced in the previous model and noted here δ for conciseness.
In microdamage theory, the introduced microvariable is a scalar microdamage

parameter χδ:

DOF = {u , χδ} ST RAIN = {ε∼, χ δ,∇ χδ} (56)

The power of internal forces is extended as

p(i) = σ∼ : ε̇∼ + a χ δ̇ + b .∇ χ δ̇ (57)

where generalized stresses a, b have been introduced. The generalized balance equa-
tions are:

div σ∼ = 0, a = div b (58)

The free energy density is taken as a quadratic potential in the elastic strain, damage
δ, relative damage δ − χδ and microdamage gradient ∇χδ:

ρψ = 1

2
ε∼

e : c∼∼
: ε∼

e + 1

2

Ndamage∑
s=1

Hδ2
s + 1

2
χH(δ − χδ)

2 + 1

2
A∇ χδ · ∇ χδ (59)

where H, χH and A are scalar material constants. Then, the elastic response of the
material becomes

σ∼ = ρ
∂ψ

∂ε∼
e

= c∼∼
: ε∼

e (60)

The generalized stresses read

a = ρ
∂ψ

∂ χδ
= − χH(δ − χδ) , b = A∇ χδ (61)

and the driving force for damage can be derived as

Y s = ρ
∂ψ

∂δs
= Hδs + χH(δs − χδ) (62)

The damage criterion is now

f s = ∣∣n s · σ∼ · n s
∣∣ − Y0 − Y s = 0 (63)

Substituting the linear constitutive equations for generalized stresses into the addi-
tional balance equation (58), assuming homogeneous material properties, leads to
the following partial differential equation for the microdamage:

χδ − A

χH
�χδ = δ (64)
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Fig. 2. Comparison between force vs. displacement diagram of a 1D softening rod for linear
and exponential decay.

where the macrodamage δ acts as a source term. Exactly this type of Helmholtz
equation has been postulated in the so-called implicit gradient theory of plasticity
and damage [8, 14, 25, 26], where the microvariables are called non local variables
and where the generalized stresses a and b are not explicitly introduced (see [7, 11]
for the analogy between this latter approach and the micromorphic theory).

The solution of the problem of failure of a 1D bar in tension/compression was
treated in [2]. The characteristic size of the damage zone was shown to be controlled
by the characteristic length corresponding to the inverse of

ω = √|H χH/A(H + χH)| (65)

In comparison with the standard strain gradient approaches [14, 25], microdamage
theory eliminates the final fracture problem without any modification to the damage
function, since there exists no direct coupling between the force stress σ∼ and the
generalized stresses, a and b . For a better representation of a cracked element, we
suggest an exponential drop both for damage threshold Y0 and the modulus A, since
the element should become unable to store energy due to the generalized stresses
when broken (see Figure 2):

Y0 = σc
n e−Hδ + σult , b = Ae−Hδ∇ χδ (66)

4 Finite Element Implementation

4.1 Variational Formulation and Discretization

The variational formulation of the microdamage approach can be derived directly
from the principle of virtual power (57):

∫
�

p(i)dV +
∫

∂�

p(c)dS = 0 (67)
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∫

�

(σ∼ : ε̇∼ + a χ δ̇ + b .∇ χ δ̇)dV +
∫

∂�

(t .u̇ + a χ δ̇)dS = 0 (68)

Finite element discretization of the displacement field u and the microdamage field
χδ takes the following form:

u = Nudu, ∇u = Budu,
χδ = Nδdδ, ∇χδ = Bδdδ (69)

where du and dδ are the nodal degrees of freedom. Nu and Nδ represent the shape
functions and Bu and Bδ stand for their partial derivatives with respect to the co-
ordinates. In this work we use isoparametric quadratic elements for both types of
degrees of freedom.

Finally, the discretized equilibrium equations read:
∫

�

BT
u σ∼dV =

∫
�

Nu
T f dV +

∫
�

Nu
T t dS (70)

∫
�

(Nδ
T a + Bδ

T b )dV =
∫

�

Nδ
T acdS (71)

4.2 Implicit Incremental Formulation

A fully implicit Newton–Raphson incremental formulation is developed for solving
(70, 71). The corresponding time discretization is now introduced. Using the known
values of the state variables ε∼

e(t), υs(t) (integrated from υ̇s = |γ̇ s |),δs
c,i(t), δ

s
cum(t)

for the current time step, the values at t + �t are estimated by a straight forward
linearization procedure.

ε∼
e(t + �t) = �t ε̇∼

e(t + �t)︸ ︷︷ ︸
�ε∼

e

+ε∼
e(t) (72)

υs(t + �t) = �t υ̇s(t + �t) + υs(t) (73)

δs
c,i(t + �t) = �t δ̇s

c,i(t + �t) + δs
c,i(t) (74)

δs
cum(t + �t) = �t δ̇s

cum(t + �t) + δs
cum(t) (75)

The model is implemented into the FE code ZeBuLoN [4], using a θ -method for the
local integration. In order to calculate the state variable increments, the residuals and
their Jacobian are written as follows:

Rε∼
e = �ε∼

e + �ε∼
p + �ε∼

d − �ε∼ (76)

= �εe +
Nslip∑
s=1

m∼
s�υssign(τ s − xs) +

Nplanes∑
s=1

�δs
cn

s
d ⊗ n s

d + �δs
i n

s
d ⊗ l s

di
(77)

Rυs = �υs − �t

〈
�s

K

〉n

(78)
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Rδs
c

= �δs
c − �t

〈
f s

c

Kd

〉nd

sign(n s
d · σ∼ · n s

d) (79)

Rδs
i

= �δi
c − �t

〈
f s

i

Kd

〉nd

sign(n s
d · σ∼ · l s

di
) (80)

Rδs
cum

= �δcum − �

⎛
⎝

Nplanes∑
s=1

∣∣δs
c

∣∣ + ∣∣δs
1

∣∣ + ∣∣δs
2

∣∣
⎞
⎠ (81)

[J ] = ∂{R}
∂{�ν} = 1 − �t

∂{ν̇}
∂{�ν}

∣∣∣∣
t+�t

(82)

where {R}T =
[
Rεe, Rυs , Rδs

c
, Rδs

i
, Rδcum

]
and ν stands for the internal state vari-

ables to be integrated locally. Then, the Jacobian matrix becomes

[J ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Rεe

∂�εe
∂Rεe

∂�υs
∂Rεe

∂�δs
c

∂Rεe

∂�δs
i

∂Rεe

∂�δcum

∂Rυs

∂�εe
∂Rυs

∂�υe
∂Rυs

∂�δs
c

∂Rυs

∂�δs
i

∂Rυs

∂�δcum

∂δs
c

∂�εe
∂δs

c

∂�υe
∂δs

c

∂δs
c

∂δs
c

∂δcum

∂δs
c

∂δcum

∂δs
i

∂�εe

∂δs
i

∂�υe

∂δs
i

∂δs
c

∂δs
i

∂δs
i

∂δs
i

∂δcum

∂δcum

∂�εe
∂δcum

∂�υe
∂δcum

∂�δs
i

∂δcum

∂�δs
c

∂δcum

∂�δcum

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(83)

After convergence, the θ -method allows the calculation of the tangent matrix of the
behaviour. R can be decomposed into two parts as

{R} = {Ri} − {Re} (84)

where Re corresponds to the applied load. After the convergence (i.e. {R} ≈ {0}) an
infinitesimal variation can be applied to the residual equation such as

δ{R} = {0} = δ{Ri} − δ{Re} (85)

which can be rewritten in the form:

δ�νint = [J ]−1 δ{Re} (86)

For the calculation of elastic strain increment, the above relation reads

δ�ε∼
e = J∼∼

eδ�ε∼, δ�σ∼ = C∼∼
: J∼∼

eδ�ε∼ (87)

Note that a consistent tangent matrix can directly be obtained from [C∼∼
: J∼∼

e]. A more

comprehensir presentation of this systematic numerical integration method can be
found in [3].
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Fig. 3. FE mesh of a CT-like specimen created by ZeBuLoN GUI.

Fig. 4. Crack growth in a 2D single crystal CT-like specimen with a single cleavage plane
aligned through the horizontal axis under vertical tension. Field variable δ. (Left) A =
100 MPa·mm2, H = −20000 MPa, χH = 30000 MPa; (Right) A = 150 MPa·mm2,
H = −10000 MPa,χH = 30000 MPa.

5 Numerical Examples

As a 2D example, a single crystal CT-like specimen under tension is analysed. The
corresponding FE mesh is given in Figure 3. Analyses are performed for two different
crack widths, obtained by furnishing different material parameters which control the
characteristic length. The propagation of a crack, corresponding stress fields and the
comparison with classical elastic solutions are given in Figure 5. This comparison
shows that the microdamage model is able to reproduce the stress concentration at
the crack tip except very close to the crack tip where finite stress values are predicted.

Another 2D example, namely a plate under uniaxial tension with several cleav-
age planes, is investigated (see Figure 6). In order to trigger localization, an initial
geometric defect is created on the left edge. First, a cleavage plane is oriented at 30◦
from the horizontal axis. FEA results show that localization path is perfectly match-
ing with the cleavage plane and the size of the localization band is controlled by ω

in (65) (Figure 6, left). Second, two orthogonal cleavage planes are placed with an
orientation of 45◦ from the horizontal axis representing {111} planes. For the former
case, damage is coupled with plasticity and two localization bands merge together
and form a straight crack path which can be considered as a type of ductile crack
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Fig. 5. Evolution of the crack and the stress fields in a CT-like specimen compared with cor-
responding elastic solutions.

Fig. 6. Crack growth in a 2D single crystal block with a single inclined cleavage plane (left)
and two orthogonal planes oriented at 45 degrees (middle and right) under vertical tension
with 10% strain. Field variable δ.

(Figure 6, middle). For the latter case, plasticity is excluded from the calculation and
crack path is allowed to choose its path between the orthogonal planes which results
in a brittle type of crack propagation (Figure 6, right).

In [2], FEA of a CT-like fracture mechanics specimen under tension was con-
sidered. The analysis was done by creating a cleavage plane parallel to the horizontal
axis and the loading was performed from the center of the pin. For a given charac-
teristic length (associated with parameters A = 200 MPa·mm2, H = −16000 MPa,
χH = 50000 MPa), mesh refinement of the specimen lead to a unique fracture curve
and a finite size crack width, as shown in Figure 7 and in the loading curves in [2].
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Fig. 7. Crack growth in a CT-like specimen under tension under vertical tension with 8%
strain. Field variable δ.

6 Conclusion

The proposed systematic treatment of the thermomechanics of continua with addi-
tional degrees of freedom leads to model formulations ranging from micromorphic to
phase field models. In particular, a general framework for the introduction of dissip-
ative processes associated with the additional degrees of freedom has been proposed.
If internal constraints are enforced on the relation between macro and microvariables
in the micromorphic approach, standard second gradient and strain gradient plasticity
models can be retrieved as shown in [11].

As a variant of micromorphic continuum, microdamage continuum and its regu-
larization capabilities for the modelling of crack propagation in single crystals have
been studied. First, a crystallographic constitutive model which accounts for con-
tinuum damage with respect to fracture planes has been presented. Then, the theory
has been extended from classical continuum to microdamage continuum, respect-
ively. It has been shown that the approach can be a good candidate for solving mesh
dependency and the prediction of final fracture. Analytical fits and numerical results
showed that the theory is well suited for FEA and possesses a great potential for the
future modelling aspects. Comparison with available data on crack growth especially
cyclic loading in nickel-based superalloys, will be decisive to conclude on the ability
of the approach to reach realistic prediction of component failure.
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