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The construction of regularization operators
presented in this work is based on the introduction of
strain or damage micromorphic degrees of freedom
in addition to the displacement vector and of their
gradients into the Helmholtz free energy function of
the constitutive material model. The combination of
a new balance equation for generalized stresses and
of the micromorphic constitutive equations generates
the regularization operator. Within the small strain
framework, the choice of a quadratic potential
w.r.t. the gradient term provides the widely used
Helmholtz operator whose regularization properties
are well known: smoothing of discontinuities at
interfaces and boundary layers in hardening
materials, and finite width localization bands in
softening materials. The objective is to review and
propose nonlinear extensions of micromorphic and
strain/damage gradient models along two lines: the
first one introducing nonlinear relations between
generalized stresses and strains; the second one
envisaging several classes of finite deformation model
formulations. The generic approach is applicable
to a large class of elastoviscoplastic and damage
models including anisothermal and multiphysics
coupling. Two standard procedures of extension
of classical constitutive laws to large strains are
combined with the micromorphic approach: additive
split of some Lagrangian strain measure or choice
of a local objective rotating frame. Three distinct
operators are finally derived using the multiplicative
decomposition of the deformation gradient. A new
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feature is that a free energy function depending solely on variables defined in the intermediate
isoclinic configuration leads to the existence of additional kinematic hardening induced by the
gradient of a scalar micromorphic variable.

1. Introduction
Regularization differential or integral operators are widely used in mechanics in order to
smooth discontinuities or restore the well-posedness of boundary-value problems. They are
phenomenologically introduced in convection–diffusion problems of fluid mechanics and heat
transfer [1] and in the damage of solids [2], with close links to filtering techniques in image
analysis [3]. Discontinuous variables like plastic strain in conventional plasticity can be smoothed
at boundaries and interfaces to better reproduce physical deformation mechanisms, or in strain
localization bands in the case of softening mechanical behaviour. Sharp interfaces are replaced
by smooth interfaces in phase field models to simulate moving boundaries and thus avoid
complex front-tracking methods [4–6]. The regularization is used in the two latter cases to obtain
discretization-objective simulations results, i.e. fields that do not depend on the finite element,
finite difference or Fourier grid size.

Various types of regularization methods are available relying on non-local integral operators
[7], gradient formulations [8] or extra-degrees of freedom for smoothing strain or damage fields
[9]. The last two techniques very often involve so-called Helmholtz-type partial differential
equations (PDEs) including a Laplace operator [9] or even bi-Helmholtz operators [10], see
[11] for an anisotropic Helmholtz operator. Diffusion-like operators are used in phase field
models in the form of Ginzburg–Landau or Allen–Cahn equations. Close relations exist between
regularization operators used in continuum damage mechanics and in phase field theory, as
recognized recently [12–15].

The regularization is often seen as a mathematical tool to be introduced into the physical model
in an heuristic or ad hoc manner. It is then presented in the form of computational recipes to
enhance existing algorithms. This is for instance the case of the regularization strategy proposed
for softening plasticity and damage in [9,16–19] where the additional field equations and their
coupling to the physical equations are postulated as PDEs independent of the specific form
of the mechanical constitutive equations. By contrast, thermodynamically based formulations
have been proposed where regularization differential operators are derived from new balance
equations of generalized forces [20–23]. The form of the regularization operator then follows from
the choice of constitutive equations linking generalized stresses and generalized strains and is
not given a priori. In particular, the theories resorting to extra-degrees of freedom and of their
gradients can be formulated within the micromorphic approach to gradient elastoviscoplasticity,
as proposed in [21], the name micromorphic denoting additional strain-like degrees of freedom
describing microstructure evolution according to Mindlin [24] and Eringen & Suhubi [25]. The
proposed procedure is especially useful to derive the form of the regularization operators under
anisothermal or multiphysics conditions [21]. The thermodynamic foundations of phase field
models are well established [26] and a unified thermomechanical formulation is possible to
reconcile the gradient, micromorphic and phase-field model classes [21,27–29].

The enhancement of the free energy density function by gradient terms of strain, damage or
phase-field variables is usually limited to a quadratic contribution leading to a linear relationship
between the generalized stresses and the gradient terms. Most applications are also limited to the
small strain framework. They deal not only with problems of strain and damage localization
in the mechanics of materials and structures, but also more recently with biomechanics and
energy storage [30,31]. The linearized structure of these theories ensures in most cases good
regularization properties of Helmholtz or diffusion operators. The formulation and performance
of such operators in nonlinear cases like non-quadratic dependence or large deformations remain
largely open.
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First, extensions of regularization approaches to finite deformations dealt with the simulation
of strain localization in gradient materials [32,33] or non-local media [34] where Lagrangian
and Eulerian formulations were presented and compared. The approach based on extra-degrees
of freedom was first extended using an Eulerian formulation, a logarithmic elastic strain and
an expression of the Helmholtz equation involving the Laplace operator w.r.t. to the current
configuration [35]. Generalized Helmholtz equations governing micromorphic-like variables
were proposed within the Lagrangian framework in [36,37] with quadratic potentials w.r.t. the
Lagrangian gradient of the extra-degrees of freedom. A constitutive formulation using local
rotating frames, i.e. hypoelastic laws, was developed in [17,38]. The authors in [39] made used
of a multiplicative decomposition of the deformation gradient.

Guidelines for the design of regularization operators at large deformations can be deduced
from a hierarchy of micromorphic and strain gradient constitutive models as proposed in [40–45].
In particular, decompositions of higher order deformation measures into elastic and plastic parts
were proposed. These constitutive settings are more general than the ones targeted in this work.
They aim at the formulation of physically based higher order constitutive equations and not only
at regularization purposes. The aim of the present class of models is different, it concentrates
on regularization operators and therefore focuses on extensions of standard elastoviscoplasticity
models involving strain-like or hardening/softening variable-like additional degrees of freedom.
The enhanced constitutive equations should be kept as simple as possible. In particular,
dissipative contributions of higher order variables are not considered as a first step as such
simplified models already provide powerful regularization properties. More specific dissipative
higher order constitutive equations can be found in [40,41,46] and in the references quoted therein.

Motivations for nonlinear potentials with respect to gradient of the extra-degrees of freedom
stem from recent strain gradient crystal plasticity models making use of rank one, power law or
logarithmic functions of the gradient terms for better description of dislocation behaviour [47–50].
Non-quadratic potentials are seldom in the phase field community. Examples can be found for
the modelling of grain boundary migration and recrystallization [51,52]. Such nonlinear relations
between generalized stresses and gradient terms lead to fundamentally new kinds of differential
operators whose properties are essentially unknown.

The objective of this article is to review and propose nonlinear extensions of previous
micromorphic and strain/damage gradient models along two distinct lines: the first one
introducing nonlinear material relations between higher order stresses and strains; the second
one envisaging different classes of finite deformation formulations of the models. Following both
directions, nonlinear regularization operators, with up to now mostly unknown mathematical
properties, will be exhibited. We insist here on the generic character of the proposed approach,
applicable in a systematic way to a large class of elastoviscoplastic and damage models allowing
for anisothermal and multiphysics coupling.

The original micromorphic approach used to generate Helmholtz-like regularization operators
is first recalled in §2 in the case of scalar and tensor microstrain degrees of freedom. Nonlinear
extensions of the relation between generalized stresses and strains are proposed in §3, still within
the small strain hypothesis. Three methods of extension to finite deformations are presented then:
a fully Lagrangian method in §§4 and 5, the use of local objective rotating frames in §6 and finally
in combination with the multiplicative decomposition of the deformation gradient (§7) which
represents the best-suited method for anisotropic materials. In the final conclusions, the new
contributions of this article are pointed out, together with the limitations and need for future
developments of the approach.

An intrinsic notation is used throughout where zeroth, first, second, third and fourth order
tensors are denoted by a, a, a∼, a� and a≈, respectively. The simple, double and triple contractions are

written ·, : and
..., respectively. The proposed notation can be translated into a direct index one

with respect to an orthonormal Cartesian basis (e1, e2, e3). For example,

a · b = aibi, a∼ : b∼ = aijbij and a�
... b� = aijkbijk
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where repeated indices are summed. Tensor product is denoted by ⊗ and the nabla operator is V.
For example, the component ijk of a∼ ⊗V is aij,k, the comma denoting partial differentiation with

respect to the ith coordinate. In particular, �= V · V is the Laplace operator.

2. The original approach based on quadratic potentials
The micromorphic approach delivering linear Helmholtz-type regularization operators is
illustrated for three kinds of micromorphic degrees of freedom, namely a microstrain tensor in
the spirit of Eringen’s theory, and scalar variables associated with equivalent total or plastic strain
measures, respectively.

(a) Microstrain tensor model
According to Eringen’s and Mindlin’s original approach [24,25], the material point is endowed
with the usual translational degrees of freedom (d.f.), the displacement vector, u, and an
additional microdeformation tensor describing the rotation and distortion of a triad of directors
attached to the microstructure: d.f. = {u, χ

∼
}. The theory is presented here in the case of a symmetric

microstrain tensor χ
∼

following [20,41,53] which is less general than Eringen’s original non-

symmetric microdeformation. The microstrain components χij are generally distinct from those
of the classical small strain tensor εij = (ui,j + uj,i)/2. The method of virtual power is used to
derive the balance equations of the theory, following [54]. The power density of internal forces
is assumed to be the following linear form:

p(i) = σ∼ : ε̇∼ + a∼ : χ̇
∼

+ b
�

... χ̇
∼

⊗ V (2.1)

in the small strain context. The Cauchy stress tensor σ∼ is found to be divergence free in the absence

of body forces. The generalized stress tensors a∼ and b
�

fulfil the following static balance equation:

a∼ = div b
�

= b
�

·V (2.2)

with the associated Neumann boundary conditions b
�

·n = b∼, where the double force distribution

b∼ is prescribed at the boundary of normal n. The dual Dirichlet conditions amount to impose

the microdeformation χ
∼

at the boundary. The boundary conditions provided in this work are not

heuristic, they are derived from the method of virtual power following [54].
The Helmholtz free energy volume density is a function ρψ(ε∼,α, χ

∼
, χ
∼

⊗V) of the strain tensor,

possible internal variables, α, the microdeformation tensor and its gradient.
The entropy principle of thermodynamics is adopted in its local form: p(i) − ρψ̇ ≥ 0.
Substituting the dependency of the free energy function on the chosen state variables leads to

the Clausius–Duhem inequality:⎛
⎝σ∼ −ρ ∂ψ

∂ ε∼

⎞
⎠ : ε̇∼ +

⎛
⎝a∼ −ρ ∂ψ

∂ χ
∼

⎞
⎠ : χ̇

∼
+
⎛
⎝b

�

−ρ ∂ψ

∂ χ
∼

⊗V

⎞
⎠ ... χ̇

∼
⊗ V − ρ

∂ψ

∂α
α̇ ≥ 0. (2.3)

For regularization purposes, it is enough to consider dissipation-free contributions of the higher
order stress, thus adopting the following state laws:

σ∼ = ρ
∂ψ

∂ ε∼
, a∼ = ρ

∂ψ

∂ χ
∼

and b
�

= ρ
∂ψ

∂ χ
∼

⊗V
, (2.4)

the first relation being the classical hyperelastic law. The free energy density is split into two main
contributions:

ψ(ε∼,α, χ
∼

, χ
∼

⊗V) =ψref(ε∼,α) + ψχ (e∼, χ
∼

⊗V), (2.5)

 on April 27, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


5

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150755

...................................................

where ψref refers to any classical reference mechanical model and ψχ to the generalized
contributions including the microdeformation gradient and a constitutive variable e∼, function

of strain, microstrain and/or internal variables, to be specified. An efficient model is obtained by
adopting a quadratic potential ψχ :

ψχ (e∼, χ
∼

⊗V) = 1
2 e∼ : H≈χ : e∼ + 1

2 (χ
∼

⊗V)
... A∼∼∼

... (χ
∼

⊗V), (2.6)

where fourth and sixth rank tensors of higher order moduli have been introduced. The
constitutive choice, e∼ := ε∼ − χ

∼
, leads to a coupling of strain and microstrain tensors in the

constitutive model. The state laws (2.4) are then linear stress–strain relations:

σ∼ = Λ≈ : (ε∼ − ε∼
p) + H≈χ : (ε∼ − χ

∼
), a∼ = − H≈χ : (ε∼ − χ

∼
) and b

�

= A∼∼∼
... χ

∼
⊗V. (2.7)

The classical Hooke tensor Λ≈ has been introduced highlighting the coupling between strain and

microstrain, ε∼
p being the plastic strain tensor in the decomposition ε∼ = ε∼

e + ε∼
p of the total strain

into elastic and plastic parts. The regularization operator is obtained after substitution of the state
laws into the extra-balance equation (2.2):

ε∼ = χ
∼

− H≈
−1
χ : div (A∼∼∼

... χ
∼

⊗V). (2.8)

It can be made more apparent when the simplifications H≈χ = Hχ 1≈, A∼∼∼
= A 1∼∼∼

are adopted, thus

reducing the number of higher order moduli to two, Hχ and A. Then, the PDE (2.8) reduces to

ε∼ = χ
∼

−	2
reg�χ

∼
, εij = χij − 	2

reg�χij, (2.9)

where � is the Laplace operator. The characteristic length, 	reg =√
A/Hχ , arises in the theory.

As a result, the microstrain χ
∼

is solution of the PDE (2.9) of Helmholtz type where the classical

strain tensor acts as a source term. Convexity of the free energy density function is assumed,
thus ensuring the stability of the model. This implies the positivity of the higher order moduli,
Hχ > 0, A> 0. This is an essential property of the model ensuring regularization properties.

In the simplified version, the coupling between strain and microstrain is apparent in the
generalized Hooke law:

σ∼ = Λ≈ : (ε∼ − ε∼
p) − A�χ

∼
. (2.10)

Very high values of the coupling modulus Hχ enforce the internal constraint e∼ ≡ 0, so that

σ∼ = Λ≈ : (ε∼ − ε∼
p) − A� ε∼ . (2.11)

The micromorphic model then reduces to a gradient elasticity model closely related to Aifantis
so-called gradelas model [55,56].

(b) Scalar microstrain
A variant of the previous model consists in reducing the number of extra-degrees of freedom from
6 to 1:

d.f. = {u,χ}, (2.12)

where χ is a scalar microstrain variable. In the microdilatation model described in [41,57,58], this
degree of freedom is related to the trace of Eringen’s microdeformation tensor accounting for
instance for microvoid volume changes. The generalized stresses of the theory then reduce to the

 on April 27, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


6

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150755

...................................................

scalar a and the vector b related by the following extra-balance equation, superseding (2.2):

a = div b (2.13)

with the associated scalar Neumann boundary condition b · n = b and the dual Dirichlet scalar
condition prescribing χ at the boundary.

The two last state laws in (2.4) are replaced by the lower order ones:

a = ρ
∂ψ

∂χ
and b = ρ

∂ψ

∂Vχ
. (2.14)

The proposed more specific form of the free energy potential is

ψ(ε∼,α,χ , Vχ ) =ψref(ε∼,α) + ψχ (e) + ψ∇ (Vχ ), (2.15)

where the relative strain measure e := εeq − χ involves the equivalent strain measure, εeq, function
of the three invariants of the strain tensor ε∼. A quadratic form is

ψ = 1
2 (ε∼ − ε∼

p) : Λ≈ : (ε∼ − ε∼
p) + ψα(α) + 1

2 Hχ (εeq − χ )2 + 1
2 Vχ · A∼ ·Vχ , (2.16)

where ψα related to hardening is left unspecified and can be non-quadratic. Accordingly,

a = −Hχ (εeq − χ ) and b = A∼ ·Vχ (2.17)

so that the scalar microstrain is solution of the following PDE that results from (2.13) and (2.17):

εeq = χ − 1
Hχ

div ρ
∂ψ∇
∂χ

= χ − 1
Hχ

div (A∼ ·Vχ ). (2.18)

In the isotropic case A∼ = A 1∼, the regularization operator then takes the form

Op = 1 − 	2
reg�, with 	2

reg = A
Hχ

. (2.19)

This operator was introduced as early as [9] using such a scalar microstrain variable related to an
equivalent strain measure. The coupling between macro- and microstrain leads to an additional
contribution to the stress tensor in the form

σ∼ = ρ
∂ψ

∂ ε∼
= Λ≈ : (ε∼ − ε∼

p) + Hχ (εeq − χ )
∂εeq

∂ ε∼
. (2.20)

If, for instance, the Euclidean norm of the stress tensor is introduced as an equivalent strain
measure,

εeq =√
ε∼ : ε∼,

∂εeq

∂ ε∼
=

ε∼
εeq

(2.21)

the coupling term in (2.20) is nonlinear.

(c) Scalar plastic microstrain
As an alternative, the following relative strain measure is adopted in equation (2.15): e := p − χ ,
where p is the cumulative plastic strain arising in the plasticity theory in such a way that the
plastic power reads: σ∼ : ε̇∼

p = σeqṗ. The equivalent stress σeq is the stress measure involved in the

yield function:

f (σ∼, p) = σeq − R0 − R(p), R(p) = ρ
∂ψ

∂p
. (2.22)

The cumulative plastic strain p is used here as an internal variable, together with ε∼
p, to model

isotropic hardening in plasticity. The initial yield stress in tension is R0, from (2.22).
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The choice of the following partly quadratic potential

ψ = 1
2 (ε∼ − ε∼

p) : Λ≈ : (ε∼ − ε∼
p) + ψα(p) + 1

2 Hχ (p − χ )2 + 1
2 Vχ · A∼ ·Vχ (2.23)

leads to the following state laws:

σ∼ = Λ≈ : (ε∼ − ε∼
p), R = Rref(p) + Hχ (p − χ ), a = −Hχ (p − χ ) and b = A∼ ·Vχ , (2.24)

where Rref(p) = ρ∂ψα/∂p is the standard hardening law. It is apparent that the classical Hooke
law is unaffected, in contrast with (2.20), whereas the hardening law is modified by the coupling
between plastic macro- and microstrain.

It was noted in [21] that the regularized hardening law (2.24) differs from the function R(χ )
which is obtained by substituting the variable p by the micromorphic/regularized variable χ in
the hardening function, as initially proposed in [59]. This inconsistency leads to difficulties in
combining hardening and softening material behaviour, as recognized in [20,60,61], difficulties
that are settled by adopting the previous thermodynamic framework.

The hardening rule can be related to higher order space derivatives of the plastic microstrain
by combining the state laws (2.24) with the balance equation (2.13):

R = Rref(p) − a = Rref(p) − div b = Rref(p) − A�χ , (2.25)

the latter expression being written for the isotropic case. This PDE is associated with Dirichlet
boundary conditions prescribing the microstrain χ or Neumann conditions giving the flux b · n
at the boundary. Note that the hardening law is valid for hardening or softening materials
depending on the sign of the plastic tangent moduli ∂Rref/∂p. When the internal constraint
e ≡ 0 ⇐⇒ p = χ is enforced, or, equivalently when the penalty modulus Hχ is high enough, the
Laplacian of the cumulative plastic strain itself appears in the hardening rule, which corresponds
to Aifantis celebrated strain gradient plasticity model [56,62]. Strain gradient plasticity there
arises as a limit case of the micromorphic model. Note that the sign of the material parameter A in
(2.25) was heavily debated in heuristically introduced higher order terms in Aifantis-like models.
The present thermodynamic approach requires A> 0 to ensure the convexity of the gradient term
in the free energy, and therefore, the model regularizing power.

When the material point is under plastic loading conditions, the combination of the yield
function (2.22) and of the hardening law (2.25) provides the current value of the equivalent stress
measure

σeq = R0 + Rref(p) − A�χ . (2.26)

Let us give a simple one-dimensional example where σeq is homogeneous. Considering the limit
case e ≡ 0 and a simple linear hardening rule, Rref(p) = Hp, H being the plastic modulus, the
cumulative plastic strain is solution of the differential equation

p′′ = H
A

p + Cst, (2.27)

which delivers two types of solutions depending on the sign of the plastic modulus.

— Hardening materials, H ≥ 0: the plastic field is of hyperbolic/exponential type plus a
possible parabolic contribution coming from the constant term. This model describes size
dependent boundary layer effects related to size effects in the behaviour of metals for
instance. The found size effects are discussed in [63].

— Softening materials, H< 0: the plastic field is of harmonic type in addition to the possible
parabolic contribution. This corresponds to the localization of plastic strain into a band
of finite width in the form of a sinus arch. This regularization property has been
widely used, for instance, in the simulation of strain localization phenomena like shear
banding [39,64].

Both types of solutions arise in the description of propagating localization bands as
encountered in the Lüders phenomenon in steels [65,66]. They illustrate the regularizing
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character of the original model: smoothing of discontinuities at interfaces and boundary layers in
hardening materials, and description of finite width localization bands in softening materials. The
proposed micromorphic approach in the present isotropic version introduces only two additional
parameters. Parameter A can be identified from the scaling laws for size effects in hardening
plasticity or from the characteristic width of strain localization bands for softening behaviour.
The parameter Hχ can be seen as a penalty term high values of which lead to the underlying
gradient model, or as a true micromorphic constitutive parameter that can be identified again to
better describe the size-dependent structural responses, as done in [67] for micromorphic crystal
plasticity. The anisotropic case involving a large number of additional parameters is much more
challenging from the identification perspective. Extended homogenization procedures can be
used to identify the whole set of parameters from the consideration of an underlying periodic
microstructure, as reviewed in [68–70].

3. Nonlinear strain gradient potentials
Recent results in the plasticity of metals have revealed the limitations of a quadratic potential ψ∇
in equation (2.15), especially regarding the scaling of size effects in dislocation plasticity [47–50,63,
71,72]. Two classes of nonlinear potentials are explored below motivated by the latter references.
The motivations come from crystal plasticity theory mainly but the models are developed here
in the context of phenomenological laws for polycrystalline materials. In this section, the specific
form of the studied free energy potential is

ψ(ε∼,α,χ , Vχ ) =ψref(ε∼,α) + 1
2 Hχ (p − χ )2 + ψ∇ (Vχ ), (3.1)

where χ is a plastic microstrain degree of freedom. A normalized anisotropic norm of its gradient
is introduced in Appendix A:

g =
√

g · G∼ · g, with g = 	cVχ (3.2)

involving the characteristic length 	c and a definite positive symmetric second-order tensor G∼
(dimensionless).

(a) Power law potential
The following power law gradient potential is investigated:

ρψ∇ (Vχ ) =μgm =μ	m
c (Vχ · G∼ · Vχ )m/2, (3.3)

where the power m ≥ 1 for reasons of convexity. The elastic shear modulus μ sets the physical
dimension of this energy contribution and 	c is the actual constitutive length of the model,
although other lengths could be defined from the ratio between A =μ	2

c and any combination
of elastic or plastic moduli. The higher order stress b is computed from the hyperelastic law (2.14)

b = ρ
∂ψ∇
∂Vχ

= 	cρ
∂ψ∇
∂g

=μ	cmgm−1NG, (3.4)

where the direction NG is given in Appendix A by equation (A 2). Its divergence enters the balance
equation (2.13) and is computed as

div b =μ	cmgm−2(G∼ +(m − 2)NG ⊗ NG) : (g ⊗ V). (3.5)

The plastic microstrain is then governed by the following PDE defining the differential
operator Op:

a = −Hχ (p − χ ) = div b �⇒ p = χ − 1
Hχ

div b = Op(χ ) (3.6)

and

Op = 1 − mμ	2
c

Hχ
gm−2(G∼ +(m − 2)NG ⊗ NG) : (V ⊗ V). (3.7)
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The operator is anisotropic due to the tensor G∼ and nonlinear because of the presence of NG.

The nonlinearity disappears in the case of a quadratic potential ψ∇ , m = 2, as in §2c. The original
regularization operator (2.19) is retrieved in the isotropic case G∼ = 1∼ for the power m = 2:

Op := 1 − 2μ	2
c

Hχ
�. (3.8)

The case m = 1 is of particular importance as it has been considered at various places in the
literature [47,48,50]:

Op = G∼ − μ	2
c

gHχ
(G∼ −NG ⊗ NG) : (V ⊗ V). (3.9)

The operator is singular at g = 0 due to the non-differentiability of the potentialψ∇ , and additional
regularization techniques must be used in order to perform finite-element simulations in this
context [50,73]. The coupling between plasticity and the micromorphic variables takes place at
the level of the hardening law, with the hardening variable α := p:

R = ρ
∂ψ

∂p
= Rref(p) + Hχ (p − χ ) = Rref(p) − a = Rref(p) − div b. (3.10)

Taking equation (3.5) into account provides the enhanced hardening law:

R = Rref(p) − mμ	cgm−2
(

G∼ +(m − 2)NG ⊗ NG
)

: (g ⊗ V). (3.11)

In the isotropic case, the previous expression specializes to

R = Rref(p) − mμ	2
cgm−2(�+ (m − 2)(N ⊗ N) : (V ⊗ V))χ , (3.12)

where the direction N is the direction of the gradient of the scalar microstrain, according to
equation (A 1). In the previous hardening law (3.12), the usual Laplace term is complemented by
a non-linear contribution that vanishes for m = 2. The special case m = 1 for a rank one potential
ψ∇ leads to the following hardening law deduced from (3.12):

R = Rref(p) − μ	2
cg−1(�− (N ⊗ N) : (V ⊗ V))χ . (3.13)

The norm of the gradient of plastic cumulative plastic strain g can be regarded as the
phenomenological counterpart of the norm of the dislocation density tensor in the physical
crystal plasticity theory. The quadratic case m = 2 was used in strain gradient plasticity as a first
constitutive proposal [74,75]. It turns out that the size effects predicted based on a quadratic
potential are not consistent with results from physical metallurgy [63,67]. The singular case
m = 1 provides consistent scaling laws for the yield stress as a function of channel width in
laminate microstructures [47,50]. In particular, the singular character of the model results in a
size-dependent abrupt increase of the apparent yield stress. By contrast, regular potentials lead to
a size-dependent apparent hardening modulus. The reader is referred to [73] for applications of
the power law model to size effects in hardening crystal plasticity.

(b) Logarithmic potential
Motivated by energy considerations in dislocation theory, several authors have considered
logarithmic functions of scalar dislocation densities or of the norm of the dislocation density
tensor [49,50,71,72]. In the present context of phenomenological metal plasticity, a logarithmic
function of the norm of the gradient of the scalar plastic microstrain is proposed:

ρψ∇ (Vχ ) =μg log
g

eg0
, (3.14)

where log e = 1, g still given by equation (3.2) and g0 is a constant. This function is convex with
respect to g for g ≥ 0, with ψ∇ (0) = 0. It is not differentiable at g = 0. A possible regularization is to
consider that the initial value of g is non-zero, for instance equal to g0. Other regularizing choices

 on April 27, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


10

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150755

...................................................

are possible like the use of a quadratic potential in the interval 0 ≤ g ≤ g0 [50]. The generalized
stress vector

b = ρ
∂ψ

∂Vχ
= 	cρ

∂ψ

∂g
=μ	c

(
log

g
g0

)
NG (3.15)

is directed along vector NG, its norm grows as a logarithmic function of g and vanishes at g = g0.
The divergence of the generalized stress vector follows:

div b = μ	c

g

((
log

g
g0

)
G∼ −

(
log

g
eg0

)
NG ⊗ NG

)
: (g ⊗ V), (3.16)

which leads to the following nonlinear operator:

Op = 1 − μ	2
c

gHχ

((
log

g
g0

)
G∼ −

(
log

g
eg0

)
NG ⊗ NG

)
: (V ⊗ V). (3.17)

In the isotropic case, it becomes

Op = 1 − μ	2
c

gHχ

((
log

g
g0

)
�−

(
log

g
eg0

)
N ⊗ N : V ⊗ V

)
. (3.18)

The enhanced hardening law takes the general form:

R(p,χ ) = Rref(p) − μ	2
cg−1

((
log

g
g0

)
G∼ −

(
log

g
eg0

)
NG ⊗ NG

)
: (V ⊗ V)χ . (3.19)

These nonlinear PDEs are associated with the same Neumann or Dirichlet boundary conditions
as presented in §2c. The physical motivations for the prescription of such boundary conditions
in the context of dislocation plasticity are related to the role of interfaces and passivated free
surfaces as obstacles to dislocation motion (so-called micro-hard Dirichlet conditions). They have
been discussed for instance in [76,77].

(c) One-dimensional example
In the one-dimensional case with a single non-vanishing stress component σ (x) (e.g. simple
tension or shear) and with all variables depending on x only, the plastic microstrain variable
is solution of the following differential equation derived from equation (3.7) for a power-law
potential:

p = χ − m(m − 1)
μ	m

c
Hχ

χ ′m−2χ ′′, (3.20)

where the prime indicates derivation with respect to the single spatial coordinate. The enhanced
hardening rule becomes

R(p,χ ) = Rref(p) − m(m − 1)μ	m
c χ

′m−2χ ′′. (3.21)

In the quadratic case, m = 2, the linear regularization Laplace operator (2.19) and Aifantis-like
model (2.25) are retrieved.

The case m = 1 leads to the condition p = χ and no extra-hardening. This leaves the possibility
of localization of plastic strain and plastic strain gradient in the form of interface dislocations as
discussed in [49,50]. The corresponding singular distribution of plastic microstrain in conjunction
with the relation (3.15) was shown in the latter reference to lead to a size-dependent overall
increase of the apparent yield stress and to no extra-hardening.

The logarithmic potential (3.14), the associated regularization operator (3.18) and the enhanced
hardening law (3.19) are now specialized to the one-dimensional case:

R(p,χ ) = Rref(p) − μ	c

|χ ′|χ
′′. (3.22)

In the absence of classical hardening, i.e. when Rref(p) = R0, a constant initial threshold, the
differential equation, χ ′′ =μ	c|χ ′|, admits exponential solutions with cusps as illustrated in the
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example given in gradient plasticity in reference [49]. The logarithmic potential is inspired from
strain gradient crystal plasticity models emerging from the statistical theory of dislocations [49].
It has the advantage with respect to the m = 1 case that it can account for both enhanced strength
and hardening at small sizes, as demonstrated in [50]. It is expected that similar behaviour can be
obtained from the present isotropic polycrystal model, as suggested by Ohno [48].

4. Micromorphic and gradient hyperelasticity
Nonlinearity arises not only from nonlinear material response but also from the consideration of
finite deformations. The impact of finite strains on regularization operators is largely unexplored.
It is first illustrated in the pure hyperelastic case, leaving aside for a moment the inclusion
of plastic effects. The Lagrangian coordinates of the material points are denoted by X on the
reference configuration Ω0, whereas their positions in the current configuration Ω are called x.
The gradient operators with respect to Lagrangian (reference) and Eulerian (current) coordinates
are denoted by V0 and V, respectively. The deformation gradient is F∼ = 1∼ +u ⊗ V0, where the

displacement vector is the function u(X, t). The initial and current mass density functions are
ρ0(X, t) and ρ(x, t), respectively.

(a) Finite microstrain tensor model
The linear microstrain model discussed in §2a is now extended to the finite deformation case by
applying the general approach presented in [41]. The additional degrees of freedom are the six
components of a microstrain tensor χ

∼
, a second-order symmetric tensor associated with the right

Cauchy–Green strain measure of the micromorphic deformation. Accordingly, the microstrain is
regarded here as a Lagrangian variable. The Lagrangian power density of internal forces takes
the form

p(i)
0 = 1

2 Π∼ : Ċ∼ + a∼0
: χ̇
∼

+ b
�0

... (χ̇
∼

⊗ V0) = Jp(i) (4.1)

p(i) being the Eulerian internal power density and the Jacobian J = det F∼. The right Cauchy–Green

tensor is C∼ = F∼
T · F∼ and Π∼ is the Piola stress tensor. The method of virtual power can be used,

see [41], to show that the generalized Lagrangian stress tensors, a second and a third rank tensor,
fulfil the following balance equation:

Div b
�0

= a∼0
(4.2)

in addition to the balance of momentum equation

Div F∼ ·Π∼ = 0 (4.3)

in the absence of body and inertial forces, the divergence operator Div being computed with
respect to Lagrangian coordinates. The corresponding Eulerian forms of the balance equations are

div σ∼ = 0 and div b
�

= a∼, (4.4)

with the Neumann boundary conditions for tractions and double tractions: t = σ∼ ·n, b∼ = b
�

·n,

involving the normal vector of the current surface element. The relations between the Lagrangian
and Eulerian generalized stress tensors are

a∼0
= J a∼ and b

�0
= J b

�

· F∼
−T. (4.5)

The hyperelastic free energy density function is ψ0(C∼, χ
∼

, χ
∼

⊗V0) and the stress–strain relations

read

Π∼ = 2ρ0
∂ψ0

∂ C∼
, a∼0

= ρ0
∂ψ0

∂ χ
∼

and b
�0

= ρ0
∂ψ0

∂ χ
∼

⊗V0 . (4.6)
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The relative strain tensor e∼ = C∼ − χ
∼

was defined in [41] and measures the difference between

macro- and microstrain.
As an example and straightforward generalization of equation (2.6), the following potential is

proposed:

ρ0ψ0 = ρ0ψref(C∼) + 1
2 Hχ (C∼ − χ

∼
)2 + 1

2 χ
∼

⊗V0 ... A∼∼∼
... χ

∼
⊗V0, (4.7)

where a single penalty modulus Hχ was introduced and where ψref is a standard hyperelastic
strain energy potential (neo-Hookean, etc.). The higher order term involves a sixth-rank tensor
of elasticity moduli which is symmetric and assumed definite positive [70]. The stress–strain
relations (4.6) become

Π∼ = 2ρ0
∂ψref

∂ C∼
+ Hχ (C∼ − χ

∼
), a∼0

= −Hχ (C∼ − χ
∼

) and b
�0

= A∼∼∼
... (χ

∼
⊗V0). (4.8)

Note that the classical hyperelastic relation is complemented by a coupling term involving
the microstrain tensor. Taking the balance equation (4.3) into account, the set of PDEs for the
microstrain components is found to be

C∼ = χ
∼

− 1
Hχ

Div (A∼∼∼
... (χ

∼
⊗V0)). (4.9)

The associated regularization operator is now given in the simplified case where the sixth rank
tensor of higher order moduli is assumed to be the identity multiplied by the single modulus A:

Op = 1∼ − A
Hχ

�0. (4.10)

It involves the Lagrangian Laplace operator �0(•) = (•),KK in a Cartesian frame where capital
indices refer to Lagrange coordinates and the comma to partial derivation. It is linear w.r.t.
Lagrangian coordinates but the full problem is of course highly nonlinear. The associated Eulerian
partial differential operator is nonlinear in the form: χIJ,KK = χIJ,klFkKFlK, where small index letters
refer to the current Cartesian coordinate.

An Eulerian formulation of the proposed constitutive equations is possible. It will be
illustrated in the next section in the case of a scalar microstrain variable for the sake of brevity.

(b) Equivalent microstrain model at finite deformation
The set of degrees of freedom of the proposed model is given by equation (2.12) and contains
a scalar microstrain variable χ (X, t). The latter variable is assumed to be a Lagrangian quantity,
invariant w.r.t. change of observer. The free energy density is a function of the following argument
ψ0(C∼,χ , Vχ ). The corresponding state laws fulfilling the Clausius–Duhem inequality take the

form

Π∼ = 2ρ0
∂ψ0

∂ C∼
, a0 = ρ0

∂ψ0

∂χ
and b0 = ρ0

∂ψ0

∂Vχ
. (4.11)

As an example and straightforward generalization of equation (2.6), the following Lagrangian
potential is proposed:

ρ0ψ0 = ρ0ψref(C∼) + 1
2 Hχ (Ceq − χ )2 + 1

2 V0
χ · A∼ · V0

χ . (4.12)

The microstrain is compared with some equivalent strain measure, Ceq, function of the invariants
of C∼. The stress–strain relations (4.11) become

Π∼ = 2ρ0
∂ψref

∂ C∼
+ Hχ (Ceq − χ )

∂Ceq

∂ C∼
, a0 = −Hχ (Ceq − χ ) and b0 = A∼ · V0

χ (4.13)
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Taking the balance equation a0 = V0 · b0 into account, the PDE governing χ is

Ceq = χ − 1
Hχ

Div (A∼ ·V0
χ ). (4.14)

Let us mention the corresponding isotropic form, when A∼ = A 1∼,

Ceq = χ − A
Hχ

�0χ , (4.15)

where �0 is the Laplace operator with respect to Lagrangian coordinates.
An example of equivalent strain measure which the microstrain is compared with is

Ceq =
√

C∼ : C∼,
∂Ceq

∂ C∼
=

C∼
Ceq

, (4.16)

thus generalizing the model (2.21) to finite strains.
The formulation of a constitutive law based on Eulerian strain measures, B∼ = F∼ · F∼

T and Vχ , is

now envisaged. It relies on the choice of a free energy potential ρψ(B∼,χ , Vχ ). Galilean invariance

of the constitutive law requires that this function fulfils the following conditions:

ψ(Q
∼

· B∼ · Q
∼

T,χ , Q
∼

·Vχ ) =ψ(B∼,χ , ·Vχ ), (4.17)

for all constant orthogonal transformations Q
∼

. This amounts to stating isotropy of the function

ψ . Representation theorems are available for such functions, ψ(B∼,χ , Vχ ) =ψ(B1, B2, B3,χ , ‖Vχ‖),

where the Bi are the eigenvalues of B∼. The Cauchy stress tensor, σ∼, is known then to commute

with B∼ such that

σ∼ : D∼ = (σ∼ · B∼
−1) : (Ḟ∼ · F∼

T) = (B∼
−1 · σ∼) : (F∼ · Ḟ∼

T) = 1
2 (B∼

−1 · σ∼) : Ḃ∼, (4.18)

where the strain rate tensor, D∼ , is the symmetric part of the velocity gradient, Ḟ∼ · F∼
−1.

The hyperelastic state laws then take the form

σ∼ = 2 B∼ ·ρ ∂ψ
∂ B∼

, a = ρ
∂ψ

∂χ
and b = ρ

∂ψ

∂V0
χ

(4.19)

As an example and straightforward generalization of equation (2.6), the following Eulerian
potential is proposed: ρψ = ρψref(B∼) + 1

2 Hχ (Beq − χ )2 + 1
2 AVχ : Vχ , where ψref refers to a

standard isotropic elasticity potential in classical mechanics. Note that Beq = Ceq as B∼ and C∼ share

the same eigenvalues. The state laws (4.19) become

σ∼ = 2ρ
∂ψref

∂ B∼
+ Hχ (Beq − χ )

∂Beq

∂ B∼
, a = −Hχ (Beq − χ ) and b = AVχ . (4.20)

The Eulerian regularization operator follows from (4.4):

Beq = χ − A
Hχ

�χ , (4.21)

where � is the Laplace operator with respect to the Eulerian coordinates.
It is essential to note that the isotropic regularization operators (4.15) and (4.21) are distinct.

For, if the Lagrangian higher order elastic law is linear with respect to the constitutive quantities
involved, the deduced Eulerian law is NOT linear:

b0 = AV0
χ �⇒ b = J−1 F∼ · b0 = AJ−1 B∼ · Vχ (4.22)

so that the Eulerian regularization operator will not be linear, i.e. different from (4.21).
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5. Finite deformation micromorphic elastoviscoplasticity using an additive
decomposition of a Lagrangian strain

The most straightforward extension of the previous framework to viscoplasticity is to introduce
a finite plastic strain measure in the decomposition of a Lagrangian total strain tensor. Such
Lagrangian formulations of elastoviscoplasticity involve the additive decomposition of some
Lagrangian total strain measure into elastic and viscoplastic parts:

E∼h
= h(C∼) = E∼

e
h

+ E∼
p
h . (5.1)

Many choices are possible for the invertible function h with restrictions ensuring that E∼h
is a strain

measure (symmetric, vanishing for rigid body motions, differentiable at 0 so that the tangent is
the usual small strain tensor ε∼, used before, see [78]). Hill’s strain measures are obtained for

power law functions such that E∼m
= (1/m)(C∼

m/2 − 1∼), for m> 0, E∼0
= log C∼

1/2, the latter being

the Lagrangian logarithmic strain. The case m = 2 corresponds to the Green–Lagrange strain
measure for which this finite deformation theory was first formulated by Green and Naghdi,
see [79,80] for the pros and the cons of various such formulations. This Lagrangian formulation
is preferable to Eulerian ones based on corresponding Eulerian strain measures in order not
to limit the approach to isotropic material behaviour [81]. The additive decomposition of the
Lagrangian logarithmic strain is put forward in the computational plasticity strategies developed
in [82,83]. However, there is generally no physical motivation for the selection of one or another
Lagrangian strain measure within this framework. This approach favours one particular reference
configuration for which the corresponding strain is decomposed into elastic and plastic parts,
again without clear physical argument. Changes of reference configuration lead to complex
hardly interpretable transformation rules for the plastic strain variables, see [84] for a comparison
of finite deformation constitutive laws with respect to this issue. Note also that limitations arise
from using a symmetric plastic strain variable E∼

p
h , especially when plastic spin relations are

needed for anisotropic materials [80]. This framework was applied to micromorphic and gradient
plasticity and damage theories in [35,85,86].

A Lagrangian conjugate stress tensor Π∼ h
is defined for each strain measure E∼h

such that

1
2
Π∼ : Ċ∼ = Π∼ h

: Ė∼h
with Π∼ h

= Π∼ :

⎛
⎝ ∂h
∂ C∼

⎞
⎠

−1

. (5.2)

The power density of internal forces is: p(i)
0 = Π∼ h

: Ė∼h
+ a0χ̇ + b0 · V0χ , and the free energy density

function has the following arguments: ψ0(E∼
e
h
,α,χ , K := V0

χ ). The dissipation inequality then

reads⎛
⎝Π∼ h

− ρ0
∂ψ0

∂E∼
e
h

⎞
⎠ : Ė∼

e
h

+
(

a − ρ0
∂ψ0

∂χ

)
χ̇ +

(
b0 − ρ0

∂ψ0

∂V0
χ

)
· K̇ + Π∼ h

: Ė∼
p
h

− ρ0
∂ψ0

∂α
α̇ ≥ 0 (5.3)

from which the following state laws are selected

Π∼ h
= ρ0

∂ψ0

∂E∼
e
h

, a = ρ0
∂ψ0

∂χ
, b0 = ρ0

∂ψ0

∂V0
χ

and R = ρ0
∂ψ0

∂α
. (5.4)

The flow and hardening rules can be determined from the suitable choice of dissipation potential
Ω(Π∼ h

, R):

Ė∼
p
h

= ∂Ω

∂Π∼ h

and α̇= −∂Ω
∂R

. (5.5)
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The existence of such a dissipation potential is not necessary but assumed here for convenience.
Alternative methods of exploitation of the dissipation principle exist for micromorphic continua,
for instance, based on the extended Liu procedure [87,88].

Two straightforward extensions of the micromorphic approach to finite strain viscoplasticity
based on an additive decomposition of a Lagrangian strain measure are proposed

ρ0ψ0 = 1
2 E∼

e
h

: Λ≈ : E∼
e
h

+ ρ0ψ0(α) + Hχ (Eheq − χ )2 + ρ0ψ∇0 (K), (5.6)

where Eheq is an equivalent total strain measure, or, alternatively,

ρ0ψ0 = 1
2

E∼
e
h

: Λ≈ : E∼
e
h

+ ρ0ψ0(α) + Hχ (p − χ )2 + ρ0ψ∇0 (K), (5.7)

where ṗ =
√

2/3Ė∼
p

h
: Ė∼

p

h
is the cumulative plastic strain in the present context. These choices,

respectively, provide the following regularization PDE:

Eheq = χ − Div ρ0
∂ψ0

∂K
or p = χ − Div ρ0

∂ψ0

∂K
. (5.8)

If b0 = AK, then the regularization operator involves the Lagrangian Laplace operator �0 in the
same way as in equation (4.10).

6. Finite deformationmicromorphic viscoplasticity using local objective frames
An alternative and frequently used method to formulate anisotropic elastoviscoplastic
constitutive equations at finite deformations that identically fulfil the condition of Euclidean form
invariance (also called material frame indifference [78]), is to resort to local objective rotating
frames, as initially proposed by Dogui & Sidoroff [89,90]. A local objective rotating frame is
defined by the rotation field Q

∼
(x, t), objective w.r.t. to further change of observer, and taking

different values at different material points and different times:

x† = Q
∼

T(x, t) · x. (6.1)

It is based on the idea that there exists for each material point a privileged observer w.r.t. which
the constitutive law takes a simple form. The method is described in details in [78] and is used in
many commercial finite-element codes with the standard choices: co-rotational frame, such that
W∼

† = Q̇
∼

· Q
∼

T = W∼ , W∼ being the skew-symmetric part of the velocity gradient, and polar frame,

such that Q
∼

(x, t) = R∼(x, t), R∼ being the rotation part in the polar decomposition of the deformation

gradient F∼. The main drawback of this method is the absence of thermodynamic background

since, depending on specific constitutive choices within this framework, a free energy function of
the strain may not exist.

This method is now applied to a micromorphic model including a scalar additional d.f. χ
as in equation (2.12). Extension to higher order tensor-valued additional degrees of freedom is
straightforward. The field equations are still given by (7.6). The stresses w.r.t. the local objective
frames are

σ∼
† := Q

∼
T · σ∼ · Q

∼
, a† = a and b† = Q

∼
T · b. (6.2)

Time-derivation of these relations shows that the rotated stress derivatives are given by

Q
∼

· σ̇∼
† · Q

∼
T = σ̇∼ + σ∼ · W∼

† − W∼
† · σ∼ and Q

∼
· ḃ

† = ḃ − W∼
† · b, (6.3)

i.e. objective derivatives of the corresponding Eulerian stress tensors. If the co-rotational frame
is used, the corresponding time derivative is the Jaumann rate, whereas it is the Green–Naghdi
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stress rate when the polar rotation is used. The same procedure is applied to the strain rates

D∼
† := Q

∼
T · D∼ · Q

∼
and k̇

†
:= Q

∼
T · Vχ̇ . (6.4)

The time integration of the second equation in the rotating frame provides the variable k†. It must
be underlined that k† is NOT equal to Q

∼
T · Vχ . It is NOT the exact material time derivative of a

constitutive variable, in general. The standard procedure then consists in postulating an additive
decomposition of the rotated strain rate into elastic and plastic parts as

D∼
† = ė∼

e + ė∼
p, (6.5)

where the elastic and plastic strain e∼
e and e∼

p, respectively, are solely defined in the rotated frame.

Anisotropic elastic laws are assumed to take the form

σ∼
† = Λ≈ : e∼

e, a = −Hχ (p − χ ) and b† = A∼ ·k†. (6.6)

Time-derivation of these equations and consideration of equation (6.2) show that the elasticity
laws are in fact hypoelastic and that, generally, there does not exist a free energy density function
from which they can be derived [91].

The yield function and the flow rule are formulated within the rotated frame

f (σ∼
†, R) = σ †

eq − R and ė∼
p = ṗ

∂f
∂σ∼

† , (6.7)

where normality is assumed for convenience and the viscoplastic multiplier ṗ is given by some
viscoplastic law. The evolution of internal variables is of the form α̇ = H(α, ė∼

p) for suitable

functions H. The yield radius is chosen as the following expression inspired by the previous
thermodynamically based models: R = Rref(p) − a = Rref − div b.

This extension of the micromorphic approach to finite deformations using rotating frames has
been proposed first by [38] and used by these authors for metal forming simulations involving
regularized damage laws. As a result, the regularization operator can be written as

p = χ − 1
Hχ

div b = χ − 1
Hχ

div (Q
∼

· b†) = χ − 1
Hχ

div (Q
∼

· A∼ · k†). (6.8)

In the isotropic case, A∼ = A 1∼, the regularization operator reduces to

p = χ − A
Hχ

div (Q
∼

· k†). (6.9)

It is worth insisting on the fact that, in general, Q
∼

· k† �= Vχ . Accordingly, the previous equation

does not involve the Laplace operator and the regularization is therefore nonlinear even with
respect to rotated quantities.

Among all choices of rotating frames, the one associated with the logarithmic spin rate tensor
[92] was claimed to be the only one such that, when ė∼

p = 0, the isotropic hypoelastic strain–stress

relation turns out to be hyperelastic. However, this property does not pertain to the general
case ė∼

p �= 0, so that this specific choice does not in general provide any explicit form of the

regularization operator.
Alternative constitutive choices are possible for the higher order stresses if Laplacian operators

are preferred. They amount to restricting the use of the rotating frame only for the classical
elastoviscoplasticity equations and to writing independently, b = AVχ , so that the regularization
operator is expressed in terms of the Eulerian Laplace operator �, see (7.22) in the next section,
or b0 = AV0

χ which leads to the Lagrangian Laplace operator �0, see (7.17) in the next section.
Note that limitations in the formulation of anisotropic plasticity arise from using symmetric

plastic strain variable e∼
p and that generalizations are needed in order to introduce necessary
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plastic spins for materials with microtructures, which is possible within the rotating frame
approach [93].

7. Finite deformation micromorphic elastoviscoplasticity based on the
multiplicative decomposition

The most appropriate thermodynamically based framework for the formulation of finite
deformation anisotropic elastoviscoplasticity relies on the multiplicative decomposition of the
deformation gradient, as settled by Mandel [94]. This method is applied here to a generalized
continuum model again limited to one scalar degree of freedom, χ , in addition to the
displacement vector, u, see (2.12). The gradients of the degrees of freedom can be computed with
respect to the reference or current coordinates:

F∼ = 1∼ + Grad u = 1∼ + u ⊗ V0 (7.1)

and
K = Gradχ = V0

χ , k = gradχ = Vχ = F∼
−T · K = K · F∼

−1. (7.2)

The consideration of microdeformation degrees of freedom of higher order is possible without
fundamental modification of the approach below, see [41].

A multiplicative decomposition is envisaged in this section in the form

F∼ = F∼
e · F∼

p (7.3)

which assumes the existence of a triad of directors attached to the material point in order to
unambiguously define the isoclinic intermediate local configuration, labelled (�) in the sequel,
see [94,95]. The directors are usually related to non-material microstructure directions like lattice
directions in single crystals or fibre directions in composites. The existence of such directors is
required for the formulation of objective anisotropic constitutive equations [78]. The Jacobians of
all contributions in equation (7.3) are denoted by

J = det F∼, Je = det F∼
e, Jp = det F∼

p, J = JeJp and ρ0 = ρ�Jp = ρJ. (7.4)

They are used to relate the mass densities with respect to the three local configurations.
In the present work, the microdeformation gradient K is not split into elastic and plastic

contributions, although it is possible as done in [41], at the expense of additional evolution laws
to be determined and to drastically different regularization operators.

The power density of internal and contact forces are

p(i) = σ∼ : Ḟ∼F∼
−1 + aχ̇ + k · Vχ̇ , ∀x ∈Ω and p(c) = t · v + acχ̇ , ∀x ∈ ∂Ω . (7.5)

The invariance of p(i) with respect to any change of observer requires the Cauchy stress σ∼ to be

symmetric. The scalar microstrain is assumed to be invariant. The application of the method of
virtual power based on the previous densities leads to the following static field and boundary
equations, in the absence of body forces:

div σ∼ = 0, a = div b, ∀x ∈Ω and t = σ∼ ·n, ac = b · n, ∀x ∈ ∂Ω . (7.6)

(a) Lagrangian formulation
The Lagrangian free energy density is a function ψ0(C∼

e,α,χ , K), where C∼
e = F∼

eT · F∼
e is the elastic

strain and α a set of internal variables accounting for material hardening. Note that the usual
elastic strain tensor C∼

e is defined with respect to the intermediate configuration to comply with

standard anisotropic plasticity, whereas K is Lagrangian. The presented formulation is therefore
not purely Lagrangian but rather mixed. The local Lagrangian form of the entropy inequality is
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D0 = p(i)
0 − ρ0ψ̇0 ≥ 0, p(i)

0 = Jp(i). Accounting for the multiplicative decomposition (7.3), the power
of internal forces is expanded as

p(i)
0 = J σ∼ : Ḟ∼ · F∼

−1 + Jaχ̇ + Jb · Vχ̇ = Jp

2
Π∼

e : Ċ∼
e + JpΠ∼

M : Ḟ∼
p · F∼

p−1 + a0 · χ + b0 · K̇, (7.7)

where the Piola stress tensor w.r.t. the intermediate configuration and the Mandel stress tensor
[96] are, respectively, defined as

Π∼
e = JeF∼

e−1 · σ∼ ·F∼
e−T and Π∼

M = C∼
e · Π∼

e = JeF∼
eT · σ∼ ·F∼

e−T. (7.8)

The Lagrangian generalized stresses in (7.7) are a0 = Ja and b0 = JF∼
−1b.

As a result the dissipation rate becomes⎛
⎝ Jp

2
Π∼

e − ρ0
∂ψ0

∂C∼
e

⎞
⎠ : Ċ∼

e +
(

a0 − ρ0
∂ψ0

∂χ

)
χ̇

+
(

b0 − ρ0
∂ψ0

∂K

)
· K̇ + JpΠ∼

M : Ḟ∼
p · F∼

p−1 − ρ0
∂ψ0

∂α
α̇ ≥ 0. (7.9)

The following state and evolution laws ensure the positivity of D0:

Π∼
e = 2ρ�

∂ψ0

∂C∼
e , a0 = ρ0

∂ψ0

∂χ
, b0 = ρ0

∂ψ0

∂K
, R = ρ0

∂ψ0

∂α
(7.10)

and

Ḟ∼
p · F∼

p−1 = ∂Ω

∂Π∼
M (Π∼

M, R), α̇ = −∂Ω
∂R

(Π∼
M, R). (7.11)

Following Mandel [94], a dissipation potential Ω(Π∼
M, R), function of the driving forces for

plasticity, is introduced to formulate the flow and hardening variable evolution rules. If the
dissipation function is convex w.r.t. Π∼

M and concave w.r.t. R, the positivity of dissipation is

ensured. Specific expressions for Ω within the context of viscoplasticity can be found in [78].
As an example, the following free energy potential is proposed:

ρ0ψ0 = 1
2 JpE∼

e : Λ≈ : E∼
e + ρ0ψα(α) + 1

2 Hχ (p − χ )2 + ρ0ψ∇0 (K), (7.12)

where ψα is the appropriate free energy contribution associated with usual work-hardening (not
specified here) and 2E∼

e = C∼
e − 1∼ is the Green–Lagrange elastic strain measure. The microstrain

variable is compared to the cumulative plastic strain variable p defined as

ṗ =
√

2
3 (Ṗ∼ · P∼

−1) : (Ṗ∼ · P∼
−1). (7.13)

According to the state laws (7.10), we obtain

Π∼
e = ρ�

∂ψ0

∂E∼
e = Λ≈ : E∼

e, a0 = −Hχ (p − χ ) and b0 = ρ0
∂ψ∇0

∂K
. (7.14)

The regularization operator then follows from the combination of the previous constitutive
equations with the balance equation (4.2):

p = χ − 1
Hχ

Div
(
ρ0
∂ψ∇0

∂K

)
(7.15)

The specific choice ρ0ψ∇0 (K) = 1
2 K · A∼ ·K leads to a regularization operator that is linear with

respect to Lagrangian coordinates:

p = χ − 1
Hχ

Div (A∼ · Gradχ ), (7.16)
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which involves the Laplacian operator �0 in the isotropic case, i.e. A∼ = A 1∼,

Op = 1 − A
Hχ

�0. (7.17)

The impact on hardening can be seen by choosing, as an example, α= p, according to (7.13), as
an internal variable in (7.12). The dissipation potential Ω can be chosen in such a way that the
residual dissipation takes the form

D0 = JpΠ∼
M : (Ḟ∼

p · F∼
p−1) − ρ0

∂Ψα

∂p
ṗ = JpΠ

M
eq ṗ − Rṗ ≥ 0 (7.18)

with ṗ = ∂Ω/∂f , f (Π∼
M, R) = JpΠ

M
eq − R, where f is the yield function. As a result, the yield stress

R is given by the following enhanced hardening law:

R = ρ0
∂ψ0

∂p
= ρ0

∂ψα

∂p
+ Hχ (p − χ ) = ρ0

∂ψα

∂p
− Div

(
ρ0
∂ψ∇0

∂K

)
. (7.19)

(b) Eulerian formulation
In the Eulerian formulation, the free energy density is taken as a function of k instead of K,
according to (7.2): ψ(C∼

e,χ , k), so that the state laws for generalized stresses become

a = ρ
∂ψ

∂χ
and b = ρ

∂ψ

∂k
. (7.20)

The arguments of the free energy mix the invariant quantities C∼
e,χ and the observer-dependent

variable k. Galilean invariance then requires ψ to be isotropic with respect to k.
The constitutive choice (7.12) is now replaced by

ρψ = 1
2 JE∼

e : Λ≈ : E∼
e + ρψα(α) + 1

2 Hχ (p − χ )2 + ρψ∇ (k). (7.21)

A quadratic potential ψ∇ is necessarily of the form A‖k‖2/2, for objectivity reasons, so that the
regularization operator involves the Laplace operator � w.r.t. Eulerian coordinates:

Op = 1 − A
Hχ

�. (7.22)

If the same viscoplastic yield function f (Π∼
M, R) as in the previous subsection is adopted, the

hardening rule is enhanced as follows:

R = ρ
∂ψ

∂p
= ρ

∂ψα

∂p
+ Hχ (p − χ ) = ρ

∂ψα

∂p
− div b = ρ

∂ψα

∂p
− A�χ . (7.23)

This therefore yields a finite strain generalization of Aifantis strain gradient plasticity model [56].

(c) Formulation using the local intermediate configuration only
In the two previous formulations, Lagrangian or Eulerian generalized strain variables were
mixed with the elastic strain variable C∼

e attached to the intermediate local configuration, as the

arguments of the free energy function. It is possible to assign the free energy function with a
consistent set of arguments solely attached to the intermediate configuration. For that purpose,
a generalized strain K� and generalized stresses a�, b� are now defined on the intermediate local
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configuration:

K� = k · F∼
e = F∼

eT · k = K · F∼
p−1 = F∼

p−T · K (7.24)

and

a� = Jea = J−1
p a0, b� = J−1

p F∼
p · b0 = JeF∼

e−1 · b. (7.25)

The power density of internal forces expressed w.r.t. the intermediate local configuration takes
then the form

p(i)
� = J−1

p p(i)
0 = 1

2 Π∼
e : Ċ∼

e + (Π∼
M + K� ⊗ b�) : Ḟ∼

p · F∼
p−1 + a�χ̇ + b� · K̇�, (7.26)

where p(i)
0 is still given by equation (7.7). To establish this expression, the following relation was

used:

K̇ = F∼
pT · K̇� + Ḟ∼

pT · K�. (7.27)

The dissipation rate density measured w.r.t. the intermediate local configuration is then

D� = p(i)
� − ρ�ψ̇� ≥ 0 (7.28)

The free energy density function is chosen as ψ�(C∼
e,α,χ , K�). As such, it is invariant w.r.t. change

of observer. The Clausius–Duhem inequality is now derived as

⎛
⎝1

2
Π∼

e − ρ�
∂ψ�

∂C∼
e

⎞
⎠ : Ċ∼

e +
(

a� − ρ�
∂ψ�

∂χ

)
χ̇ +

(
b� − ρ�

∂ψ�

∂K�

)
· K̇�

+ (Π∼
M + K� ⊗ b�) : Ḟ∼

p · F∼
p−1 − ρ�

∂ψ�

∂α
α̇ ≥ 0. (7.29)

This expression reveals the existence of a generalized Mandel tensor, Π∼
M + K� ⊗ b�, conjugate

to the plastic deformation rate, that is a function of the classical Mandel stress and of
microdeformation related stress and strain. Positivity of dissipation is ensured by the choice of
the following state laws and plastic flow and hardening rules:

Π∼
e = 2ρ�

∂ψ�

∂C∼
e , a� = ρ�

∂ψ�

∂χ
, b� = ρ�

∂ψ�

∂K�
, R = ρ�

∂ψ�

∂α
(7.30)

and

Ḟ∼
p · F∼

p−1 = ∂Ω

∂(Π∼
M + K� ⊗ b�)

, α̇= −∂Ω
∂R

(7.31)

provided that the dissipation potentialΩ(Π∼
M + K� ⊗ b�, R) displays suitable convexity properties

with respect to both arguments.
The yield criterion is taken as a function f (Π∼

M + K� ⊗ b�, R) =ΠM
eq − R, where the ΠM

eq is an

equivalent stress measure based on the generalized Mandel stress tensor. Choosing α= p, where
p is still given by equation (7.13), the residual dissipation takes the form

D� = (Π∼
M + K� ⊗ b�) : Ḟ∼

p · Fp−1
∼ − Rṗ =ΠM

eq ṗ − Rṗ. (7.32)

Note that the contribution K� ⊗ b� in the generalized Mandel stress acts as a size-dependent
kinematic hardening component which comes in addition to isotropic hardening represented by
R. This is a specific feature of the model formulation w.r.t. the intermediate configuration.
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As an example, a typical form of the free energy density function based on constitutive
variables defined on the intermediate configuration, and hyperelastic laws are

ρ�ψ� = 1
2 E∼

e : Λ≈ : E∼
e + ρ�ψ�(α) + 1

2 Hχ (p − χ )2 + 1
2ρ�ψ�∇ (K�) (7.33)

and

Π∼
e = Λ≈ : E∼

e, a� = −Hχ (p − χ ), b� = ρ�
∂ψ�

∂K�
. (7.34)

These generalized stresses can be inserted into the balance equation

a0 = Div b0 �⇒ Jpa� = Div (JpF∼
p−1 · b�). (7.35)

This provides the form of the regularization operator:

p = χ − 1
JpHχ

Div
(

JpF∼
p−1ρ�

∂ψ�

∂K�

)
. (7.36)

A quadratic dependence of the contribution ρ�ψ�∇ = 1
2 K� · A∼ ·K� leads to the following linear

relationship between b� and K�. However, in that case, the regularization operator (7.36) is
nonlinear and does not involve a Laplace operator, even in the isotropic case A∼ = A 1∼:

b� = AK� �⇒ b = J−1
e A B∼

e · k and b� = JpAC∼
p−1 · k (7.37)

with B∼
e = F∼

e · F∼
eT and C∼

p = F∼
pT · F∼

p. As a result, the hyperelastic relationships for the higher

order stresses are not linear w.r.t. to the associated strain gradient measures.

8. Conclusion
The construction of regularization operators presented in this work is based on the introduction
of strain or damage-like micromorphic degrees of freedom in addition to the displacement vector
and of their gradients into the Helmholtz free energy density function of the constitutive model.
The combination of a new balance equation for generalized stresses and of the micromorphic
constitutive equations generates the wanted regularization operator. Within the small strain
framework, the choice of a quadratic potential w.r.t. the gradient term provides the widely used
Helmholtz operator whose regularization properties are well demonstrated in the literature:
smoothing of discontinuities at interfaces and boundary layers in hardening materials, and
description of finite width localization bands in softening materials. The thermodynamic theory
also predicts the form of the coupling between the standard and micromorphic variables. When
the micromorphic degrees of freedom are related to total strain tensor or equivalent strain
measures, the coupling arises in an extended elasticity law. For microplastic variables, the
elasticity law is unaffected whereas the hardening law is modified.

Non-quadratic potentials w.r.t. the gradient term were proposed including power and
logarithmic laws motivated by recent advances in strain gradient plasticity. They provide new
strongly nonlinear differential operators whose mathematical properties were not explored and
are largely unknown. They were formulated considering anisotropy, as required for applications
to crystalline metals and damaging composites for instance.

The presented extensions to finite deformations show that the regularization operator cannot
be postulated in an intuitive way. It is rather the result of a constitutive choice regarding the
dependence of the free energy function on the gradient term. Purely Lagrangian and Eulerian
formulations are straightforward and lead to Helmholtz-like operators w.r.t. Lagrangian of
Eulerian coordinates. Two alternative standard procedures of extension of classical constitutive
laws to large strains, widely used in commercial finite-element codes, have been combined
with the micromorphic approach. In particular, the choice of local objective rotating frames
leads to new nonlinear regularization operators that are not of the Helmholtz type. Three
distinct operators were proposed within the context of the multiplicative decomposition of the
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deformation gradient. A new feature is that a free energy density function depending on variables
solely defined with respect to the intermediate isoclinic configuration leads to the existence of
additional kinematic hardening induced by the gradient of a scalar micromorphic degree of
freedom.

Note that the results obtained for the micromorphic theory with additional degrees of freedom
are also valid for gradient theories (gradient plasticity or gradient damage) once an internal
constraint is imposed linking the additional degrees of freedom to strain or internal variables.
This amounts to selecting high values of parameter Hχ or introducing corresponding Lagrange
multipliers. The analysis was essentially limited to scalar micromorphic degrees of freedom for
the sake of simplicity, even though tensorial examples were also given. Scalar plastic microstrain
approaches suffer from limitations like indeterminacy of flow direction at cusps of the cumulative
plastic strain in bending, for instance, see [60,97,98]. Those limitations can be removed by the use
of tensorial micromorphic variable (microstrain or microdeformation tensors). The micromorphic
approach is not limited to the gradient of strain-like, damage or phase field variables. It can also
be applied to other internal variables, as demonstrated for hardening variables in [38,99].

It remains that the regularization properties of the derived nonlinear operators are essentially
unknown, except through examples existing in the mentioned literature. For instance, the
Eulerian and Lagrangian variants of the Helmholtz-type equation for scalar micromorphic strain
variables have been assessed recently in [100] giving the advantage to the latter, based on
finite element simulations of specific situations. The regularizing properties of more general
operators should be explored in the future from the mathematical and computational perspectives
in order to select the most relevant constitutive choices that may depend on the type of
material classes.

It may be surprising that the constitutive theory underlying the construction of regularization
operators for plasticity and damage, mainly relies on the enhancement of the free energy density
function instead of the dissipative laws. It is in fact widely recognized that plastic strain gradients,
e.g. associated with the multiplication of geometrically necessary dislocations, lead to energy
storage that can be released by further deformation or heat treatments. However, the limitation
to the enhancement of free energy potential is mainly due to the simplicity of the theoretical
treatment and to the computational efficiency of the operators derived in that way. Dissipative
higher order contributions remain to be explored from the viewpoint of regularization, as
started in [21]. Constitutive models of that kind are already available for plasticity, damage and
fracture [101,102].
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Appendix A. Notations for higher order gradients of a scalar field
Notations are introduced for the normalized gradient of a scalar field φ corresponding to a
micromorphic variable, and also to a phase field: g = 	cVφ, where 	c is a characteristic length
introduced for normalization purposes. The direction of the gradient is given by the vector

N =
g

‖g‖ with ‖g‖ =√
g · g. (A 1)

More generally, an (anisotropic) norm of the gradient is introduced, g =
√

g · G∼ · g, involving

a definite positive symmetric second-order tensor G∼ (dimensionless). The derivative of the

anisotropic norm with respect to g is denoted by NG and computed as

NG := ∂g
∂g

= G∼ · N. (A 2)
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The gradient of the anisotropic norm is calculated in a similar way:

Vg = NG · (g ⊗ V) = NG · 	c(V ⊗ V)φ. (A 3)

The derivative w.r.t. g and the gradient of the anisotropic direction NG are computed as

∂NG

∂g
= 1

g
(G∼ −NG ⊗ NG) (A 4)

and
NG ⊗ V = 1

g
(G∼ −NG ⊗ NG) · Vg = 1

g
(G∼ −NG ⊗ NG)	c(V ⊗ V)φ. (A 5)

In the isotropic case, G∼ = 1∼, g = ‖g‖ and NG = N.
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