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a b s t r a c t 

The objective of this paper is to analyze material instability of a rate–independent smooth elastic-inelastic 

transition model with a finite elastic range. In contrast with standard rate-independent models for met- 

als with a yield surface, the smooth model depends nonlinearly on the total deformation rate tensor so 

analysis of material instability requires special attention. Expressions are developed for the limit load, 

and a uniform homogeneous stress state is perturbed by a shearing velocity gradient to obtain a pertur- 

bation vector that must vanish to maintain equilibrium. It is shown that the mode for instability of this 

perturbation is consistent with Rice’s condition that the traction vector applied to the shearing material 

surface remains stationary. The analytical predictions for example problems are compared with results of 

numerical simulations of localization. 
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. Introduction 

Lubliner et al. (1993) generalized previous work by the first

uthor and developed a rate-independent overstress model with

 smooth elastic-inelastic transition and a finite elastic range

or which the inelastic deformation rate depends linearly on the

tress rate. Their model included both kinematic and isotropic

ardening. This model was generalized for large deformations

n Panoskaltsis et al. (2008) but the function h used in this

eneralization limited attention to sharp elastic-inelastic transi-

ions. Einav (2012) generalized previous hypo-plastic and hyper-

lastic models which predict rate-independent smooth stress-

train curves with no finite elastic range and for which the inelas-

ic deformation rate depends linearly on the total strain rate. It is

lso noted that Kolymbas (1981) considered a constitutive equa-

ion for large deformations of sand which is modeled as a rate-

ndependent material with no finite elastic range and with nonlin-

ar dependence on the rate of deformation tensor. 

Hollenstein et al. (2013, 2015) developed a large deformation

odel which exhibits a smooth elastic-inelastic transition using

verstress with a yield surface. This model can be considered as

 unifying generalization to large deformations of the models in

erzyna (1963) ; Lubliner et al. (1993) ; Panoskaltsis et al. (2008) ;
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inav (2012) since it models both rate-independent and rate-

ependent materials exhibiting: smooth elastic-inelastic transitions

ith finite elastic ranges (like for metals) and smooth stress-strain

urves with no finite elastic ranges (like for soils). In this paper,

his model will be referred to as a smooth model for short. 

The smooth model developed in Hollenstein et al. (2013) is an

ulerian formulation of constitutive equations based on the work

f Eckart (1948) who was the first to propose an evolution equa-

ion directly for an elastic deformation measure which includes an

nelastic deformation rate. In particular, this Eulerian formulation

oes not need definitions for total deformation or inelastic defor-

ation measures. The magnitude of the inelastic deformation rate

n the evolution Eq. (9) is controlled by a scalar function � and its

irection is determined by a symmetric tensor A p that is defined

y an elastic distortional deformation tensor and it independent of

he rate of deformation. In the general form of the smooth model,

he scalar � is specified by 

= (a 0 + b 0 〈 g〉 ) + (a 1 + b 1 〈 g〉 ) ̇ ε , (1)

here a 0 , b 0 , a 1 , b 1 are non-negative constants, g is a yield func-

ion that is independent of rate, the Macaullay brackets 〈 g 〉 are de-

ned by 

 g〉 = max (0 , g) , (2)

nd ˙ ε is the equivalent total distortional deformation rate defined

n (7) . 

The main physical features of this large deformation overstress

mooth model can be discussed with reference to the function �.
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1  
First, it is observed that there are no loading and unloading con-

ditions and the model predicts smooth response for all values of

the constants a 0 , b 0 , a 1 , b 1 . If a 0 = b 0 = 0 , the model predicts rate-

independent response, otherwise it predicts rate-dependent re-

sponse. If b 0 = b 1 = 0 , the model has no finite elastic range, which

is typical of soils, whereas if a 0 = a 1 = 0 , the model has a finite

elastic range, which is typical of metals. Moreover, for this latter

case the model predicts vanishing inelastic deformation rate when

g ≤ 0 and it predicts a smooth elastic-inelastic transition as g be-

comes positive. This smooth response is a more physical represen-

tation of the elastic-inelastic transition in metals than the sharp

transition predicted by the standard yield surface model. Also, in

this paper, attention is limited to the simplest rate-independent

case with a finite elastic range by specifying 

a 0 = b 0 = a 1 = 0 . (3)

Hill (1959) analyzed constitutive equations for solids without a

natural time for which the non-symmetric Piola–Kirchhoff stress

rate ˙ � is related to the rate ˙ F of the deformation gradient by a

fourth order tensor L , such that 

˙ � = L · ˙ F . (4)

This equation describes rate-independent material response when

L is a homogeneous function of order zero in 

˙ F , which can be non-

linear in F . In general, the elastic response in this model is hypoe-

lastic since a strain energy function may not exist. However, suit-

able restrictions can be placed on L to ensure that the elastic re-

sponse in this model is hyperelastic. Hill (1959) also considered a

special case when 

˙ � is determined by the derivative of a potential

function with respect to ˙ F . In particular, Hill (1959) analyzed gen-

eral aspects of uniqueness and stability in this class of materials. 

Rice (1976) used a piecewise linear form of the rate-type con-

stitutive Eq. (4) to study localization of plastic deformation. The

localization mode was determined by the condition that the jump

in the rate of the traction vector applied on a material surface be

stationary to a jump in the rate of deformation given by 

˙ F = 

˙ F 0 + g � N , (5)

where ˙ F 0 is the uniform rate of deformation far from the localiza-

tion, N is the unit normal to the localized material surface in its

reference configuration, g is a vector that needs to be determined

by the analysis and a �b is the tensor product between two vec-

tors a , b . Rice explained that nonlinear dependence of L in (4) on
˙ F 0 can be handled by considering an unlimited number of models

based on different L . 

Since inelastic distortional deformation rate in the smooth

model depends nonlinearly on the current rate of deformation ten-

sor D , the rate of traction applied to the material surface also

depends nonlinearly on D . Consequently, application of Rice’s cri-

terion to the smooth model requires special attention. It will be

shown that if vanishing of the current rate of the traction vector

is used as an instability criterion for the smooth model that this

criterion yields the same conditions for instability as those for in-

stability of a velocity perturbation from a homogeneous static state

with 

˙ F 0 = 0 . 

With regard to rate-independent constitutive equations for met-

als with a yield surface and a finite elastic range it is noted that

Petryk (1992) included inertia in a dynamic analysis of instability

in an incrementally nonlinear continua with a constitutive equa-

tion of the type (4) based on a velocity potential. An important

conclusion of that work is that ”the derived condition for the in-

stability of uniform quasi-static straining does not coincide with

that for instability of equilibrium and both differ in general from

the familiar condition of strong ellipticity loss formulated for the

tangent moduli”. 

Hutchinson and Tvergaard (1981) analyzed shear band forma-

tion in plane strain for kinematic hardening plasticity and for a
lasticity theory based on yield surface corner development. Also,

etryk and Thermann (2002) studied post-critical plastic deforma-

ion using the concept of a representative nonuniform solution in a

omogeneous rate-independent material characterized by an incre-

entally nonlinear corner theory of plasticity. Specifically, indeter-

inacy of a post-critical representative solution was removed by

liminating unstable solution paths. In this regard, it was shown in

 Forest and Rubin, 2016 ) that the smooth model eliminates inde-

erminacy in rate independent crystal plasticity because the model

oes not require loading and unloading conditions. 

With regard to rate-independent constitutive equations for ge-

logical materials with no finite elastic range it is noted that

olymbas (1981) analyzed bifurcation in a constitutive equation for

and with nonlinear dependence on the rate of deformation tensor.

hambon et al. (20 0 0) also conducted an assumed mode bifurca-

ion analysis of a shear band using a nonlinear constitutive equa-

ion of the type (4) that was characterized by ν linear relations, as

uggested by Rice (1976) . 

Additional analysis of questions of loss of uniqueness and sta-

ility of boundary value problems can be found in books like

 Nguyen, 1993; Petryk, 20 0 0; Nguyen, 20 02; Besson et al., 20 09;

igoni, 2012 ). The explicit results provided in these books heavily

ely on the structure of the rate-independent elastoplastic consti-

utive equations, and especially on the existence of a multibranch

angent operator relating the strain rate to the stress rate. 

The main objective of the present work is to consider mate-

ial instability of the rate–independent smooth model. An out-

ine of this paper is as follows. Section 2 presents the basic

quations of the nonlinear Eulerian formulation of inelasticity.

ection 3 presents an analysis of the limit load and Section 4 an-

lyzes material instability by perturbing a homogeneous static

eformation. Section 5 presents another analysis of material in-

tability and Section 6 develops the small deformation equa-

ions. Section 7 discusses analytical results for example problems.

ection 8 presents details of the numerical implementation of the

mall deformation equations and compares the finite element re-

ults with the analytical results for the example problems dis-

ussed in Section 7 . Finally, Section 9 presents a discussion of the

ain results. Details of the tensorial notation used in this paper

an be found in [( Rubin, 2013 ), Ch. 2]. 

. Basic equations of the Eulerian formulation of inelasticity 

This section summarizes the main equations of the nonlinear

ulerian large deformation formulation of inelasticity. Both the

tandard rate-independent model and a smooth elastic-inelastic

ransition model developed in Hollenstein et al. (2013) will be con-

idered. 

A material point is located by x in the present configuration

nd the velocity v is given by 

 = 

˙ x , (6)

here a superposed ( ̇ ) denotes material differentiation with re-

pect to time t . The velocity gradient L , rate of deformation D , de-

iatoric part D 

′′ of D and the effective total distortional strain rate

˙  are defined by 

 = ∂ v /∂ x , D = 

1 

2 

(L + L T ) , L = 

1 

3 

(D · I ) I + L ′′ , 

 

′′ = D − 1 

3 

(D · I ) I , ˙ ε = 

√ 

2 

3 

D 

′′ · D 

′′ = ( 
2 D 

′′ 
3 ̇ ε 

) · D , (7)

here I is the second order unit tensor and A · B = tr (AB 

T ) is the

nner product between two second order tensors ( A , B ). 

Motivated by the work in ( Eckart, 1948; Leonov, 1976; Flory,

961; Rubin and Attia, 1996 ), the Eulerian formulation proposes
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volution equations directly for elastic deformation measures.

pecifically, in the absence of inelastic dilatational rate, the elas-

ic dilatation is equal to the total dilatation J , which is determined

y the evolution equation 

˙ 
 = JD · I , (8) 

nd the elastic distortional deformation is a second order, symmet-

ic, positive-definite, unimodular tensor B 

′ 
e , which is determined

y the evolution equation 

˙ B 

′ 
e = L B 

′ 
e + B 

′ 
e L 

T − 2 

3 

(D · I ) B 

′ 
e − �A p , 

 p = B 

′ 
e −

(
3 

B 

′−1 
e · I 

)
I , � ≥ 0 . (9) 

n this equation, � controls the magnitude of inelastic deformation

ate and A p controls its direction. When � vanishes the response is

lastic and B 

′ 
e is the unimodular part of the left Cauchy-Green de-

ormation tensor so the model reproduces general isotropic elastic

esponse. Also, when loading vanishes with L = 0 and � is posi-

ive, inelastic deformation rate causes B 

′ 
e to approach the identity

ensor, which causes deviatoric stress to vanish. 

Next, introducing the deviatoric distortional elastic strain g ′′ e by

 

′′ 
e = 

1 

2 

B 

′′ 
e , B 

′′ 
e = B 

′ 
e −

1 

3 

( B 

′ 
e · I ) I , (10)

he yield function g can be specified by 

 = 1 − κ

γe 
, γe = 

√ 

3 

2 

g 

′′ 
e · g 

′′ 
e , (11)

here κ is a hardening variable that is determined by an evolution

quation. Although the Eulerian formulation of constitutive equa-

ions does not depend on any measure of inelastic deformation,

ost models introduce an equivalent inelastic deformation rate ˙ ε p .
he term �A p in (9) represents inelastic deformation rate and it

an be shown that when g ′′ e is small this term can be approximated

y �A p ≈ D 

′′ 
p = �g ′′ e , where D 

′′ 
p is an auxiliary tensor. Consequently,

ithin the context of the Eulerian formulation, the equivalent in-

lastic deformation rate ˙ ε p can be approximated by 

˙  p = 

√ 

2 

3 

D 

′′ 
p · D 

′′ 
p = 

2 

3 

�γe , D 

′′ 
p = �g 

′′ 
e , (12)

hich depends only on � and γ e . Then, for simplicity the evolu-

ion equation for κ is specified by 

˙ = 

3 

2 

H ˙ ε p = H�γe , H > −1 , (13)

here H is a constant that controls the rate of hardening if H is

ositive and the rate of softening if H is negative. For latter refer-

nce, it is noted that 

˙ γe 

γe 
= 

3 

4 γ 2 
e 

[
1 

3 

( B 

′ 
e · I ) B 

′′ 
e + B 

′′ 
e B 

′′ 
e −

8 γ 2 
e 

9 

I 

]
· D − � , (14) 

Here, the strain energy � per unit mass is specified for a com-

ressible neo-Hookean material in the form 

0 � = μ
[ 

kU(J) + 

1 

2 

(α1 − 3) 
] 

, α1 = B 

′ 
e · I , k = 

2(1 + ν) 

3(1 − 2 ν) 
, 

(15) 

here ( k μ, μ) are the constant zero-stress bulk and shear moduli,

espectively, ν is Poisson’s ratio, U controls the energy of dilatation,

hich satisfies the restrictions 

(J) ≥ 0 , U(1) = 0 , 
dU 

dJ 
(1) = 0 , 

d 2 U 

dJ 2 
> 0 , 

d 2 U 

dJ 2 
(1) = 1 , 

(16) 
1 is pure measure of elastic distortion and ρ0 is the constant

tress-free reference mass density. In the purely mechanical the-

ry, the integral of the rate of material dissipation D is defined by

he rate of work done on the body minus the rates of kinetic and

train energies, which in local form is given by 

 = T · D − ρ ˙ � ≥ 0 , (17)

nd the Cauchy stress T is determined by the hyperelastic form 

 = −p I + T 

′′ , p = p(J) = −μk 
dU 

dJ 
, T 

′′ = J −1 μB 

′′ 
e , (18)

here use has been made of the conservation of mass to deter-

ine the current mass density ρ

= J −1 ρ0 . (19) 

sing these constitutive equations, the rate of material dissipation

equires 

 = 

1 

2 

J −1 μ�

[
B 

′ 
e · I − 9 

B 

′−1 
e · I 

]
≥ 0 . (20)

hich can be shown to be satisfied for all states of the material

 Rubin and Attia, 1996 ). The restriction (17) for the purely mechan-

cal theory is identical to the restriction in the thermomechanical

heory ( Rubin and Attia, 1996 ) that the rate of material dissipation

θξ ′ ≥ 0 is non-negative when attention is restricted to isothermal

esponse (i.e., θ = constant) and the strain energy function � is

ssumed to be equal to the isothermal Helmholtz free energy. 

Furthermore, it is noted that the evolution equations for the

lastic deformation measures ( J, B 

′ 
e ) determine elastic deformations

rom the zero-stress state of the material given by 

 = 0 for J = 1 , B 

′ 
e = I . (21)

n addition, the evolution Eqs. (8) and (9) are Eulerian in the sense

hat they are insensitive to arbitrariness of: a reference configura-

ion; an intermediate stress-free configuration; a total deformation

easure; and a plastic deformation measure ( Rubin, 2012 ). 

.1. Determination of the stress rate 

With the help of (8), (9), (10) and (18) it can be shown that 

J 

μ
˙ T = ( D · I ) 

(
kJ 2 

d 2 U 

dJ 2 
I− 5 

3 

B 

′′ 
e 

)
+ L B 

′ 
e + B 

′ 
e L 

T − 2 

3 

(
B 

′ 
e · D 

)
I − 2�g 

′′ 
e .

(22) 

f � vanishes then the response is elastic and if � is a homoge-

eous function of order one in the rate D then the response is

ate-independent. Otherwise, the response is rate-dependent. 

Moreover, from (11) it follows that 

∂g 

∂ g 

′′ 
e 

= 

(
3 κ

2 γ 2 
e 

)
g 

′′ 
e . (23) 

onsequently, for this simple model, the rate of inelasticity in

22) is normal to the yield function g in (11) . 

.2. The standard rate-independent model 

For the standard rate-independent model, the derivative of the

ield function is given by 

˙ 
 = 

ˆ g − �g , 

ˆ 
 = 

3 κ

4 γ 3 
e 

[
1 

3 

( B 

′ 
e · I ) B 

′′ 
e + B 

′′ 
e B 

′′ 
e −

8 γ 2 
e 

9 

I 

]
· D , g = 

κ

γe 
+ H . (24)



42 M.B. Rubin and S. Forest / International Journal of Solids and Structures 193–194 (2020) 39–53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

t

v  

M  

e

D  

w

a

N

N  

I  

t  

v  

v  

t  

t  

c  

p

T

T  

T  

(

N

σ

 

a

T

 

M  

i

U  

i  

(

σ  

A

d

 

Then, the loading conditions and the consistency condition are

given by 

� = 0 for (g < 0) and (g = 0 with 

ˆ g ≤ 0) , 

� = 

1 

1 + H 

(
3 

4 κ2 

)[
1 

3 

(
B 

′ 
e · I 

)
B 

′′ 
e + B 

′′ 
e B 

′′ 
e −

8 κ2 

9 

I 

]
· D 

for (g = 0 with 

ˆ g > 0) . (25)

2.3. The smooth transition model 

For the general smooth-transition model

Hollenstein et al. (2013) the function for � is specified by (1) and

in this paper, attention is limited to the simplest rate-independent

case for metals with a finite elastic range by specifying (3) so that

� is given by 

� = b 1 ˙ ε 〈 g〉 . (26)

Then, with the help of (7) , (22) and (26) the stress rate can be

expressed in the form 

J 

μ
˙ T = L B 

′ 
e + B 

′ 
e L 

T + 

(
kJ 2 

d 2 U 

dJ 2 
I � I − 5 

3 

B 

′′ 
e � I 

)
· D − 2 

3 

(I � B 

′ 
e ) · D 

− 2 b 1 〈 g〉 
(

g 

′′ 
e �

2 D 

′′ 
3 ̇ ε 

)
· D , (27)

which shows that the tangent stiffness is not symmetric and that

it depends nonlinearly on D . 

Using either (25) or (26) , the evolution Eqs. (8) , (9) and

(13) predict rate-independent response since they are homoge-

neous of order one in rate. Moreover, they predict elastic response

when the rate of inelasticity � vanishes. 

3. Analysis of the limit load 

To study the limit load, consider the normal component df n of

an element of force d f applied on a material surface with unit nor-

mal n and elemental material area da defined by 

df = Tn da , df n = n · df = T · (n � n ) da . (28)

Using the results that for a material surface 

d (n d a ) 

dt 
= [(D · I ) I − L T ] n da , ˙ n = [(D · n � n ) I − L T ] n , (29)

it follows that a limit load occurs when the material derivative of

df n vanishes 

˙ df n = A · (n � n ) da = 0 , 

A = 

˙ T − LT − TL T + 

[ 
4 

3 

(D · I ) + ( D 

′′ · n � n ) 
] 

T . (30)

In general, the elastic distortional state of the material B 

′ 
e can

be expressed in the form 

B 

′ 
e = 

1 

3 

α1 I + B 

′′ 
e , (31)

where the invariant α1 is defined in (15) . It was shown in

( Rubin and Attia, 1996 ) that for any value of the deviatoric ten-

sor B 

′′ 
e the invariant α1 can be determined by the solution of the

cubic equation which requires B 

′ 
e to be unimodular 

det 

(
1 

3 

α1 I + B 

′′ 
e 

)
= 1 , (32)

with a unique real solution with ( α1 ≥ 3) and ( α1 = 3 for B 

′′ 
e = 0 ).

Moreover, the evolution equation for B 

′′ 
e is obtained by taking the

deviatoric part of (9) to obtain 

˙ B 

′′ 
e = L B 

′ 
e + B 

′ 
e L 

T − 2 

( B 

′ 
e · D ) I − 2 

(D · I ) B 

′′ 
e − �B 

′′ 
e , (33)
3 3 
To analyze the limit load it is convenient to consider the special

ase of uniform proportional loading with the velocity field v and

he uniform velocity gradient L given by 

 = Dx , L = D = 

1 

3 

(D · I ) I + D 

′′ . (34)

ore specifically, the deviatoric rate of deformation D 

′′ and the

lastic distortional deformation B 

′′ 
e are specified by 

 

′′ = 

√ 

3 

2 

˙ ε N 

′′ , B 

′′ 
e = 2 

√ 

2 

3 

γe N 

′′ , (35)

ith N 

′′ being a unit tensor defined by the constant Lode angle β
nd the constant orthonormal triad p i , such that 

 

′′ = 

√ 

2 

3 

[ 
cos 

(
π

6 

+ β
)

p 1 � p 1 + sin (β) p 2 � p 2 

−cos 

(
π

6 

− β
)

p 3 � p 3 

] 
, 

 

′′ · N 

′′ = 1 , −π

6 

≤ β ≤ π

6 

. (36)

n these expressions, the eigenvalues of D 

′′ are defined by ˙ ε and

he eigenvalues of B 

′′ 
e are defined by γ e . Also, the maximum eigen-

alues of D 

′′ and B 

′′ 
e are associated with p 1 and the smallest eigen-

alues are associated with p 3 . Moreover, for β < 0 it is possible

o think of extension in the p 1 direction with compression in the

ransverse p 2 − p 3 plane and for β > 0 it is possible to think of

ompression in the p 3 direction with extension in the transverse

 1 − p 2 plane. 

For proportional loading the constitutive Eq. (18) yields 

 = −p I + J −1 μB 

′′ 
e , 

˙ 
 = −J 

dp 

dJ 
(D · I ) I + J −1 μ

[
−(D · I ) B 

′′ 
e + 

˙ B 

′′ 
e 

]
. (37)

hus, for uniaxial tension in the p 1 direction with ( n = p 1 ) and

 β = −π/ 6 ) it follows that 

 

′′ = 

√ 

2 

3 

[ 
p 1 � p 1 − 1 

2 

( p 2 � p 2 + p 3 � p 3 ) 

] 
, 

= T · (p 1 � p 1 ) = −p + J −1 μB 

′′ 
e · (p 1 � p 1 ) , 

T · (p 2 � p 2 ) = −p + J −1 μB 

′′ 
e · (p 2 � p 2 ) = 0 , (38)

nd 

˙ 
 · (p 2 � p 2 ) = −J 

dp 

dJ 
(D · I ) + J −1 μ[ −B 

′′ 
e + 

˙ B 

′′ 
e ] · (p 2 � p 2 ) = 0 . 

(39)

oreover, for the simple case with U in (15) and p in (18) are spec-

fied by 

 = J − 1 − ln (J) , p = kμ( 
1 

J 
− 1) , (40)

t can be shown using the symbolic program Maple that (38) and

39) yield 

= 

2 μγe 

1 + 

2 γe 

3 k 

, J = 1 + 

2 γe 

3 k 
, D · I = 

(α1 + 2 γe ) ̇ ε − 2�γe 

2 γe + 3 k 
. (41)

lso, it can be shown using (30) that the limit load requires 

˙ f n = 

kμ[(9 kα1 + 4 α1 γe − 4 γ 2 
e ) ̇ ε − 2�γe (9 k + 4 γe )] da 

(3 k + 2 γe ) 2 
= 0 , 

(42)
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hich can be solved to obtain 

�γe = α1 

[
1 − 4 γ 2 

e 

α1 (9 k + 4 γe ) 

]
˙ ε . (43) 

n addition, the solution of (32) for uniaxial tension in the p 1 di-

ection is given by 

1 = A + 

4 γ 2 
e 

A 

, A = 

1 

2 

(
108 − 64 γ 3 

e + 12 

√ 

81 − 96 γ 3 
e 

)1 / 3 

. 

(44) 

.1. The standard model 

For the standard rate-independent model with ( γe = κ) during

oading, (25) yields 

�κ = α1 

(
1 + 

2 κ
α1 

1 + H 

)
˙ ε , (45) 

o that (43) requires 

1 + 

2 κ

α1 

1 + H 

= 1 − 4 κ2 

α1 (9 k + 4 κ) 
, (46) 

here α1 ( κ) is determined by substituting ( γe = κ) in (44) . 

.2. The smooth model 

For the rate-independent smooth model, � is given by (26) so

or loading (43) requires 

e − κ = 

α1 

2 b 1 

[
1 − 4 κ2 

α1 (9 k + 4 κ) 

]
, (47) 

here α1 ( γ e ) is given by (44) . Although H does not appear explic-

tly in this expression, the values of ( γ e , κ) are coupled by integra-

ion of the evolution equations, which depend on H . 

. Analysis of localization by perturbing a homogeneous 

eformation 

This section considers small perturbations superimposed on a

omogeneous deformation. In all cases, inertia and external body

orces are neglected for simplicity. Specifically, consider a deforma-

ion characterized by uniform homogeneous fields for which 

 J/∂ x = 0 , ∂ B 

′ 
e /∂x = 0 , ∂ T /∂ x = 0 , ∂ κ/∂ x = 0 , L = 0 . 

(48) 

n particular, this state satisfies equilibrium 

iv T = ∂ T /∂ x · I = ∂ T /∂ X · F −T = 0 , (49)

here X is the location of a material point in a fixed reference

onfiguration and F is the deformation gradient from the reference

o the present configuration. Moreover, using the fact that 

d 

dt 
(F −1 ) = −F −1 L , (50)

he material derivative of (49) yields 

d 

dt 
( div T ) = ∂ ̇ T /∂X · F −T − ∂T /∂X · L T F −T 

= ∂ ̇ T /∂x · I − ∂T /∂x · L T . (51) 

onsequently, instantaneously the equation for maintaining equi-

ibrium about this homogeneous state reduces to 

d 
( div T ) = ∂ ̇ T /∂x · I = 0 . (52)
dt 
Next, using (22) it follows that for the uniform state (48) , the

nstantaneous equilibrium Eq. (52) requires [
kJ 2 

d 2 U 

dJ 2 
I − 5 

3 

B 

′′ 
e −

2 

3 

( B 

′ 
e · I ) I 

]
∂(D · I ) /∂x 

+ ( ∂ L /∂ x ) · B 

′ 
e + B 

′ 
e 

(
LT ∂ L /∂ x · I 

)

−2 

3 

(
B 

′ 
e · ∂ D /∂ x 

)
− B 

′′ 
e ∂ �/∂ x = 0 . (53)

To study potential instability modes, consider a body which has

een homogeneously deformed and is at rest, and consider a per-

urbation with a superposed velocity and associated velocity gra-

ient given by 

v = 

(
˙ γ

w 

)
exp (ξ ) m , L = ˙ γ exp (ξ ) ( m � n ) , 

 = 

1 

2 

˙ γ exp (ξ ) ( m � n + n � m ) 

= w n · x , m · m = 1 , n · n = 1 , ˙ γ > 0 , w > 0 , (54)

here the constant unit vector m defines the direction of velocity,

he constant unit vector n defines the direction of its dependence

n x , ˙ γ is a positive constant controlling the magnitude of L and

 is a positive constant wave number. Here, attention is limited to

 body which is either finite in the direction n or is semi-infinite

ith ξ ≤ 0 to ensure that the perturbation remains bounded. Using

hese expressions, it follows that 

∂ L /∂ x = ˙ γ w exp (ξ ) ( m � n � n ) , 

 D /∂ x = 

1 

2 

˙ γ w exp (ξ )(m � n + n � m ) � n , 

˙  = 

1 √ 

3 

˙ γ exp (ξ ) 

√ 

1 + 

1 

3 

(m · n ) 2 

 ˙ ε /∂x = 

1 √ 

3 

˙ γ w exp (ξ ) 

√ 

1 + 

1 

3 

(m · n ) 2 n . (55)

ince the expression w exp (ξ ) appears in all terms in (49) it can

e factored out of the resulting equation. Also, for inelastic load-

ng the values of � developed below are non-zero and for elastic

esponse they are zero. 

.1. The standard model 

For the standard rate-independent model with � specified by

25) it can be shown that 

= ˙ γ exp (ξ ) � , ∂ �/∂ x = ˙ γ w exp (ξ ) �n , 

= 

1 

1 + H 

( 
3 

4 κ2 
) 
[ 

1 

3 

( B 

′ 
e · I )( B 

′′ 
e · m � n ) 

+ 

(
B 

′′ 
e B 

′′ 
e · m � n 

)
− 8 κ2 

9 

(m · n ) 

]
. (56) 

.2. The smooth model 

For the rate-independent smooth model with � specified by

26) it can be shown that 

= ˙ γ exp (ξ ) � , ∂ �/∂ x = ˙ γ w exp (ξ ) � n , 

= 

1 √ b 1 〈 g〉 
√ 

1 + 

1 

(m · n ) 2 . (57) 
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4.3. The perturbation vector 

For either of the specifications (25) or (26) , Eq. (49) yields a

perturbation vector a of the form 

a = (m · n ) 

[
kJ 2 

d 2 U 

dJ 2 
n + 

1 

9 

( B 

′ 
e · I ) n − 2 

3 

B 

′′ 
e n 

]
− 2 

3 

( B 

′′ 
e · m � n ) n 

+ 

1 

3 

( B 

′ 
e · I ) m + 

(
B 

′′ 
e · n � n 

)
m − �B 

′′ 
e n = 0 (58)

with � given by (56) for the specification (25) and by (57) for the

specification (26) . 

4.3.1. For m = αn with α = ±1 

For the case when m is parallel to n , it can be shown that

(58) requires 

a = α

[
kJ 2 

d 2 U 

dJ 2 
+ 

4 

9 

(
B 

′ 
e · I 

)
+ 

1 

3 

(
B 

′′ 
e · n � n 

)]
n 

−
(

2 

3 

α + �
)

B 

′′ 
e n ] = 0 . (59)

Next, let s be an arbitrary unit vector normal to n 

s · n = 0 , (60)

and rewrite (59) in the component form 

a · n = α

[
kJ 2 

d 2 U 

dJ 2 
+ 

4 

9 

( B 

′ 
e · I ) 

]
−

(
1 

3 

α + �
)(

B 

′′ 
e · n � n 

)
] , (61a)

a · s = −
(

2 

3 

α + �
)(

B 

′′ 
e · s � n 

)
. (61b)

4.3.2. For m × n 
 = 0 

For this case is it convenient to define the unit vector 

s = 

m × n 

| m × n | , (62)

and to express the components of a in the forms 

a · n = (m · n ) 

[
kJ 2 

d 2 U 

dJ 2 
+ 

4 

9 

( B 

′ 
e · I ) + 

1 

3 

( B 

′′ 
e · n � n ) 

]

−2 

3 

( B 

′′ 
e · m � n ) − �( B 

′′ 
e · n � n ) = 0 , (63a)

a · m = (m · n ) 

[{
kJ 2 

d 2 U 

dJ 2 
+ 

1 

9 

( B 

′ 
e · I ) 

}
( m · n ) − 4 

3 

(
B 

′′ 
e · m � n 

)]

+ 

1 

3 

(
B 

′ 
e · I 

)
+ 

(
B 

′′ 
e · n � n 

)
− �

(
B 

′′ 
e · m � n 

)
= 0 , (63b)

a · s = −
[ 

2 

3 

(m · n ) + �
] (

B 

′′ 
e · s � n 

)
= 0 . (63c)

Given a state of the material defined by ( J, B 

′ 
e , κ), localization

can occur if the scalar Eq. (61) are satisfied by some combination

of ( n , s , α) or if the scalar Eq. (63) are satisfied by some combina-

tion ( m , n ). 

5. Another analysis of localization 

Rice (1976) analyzed localization in plastic deformation by con-

sidering a body that experiences homogeneous plastic deformation

with uniform velocity gradient L . Using the evolution Eq. (29) for

the unit normal n to a material surface and the expression for the

traction vector t applied to this material surface 

t = Tn , (64)
t follows that 

˙ 
 = 

˙ T n + T ̇

 n . (65)

ice (1976) considered the increment of the rate � ˙ t due to an in-

rement �L of the form 

L = g � n , (66)

here g is a vector to be determined. Rice’s localization condition

roposes that the material experiences localized plastic flow if � ˙ t

s stationary 

˙ t = 0 . (67)

s a special case, consider a homogeneous uniform material which

as been homogeneously deformed, is currently in a state at the

lastic-inelastic boundary and is at rest. Then, instantaneous appli-

ation of the velocity gradient 

 = g � n , (68)

ields a jump in the rate ˙ t so that Rice’s criterion for this case

equires 

˙ 
 = 0 for L = g � n . (69)

oreover, using (29) it follows that for this velocity gradient the

nit normal m remains constant 

˙ 
 = 0 for L = g � n . (70)

lso, Rice’s assumed a piecewise-linear constitutive equation of the

orm (4) . 

Within the context of the smooth model, the inelastic distor-

ional deformation rate depends nonlinearly on the total deforma-

ion rate D . Rice (1976) explained that nonlinear dependence of L
n (4) on 

˙ F 0 can be handled by considering an unlimited number

f models based on different L . This latter approach could include

he analysis of the smooth model. Instead, here a homogeneously

eformed homogeneous unifom material is considered which is at

est in a state at the elastic-inelastic boundary and is instanta-

eously subjected to a velocity gradient of the form 

 = ˙ γ m � n , ˙ γ > 0 , m · m = 1 , n · n = 1 , (71)

ith the rate of the traction due to (71) given by (65) . For this

elocity gradient it follows from (29) that n remains constant (70) .

Motivated by the special case (69) of Rice’s criterion

 Rice, 1976 ) it is assumed that the condition for material in-

tability requires the rate of the traction vector to be stationary

˙ 
 = 

˙ T n = 0 for L = ˙ γ m � n . (72)

ext, using (71) it can be shown that 

D = 

1 

2 

˙ γ (m � n + n � m ) , 

 

′′ = ˙ γ
[ 

1 

2 

(m � n + n � m ) − 1 

3 

(m · n ) I 
] 

, 

˙  = 

1 √ 

3 

˙ γ

√ 

1 + 

1 

3 

(m · n ) 2 . (73)

.1. The standard model 

For the standard rate-independent model with � specified by

25) , L specified by (71) and with use of (73) , it can be shown that

= � ˙ γ , (74)

ith � given by (56) . 
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.2. The smooth model 

For the rate-independent smooth model with � specified by

26) , use can be made of (73) to show that � has the form

74) with � specified by (57) . 

.3. Equivalence of the traction rate and perturbation vector criteria 

Using (10), (54) and (56) or (57) , Eq. (22) can be written in the

orm 

J 

μ ˙ γ
˙ T = exp (ξ ) 

[
(m · n ) 

(
kJ 2 

d 2 U 

dJ 2 
I − 5 

3 

B 

′′ 
e 

)
+ ( m � n ) B 

′ 
e 

+ B 

′ 
e ( n � m ) − 2 

3 

(
B 

′ 
e · m � n 

)
I − �B 

′′ 
e 

] 
. (75) 

hen, for uniform deformation (52) yields 

J 

μ ˙ γ
div ( ̇ T ) = w exp (ξ ) 

[
(m · n ) 

(
kJ 2 

d 2 U 

dJ 2 
I − 5 

3 

B 

′′ 
e 

)
+ (m � n ) B 

′ 
e 

+ B 

′ 
e (n � m ) − 2 

3 

( B 

′ 
e · m � n ) I − �B 

′′ 
e 

] 
· n , (76) 

hich with the help of (58) can be expressed as 

J 

μ ˙ γ w exp (ξ ) 

]
div 

(
˙ T 

)
= a . (77) 

onsequently, for the velocity field (54) , the traction-rate criterion

72) is equivalent to the perturbation vector criterion (52) . 

. Small deformation equations 

For small deformations, it is convenient to introduce the total

train ε , its deviatoric part ε ′′ and the total volumetric stain ε v ,
uch that 

 = 

1 

3 

ε v I + ε 

′′ , ε 

′′ · I = 0 . (78)

lso, the equivalent total distortional strain rate ˙ ε in (7) is defined

y 

˙  = 

√ 

2 

3 

˙ ε 

′′ · ˙ ε 

′′ 
. (79) 

ince there is no inelastic volumetric rate of deformation in the

mooth model, the volumetric elastic strain ε e v equals the volu-

etric total strain ε v and the elastic strain ε e can be expressed as

 e v = ε v , ε e = 

1 

3 

ε v I + ε 

′′ 
e , ε 

′′ 
e · I = 0 , (80)

here ε ′′ e is the deviatoric part of ε e . 
The evolution equation for elastic distortional deformation rate

9) is approximated by 

˙ 
 

′′ 
e = 

˙ ε 

′′ − �ε 

′′ 
e , (81) 

he equivalent elastic distortional deformation γ e in (11) is speci-

ed by 

e = 

√ 

3 

2 

ε 

′′ 
e · ε 

′′ 
e , (82) 

nd the evolution equation for the equivalent plastic strain in εp 

12) becomes 

˙  p = 

√ 

2 

3 

D 

′′ 
p · D 

′′ 
p · = 

2 

3 

�γe , D 

′′ 
p = �ε 

′′ 
e . (83)

n addition, the yield function g and evolution equation for hard-

ning κ are specified by (11) and (13) , respectively. 
The strain energy function (15) and rate of material dissipation

17) are given by 

0 � = 

1 

2 

μ(kε 2 v + ε 

′′ 
e · ε 

′′ 
e ) , U = 

1 

2 

ε 2 v , D = T · ˙ ε − ρ0 
˙ � ≥ 0 . 

(84) 

hen, the constitutive equation for stress becomes 

 = μ(kε v I + 2 ε 

′′ 
e ) , (85)

nd the rate of material dissipation reduces to 

 = �με 

′′ 
e · ε 

′′ 
e ≥ 0 , (86) 

hich is automatically satisfied. Moreover, it follows from (25),

26), (78), (79), (81) and (85) that 

1 

μ
˙ T = k ̇ ε v I + 2( ̇ ε 

′′ − �ε 

′′ 
e ) , (87)

here for the standard model 

= 0 for (g < 0) and (g = 0 with 

ˆ g ≤ 0) , 

= 

1 

1 + H 

(
3 

2 κ2 

)[
ε 

′′ 
e −

4 κ2 

9 

I 

]
· ˙ ε for (g = 0 with 

ˆ g > 0) , (88)

nd for the smooth model 

= b 1 ˙ ε 〈 g〉 = b 1 

√ 

2 

3 

˙ ε 

′′ · ˙ ε 

′′ 〈 g〉 . (89)

.1. Monotonic proportional loading 

For monotonic proportional loading, the total distortional strain

ate ˙ ε ′′ and the elastic distortional strain ε ′′ e can be expressed in

he forms 

˙ 
 

′′ = ˙ ε 

√ 

3 

2 

N 

′′ , ε 

′′ 
e = γe 

√ 

2 

3 

N 

′′ , ε ≥ 0 , ˙ ε > 0 , (90)

here the total distortional strain ε is non-negative, its rate ˙ ε is

ositive and N 

′′ is a constant unit deviatoric tensor characterizing

he direction of loading defined in (35) . Using these expressions,

he evolution Eq. (81) for the elastic distortional strain ε ′′ e can be

ewritten in the form 

˙ e = 

3 

2 

˙ ε − �γe , (91) 

hich is solved using the initial conditions 

(0) = 0 , κ(0) = κ0 . (92)

pecifically, using the evolution Eq. (13) , this equation integrates to

btain 

e = 

3 

2 

ε −
〈 
κ − κ0 

H 

〉 
. (93) 

.1.1. The standard model 

Using the approximations 

 = 1 + ε v , B 

′ 
e = I + 2 ε 

′′ 
e , D = 

˙ ε , (94)

nd neglecting higher order terms in small quantities in (25) it fol-

ows that � is specified by 

= 0 for γe < κ , � = 

3 ̇ ε 

2 κ(1 + H) 
for γe = κ , (95)

o the evolution Eqs. (91) for γ e and (13) for κ are given by 

dγe 

dε 
= 

3 

2 

, 
dκ

dε 
= 0 for ε < 

2 

3 

κ0 , 

dγe 

dε 
= 

3 

2 

(
H 

1 + H 

)
, 

dκ

dε 
= 

3 

2 

(
H 

1 + H 

)
for ε ≥ 2 

3 

κ0 , (96)
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Fig. 1. Unaxial tension: Loading curves predicted by the smooth model for different 

values of H showing the influence of b 1 . The limit load points are marked with 

symbols. 
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which integrate to yield 

γe = Min 

(
3 

2 

ε, κ0 

)
+ 

3 

2 

(
H 

1 + H 

)
〈 ε − 2 

3 

κ0 〉 , 

κ = κ0 + 

3 

2 

(
H 

1 + H 

)〈 
ε − 2 

3 

κ0 

〉 
. (97)

6.1.2. The smooth model 

Using (11) and (26) , the evolution Eqs. (91) for γ e and (13) for

κ are given by 

dγe 

dε 
= 

3 

2 

, 
dκ

dε 
= 0 for ε < 

2 

3 

κ0 , 

dγe 

dε 
= 

3 

2 

− b 1 (γe − κ) , 
dκ

dε 
= Hb 1 (γe − κ) for ε ≥ 2 

3 

κ0 , 

(98)

which integrate to yield 

γe = 

3 

2 

ε − 3 〈 ε − 2 
3 
κ0 〉 

2(1 + H) 

+ 

3 

2 b 1 (1 + H) 2 

[ 
1 − exp 

{ 

−b 1 (1 + H) 
〈 
ε − 2 

3 

κ0 

〉 } ] 
, 

κ = κ0 + H 

〈 
3 

2 

ε − γe 

〉 
. (99)

6.2. Small deformation limit load for uniaxial tension 

For small values of γ e it can be shown that 

α1 = 3 . (100)

6.2.1. Limit load for the standard model 

Using (100) and neglecting κ relative to unity, it follows that

the condition (46) for the limit load in the standard model requires

H = 0 . (101)

Then, using (97) the values ( γ eL , κL , εL ) of ( γ e , κ , ε) for the limit

load are given by 

γeL = κL = κ0 , ε L = 

2 

3 

κ0 > 0 , (102)

which corresponds to the onset of inelastic deformation rate. 

6.2.2. Limit load for the smooth model 

Using (100) it follows that for small deformations the limit load

associated with (47) for the smooth model requires 

γe − κ = 

3 

2 b 1 
. (103)

Moreover, using (99) it can be shown that 

γe − κ = 

3 

2 b 1 (1 + H) 

[ 
1 − exp 

{ 

−b 1 (1 + H) 
〈 
ε − 2 

3 

κ0 

〉 } ] 
, (104)

so the values ( γ eL , κL , εL ) of ( γ e , κ , ε) for inelastic loading at the

limit load are given by 

γeL = κ0 + 

3 

2 b 1 (1 + H) 

[
1 − H ln (−H) 

(1 + H) 

]
, 

κL = κ0 − 3 H 

2 b 1 (1 + H) 

[
1 + 

ln (−H) 

1 + H 

]
, 

ε L = 

2 

3 

κ0 − ln (−H) 

b 1 (1 + H) 
for ε L − 2 

3 

κ0 ≥ 0 . (105)

In contrast with the result (102) of the standard model that pre-

dicts a limit load at the onset of inelastic deformation rate, the
mooth model predicts a limit load for non-positive values of H in

he range 

1 ≤ H ≤ 0 , (106)

ith a finite value of εL only for ( H < 0). In this regard, it is noted

hat even for a constant value of κ the smooth model exhibits ap-

arent hardening. Also, it can be shown the value εL in (105) is the

ame as the value of ε which causes a peak value of the function

e ( ε) in (99) . 

To compare the solutions for different values of ( H , b 1 ) it is con-

enient to solve the first of (105) for the value κ0 which causes

he limit load to occur at a specified value γ eL of elastic distor-

ional deformation. Table 1 records the values ( κ0 , κL , εL ) which

ause the same limit load for two values of H and different values

f b 1 . Fig. 1 shows the loading curves of γ e versus ε for the val-

es recorded in Table 1 with symbols indicating the values at the

imit load. From these results it can be seen that increasing b 1 and

ecreasing H both cause εL to decrease. 

.3. Small deformation perturbation vector criterion 

Using (84) and the approximations (94) , the perturbation vector

riteria (63) based on the mode characterized by (54) and (55) re-

uce to 

 · n = ( m · n ) 

[ 
k + 

4 

3 

+ 

2 

3 

(
ε 

′′ 
e · n � n 

)
− 4 

3 

(
ε 

′′ 
e · m � n 

)] 
−2 �( ε 

′′ 
e · n � n ) = 0 , (107a)

 · m = (m · n ) 2 
(

k + 

1 

3 

)
− 8 

3 

(m · n )( ε 

′′ 
e · m � n ) + 1 

+ 2 

(
ε 

′′ 
e · n � n 

)
− 2 �( ε 

′′ 
e · m � n ) = 0 , (107b)

 · s = −2 

[ 
2 

3 

( m · n ) + �
] (

ε 

′′ 
e · s � n 

)
= 0 , (107c)

here for the standard rate independent model, � in (56) is ap-

roximated by 

= 

1 

1 + H 

(
3 

2 κ2 

)(
ε 

′′ 
e · m � n 

)
, (108)

nd for the smooth transition model use is made of (11) to rewrite

in (57) in the form 

= 

b 1 √ 

3 

〈
1 − κ

γe 

〉√ 

1 + 

1 

3 

(m · n ) 2 . (109)

.3.1. Discussion of the solution procedure 

Noting that the perturbation vector criterion (107) are indepen-

ent of the volumetric strain ε v and the constitutive equations do

ot depend on the Lode angle β , it follows that the stress state

or material instability is independent of the pressure. Thus, with
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Fig. 2. Material instability mode: The velocity unit direction m and the unit normal 

n to the localization plane for material instability in the plane of maximum shear. 

These vectors and associated angles ( θm , θn ) are measured relative to the principal 

directions p i of the elastic distortional strain ε ′′ e . 
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egard to material instability, states of compression in the p 3 di-

ection correspond to states of tension in the p 1 direction for the

ame magnitude | β| of the Lode angle. Consequently, the full range

f material instability for the models discussed in this paper can be

xplored by limiting attention to the range 

π

6 

≤ β ≤ 0 . (110) 

For monotonic loading with a specified value of β , the state of

he material is parameterized by the value of ε and is determined

y the values of ( κ0 , H ) in the solution (97) for the standard model

nd by the values of ( b 1 , κ0 , H ) in the solution (99) for the smooth

odel. For the standard model it is assumed that material instabil-

ty initiates at the onset of yield when ( ε = 

2 
3 κ0 , γe = κ0 ). For this

odel, material instability first occurs at the largest negative value

f H which admits real solutions of the criterion (107) . In contrast,

or the smooth model the value of ε at the onset of material insta-

ility is not known and must be determined. Specifically, the onset

f material instability is characterized by the smallest values of ε
n the solution (99) which admits real values solutions of the crite-

ion (107) . As for the standard model, the existence of material in-

tability depends on the value of H with the largest negative value

f H determining the strongest material that will admit material

nstability. 

.3.2. Analysis of solutions of the perturbation vector criterion (107) 

In general, ε ′′ e can be expressed in the form (90) . Assuming that

 ε ′′ e · s � n 
 = 0 ), the equation (107c) requires 

= −2 

3 

(m · n ) , (111)

hich ensures that ( m · n 
 = 0) for nonzero rate of inelasticity. Thus,

107a) reduces to 

 + 

4 

3 

+ 2( ε 

′′ 
e · n � n ) − 4 

3 

( ε 

′′ 
e · m � n ) = 0 . (112)

owever, for small strains with | ε ′′ e · n � n | << 1 and | ε ′′ e · m �

 | << 1 , this equation has no solution so (111) is not possible. Con-

equently, (107c) vanishes only when 

 · ε 

′′ 
e n = 0 . (113)

Next, consider the general unit vector 

 = cos (φn ) [ − sin (θn ) p 3 + cos (θn ) p 1 ] + sin (φn ) p 2 , (114)

hich is defined by the angles ( θn , φn ). The vectors ( m , n , s ) form

 right-handed triad of unit vectors with s being orthogonal to the

lane of ( m , n ) and with m not necessarily being orthogonal to n .

onsequently, it follows from (113) that s and m can be defined

y 

s = 

b 

| b | , b = 

(
ε 

′′ 
e n 

)
× n , 

 = cos ( θm 

− θn ) ( n × s ) + sin ( θm 

− θn ) n , (115) 

here θm 

is another angle to be specified. 

.3.3. Solution for uniaxial extension in the p 1 direction 

For uniaxial extension in the p 1 direction the Lode angle is

pecified by β = −π/ 6 . Due to symmetry in the p 2 − p 3 plane it

ollows that there is no physical dependence on the angle φn so

his angle can be set equal to zero. This causes ( m , n ) in (54) to lie

n the p 1 − p 3 plane of maximum shear with ( m , n , s ) specified by

see Fig. 2 ) 

 = cos (θm 

) p 3 + sin (θm 

) p 1 , n = − sin (θn ) p 3 + cos (θn ) p 1 , 

 = p 2 for θn + 

π
> θm 

. (116)

2 
or this case, (107c) is satisfied automatically and it follows from

107a) that � is given by 

= 

1 

2 ( ε 

′′ 
e · n � n ) 

[ 
4 

3 

(
ε 

′′ 
e · m � n 

)

− (m · n ) 
{ 

k + 

4 

3 

+ 

2 

3 

(
ε 

′′ 
e · n � n 

)} ] 
. (117) 

hen, substituting (117) into (107b) yields the condition 

 (θm 

, θn , γe , β, κ) = a · n = 0 , (118)

ith ( γ e , β , κ) characterizing the state of the material at localiza-

ion. 

For a proper choice of ε v this solution can characterize uniaxial

tress in the p 1 direction and for another choice of ε v it can char-

cterize plane strain in the p 1 − p 3 plane with extension in the

 1 direction. It will be shown in Section 8 that the failure mode

or unaxial stress is necking which is a limit load that requires a

hree-dimensional analysis and is not a material instability mode

haracterized by the velocity field (54) and the perturbation vector

q. (107) . However, the failure mode for plane strain extension is a

aterial instability mode characterized by (107) . 

.3.4. Solution for simple shear in a plane containing p 1 

For simple shear in a plane containing p 1 , the Lode angle is

pecified by β = 0 ◦. Due to symmetry in the p 2 − p 3 plane it fol-

ows that maximum shear occurs in all planes containing p 1 and

here is no physical dependence on the angle φn so this angle can

e set equal to zero. This causes ( m , n ) in (54) to lie in the p 1 − p 3 

lane of maximum shear with ( m , n , s ) specified by (116) . It will

e shown in Section 8 that this is a material instability mode char-

cterized by the perturbation vector Eq. (107) . 

. Examples 

For all the examples discussed in this section attention is lim-

ted to the small deformation theory with Poisson’s ratio specified

y 

= 

1 

3 

. (119) 

lso, to study the influence of changes in the material parame-

ers ( b 1 , H ) in the smooth model a reference material was specified

ith the inelastic material parameters 

 1 = 10 0 0 , κ0 = 0 . 0 08 , H = −0 . 3 . (120)

n particular, the material response due to these changes is nor-

alized by determining the value of κ0 that causes the peak value

eL of γ e associated with the limit load analysis in Section 6.2.2 to

e the same as that predicted by (120) 

eL = 0 . 0090372 . (121)
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Fig. 3. Loading curves for extension in the p 1 direction with ( β = −π/ 6 ) showing 

the influence of b 1 for different values of H . The onsets of material instability are 

marked with symbols. 

Fig. 4. Loading curves for extension in the p 1 direction with ( β = −π/ 6 ) showing 

the influence of H for different values of b 1 . The onsets of material instability are 

marked with symbols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Loading curves for simple shear ( β = 0 ) in the p 1 − p 3 plane of maximum 

shear showing the influence of H for different values of b 1 . The onsets of material 

instability are marked with symbols. 
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The procedure described in Section 5 was used to determine the

state and values ( εf , γ ef , κ f ) of ( ε, κ) and the values of ( θm 

, θn ) at

the onset of material instability for each set of values ( κ0 , b 1 , H ).

Also, the value of εL associated with the limit load was determined

for each set of material parameters. 

7.1. Material instability results for extension ( β = −π/ 6 ) 

For extension in the p 1 direction the Lode angle is specified by

β = −π

6 

, (122)

and the results are recorded in Table 2 . Fig. 3 presents zoomed in

figures near the peak of the γe − ε curves showing the influence

of changes in b 1 for three values of H . Fig. 4 presents zoomed in

figures near the peak of the γe − ε curves showing the influence of

changes in H for three values of b 1 . The onsets of material instabil-

ity (determined by the values εf ) are marked with symbols. Also,

the value H = −0 . 15 is close to the maximum negative value of H

which admits real values of the angles ( θm 

, θn ). It is interesting

to note that all 9 materials listed in Table 2 have nearly identical

values for the angles ( θm 

≈ 50 ◦, θn ≈ 44 ◦) for material instability. 
For comparison, the value � in (108) was used to solve the

qs. (117) and (118) for the standard model to determine the max-

mum negative value of H which admits real solutions for ( θm 

, θn )

t the onset of material instability. Specifically, the value of κ0 was

pecified to be equal to γ eL in (121) to obtain 

0 = γeL = 0 . 0090372 , H = −0 . 22418 , 

m 

= 48 . 400 

◦ , θn = 42 . 024 

◦ , (123)

hich are values close to the values of ( θm 

, θn ) in Table 2 pre-

icted by the smooth model. 

It is important to emphasize that the smooth model predicts

aterial instability for a range of values of H and in particular it

redicts material instability for larger negative values of H than

he standard model, which means it predicts material instability

or less softening. 

Also, the values recorded in Tables 1 and 2 for ( H = −0 . 15 ) in-

icate that the strains ( ε L , ε f ) predicted by the the smooth model

or the limit load and for material instability, respectively, increase

ith decreasing values of b 1 for the same peak load γ eL . In addi-

ion, it is noted that the values of εf are larger than those of εL 

hich indicates that material instability occurs after the limit load

ad occured. 

.2. Material instability results for simple shear ( β = 0 ◦) 

For simple shear in the p 1 − p 3 plane of maximum shear the

ode angle is specified by 

= 0 

◦ , (124)

nd the results are recorded in Table 2 . Fig. 5 presents zoomed

n figures near the peak of the γe − ε curves showing the influ-

nce of changes in b 1 for three values of H . Fig. 6 presents zoomed

n figures near the peak of the γe − ε curves showing the influ-

nce of changes in H for three values of b 1 . The onsets of mate-

ial instability are marked with symbols. Also, the value H = 0 is

he maximum non-negative value of H that admits real values of

he angles ( θm 

, θn ). Again, it is interesting to note that all 9 ma-

erials listed in Table 2 have nearly identical values for the angles

 θm 

≈ 50 ◦, θn ≈ 44 ◦) at the onset of material instability. Also, it is

bserved from Figs. 5 and 6 that material instability occurs very

lose the the peak load with the points at the onset of material

nstability indicated for H = 0 ocurring before ε equals infinity due

o the numerical convergence criterion. 
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Fig. 6. Loading curves for simple shear ( β = 0 ) in the p 1 − p 3 plane of maximum 

shear showing the influence of b 1 . The onsets of material instability are marked 

with symbols. 
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Fig. 7. Loading and unloading curves for the smooth model in uniaxial tension for 

H = −0 . 15 and three values of parameter b 1 (see Table 1 for the corresponding val- 

ues of κ0 ). 

Table 1 

Small deformation theory: List of the parameters for the limit load pre- 

dicted by the smooth model for uniaxial stress. 

H = −0 . 01 

b 1 κ0 γ eL κL εL 

500 0.61107e-2 0.90000e-2 0.60000e-2 0.13377e-1 

1000 0.75553e-2 0.90000e-2 0.75000e-2 0.96886e-2 

1500 0.80369e-2 0.90000e-2 0.80000e-2 0.84590e-2 

H = −0 . 15 

500 0.66522e-2 0.90000e-2 0.60000e-2 0.88986e-2 

1000 0.78261e-2 0.90000e-2 0.75000e-2 0.74493e-2 

1500 0.82174e-2 0.90000e-2 0.80000e-2 0.69662e-2 
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For comparison, the value � in (108) was used to solve the

qs. (117) and (118) for the standard model to determine the max-

mum negative value of H that admits real solutions for ( θm 

, θn ) at

ocalization. Specifically, the value of κ0 was specified to be equal

o γ eL in (121) to obtain 

0 = γeL = 0 . 0090372 , H = 0 , 

m 

= 45 . 078 

◦ , θn = 44 . 957 

◦ , (125)

hich are values close to the values of ( θm 

, θn ) in Table 2 pre-

icted by the smooth model. 

For this problem, it is again noted that the smooth model pre-

icts material instability for a range of values of H and the maxi-

um value of H = 0 is the same for both the smooth and standard

odels. 

. Finite element validations 

The aim of the finite element simulations provided in this sec-

ion is to validate the analytical predictions for instability and lo-

alization. Specifically, these simulations validate that the analysis

redicts the relevant instability or localization models. 

.1. Numerical implementation 

The small strain version of the rate-independent smooth model

iscussed in Section 5 has been implemented in the implicit finite

lement code Zset ( Z–set package, 2013 ). The numerical integration

f the constitutive equations is performed using an explicit second

rder Runge-Kutta method with automatic time stepping and an

mplicit Newton method involving the consistent tangent matrix of

he model. In the case of convergence problems which frequently

ccur when simulating strain localization phenomena, the Newton

ntegration can be switched to the Runge–Kutta method at each

auss point of the finite element mesh. 

The simulations presented in this work are performed for a

oftening material with modulus H = −0 . 15 and for three values

f parameter b 1 = 50 0 , 10 0 0 , 150 0 , as considered in the analytical

esults of Tables 1 to 3 . For each value of b 1 a different value of κ0 

s chosen such that the maximum stress is the same for all tensile

urves, according to the values indicated in Tables 1 –3 . To illustrate

he overstress effect in the smooth model, tensile loading and un-

oading curves are presented in Fig. 7 . It is apparent that lower

alues of b lead to an increase of the overstress, as expected.
1 
he nonlinear part of the unloading branch is clearly visible and

orresponds to the decrease and vanishing of the overstress. After

eloading, the apparent yield stress is smaller than the value before

he onset of unloading. 

Finite element simulations of strain localization in rectangular

lates are performed in the next section for various loading condi-

ions. The rectangular plate is characterized by a ratio of length to

idth equal to 2.5. The plate is modeled with a geometrical imper-

ection which is an invisible V–notch corresponding to the transla-

ion in the direction 1 (along the plate’s width direction) of one

oundary node by 2 . 5 × 10 −4 times the plate’s width. This defect

nduces a negligible reduction in the cross-section by this same

mount. The presence of this defect ensures triggering of a local-

zation band starting always at the same location for simulations

nvolving a softening material. 

The localization simulations in this section are the first

nes based on the smooth elastoplastic model proposed by

ollenstein et al. (2013) . Finite element simulations of localization

henomena in the absence of internal length (no regularization)

re still useful to detect the localization point and also the ori-

ntation of the localization bands. Even if the band thickness is

esh-dependent, the prediction of the orientation of the localiza-

ion band is quite robust as demonstrated for an anisotropic elasto-

lastic media in ( Forest and Cailletaud, 1995 ). Both the predicted

ocalization point and the orientation can therefore be compared

o the analytical predictions. In the absence of regularization, there

s no point in using finer meshes than those used in the Fig. 8 –11 .

The detection of instability modes in finite element simulations

as well as in experiments) can be based on several criteria. The

purious mesh-dependence observed in simulations is regarded as

n indicator of localization occurence. A reliable quantitative indi-

ator for the onset of localization, at least for some suitable load-

ng conditions, is the occurrence of unloading events outside the

ocalization band ( Petryk, 20 0 0 ). 

In the following simulations, a localization band is said to de-

elop when the total strain increases inside the band at the same

ime that it decreases in the surrounding material. To detect the
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Table 2 

Small deformation plane strain uniaxial extension in the p 1 direction: List of the parameters and the failure 

values εf , γ ef , κ f , θm , θn at the first point of localization. The value of the total strain εL associated with the 

maximum value γeL = 0 . 0090372 for the limit load criterion is also included. 

H = −0 . 15 

b 1 κ0 εL εf γ ef κ f θm [ ◦] θn [ ◦] 

500 0.66894e-2 0.80818e-2 0.13530e-1 0.83527e-2 0.48981e-2 49.550 44.389 

1000 0.78633e-2 0.74741e-2 0.97824e-2 0.86938e-2 0.69663e-2 49.552 44.386 

1500 0.82546e-2 0.69910e-2 0.85310e-2 0.88080e-2 0.76563e-2 49.557 44.393 

H = −0 . 3 

500 0.69629e-2 0.80818e-2 0.93304e-2 0.88848e-2 0.54297e-2 49.559 44.395 

1000 0.80000e-2 0.70533e-2 0.76777e-2 0.89609e-2 0.72333e-2 49.573 44.422 

1500 0.83458e-2 0.67105e-2 0.71268e-2 0.89864e-2 0.78347e-2 49.565 44.406 

H = −0 . 9 

500 0.74845e-2 0.70969e-2 0.74370e-2 0.89983e-2 0.55431e-2 49.573 44.422 

1000 0.82609e-2 0.65606e-2 0.67310e-2 0.90178e-2 0.72901e-2 49.684 44.643 

1500 0.85196e-2 0.63822e-2 0.64956e-2 0.90242e-2 0.78723e-2 49.746 44.768 

Fig. 8. Simulation of localization under plane strain extension loading conditions: Finite element mesh and contour map of the ε–field (left) and of the unloading indicator 

(red: unloading, blue: continued loading) at the last simulation step (right). The results are obtained for H = −0 . 15 and b 1 = 500 (see Table 1 for the corresponding values 

of κ0 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Simulation of localization under plane strain tension loading conditions: re- 

sponse curves at the integration point (GP) close to the imperfection. The points 

identifying the localization interval in the numerical simulation are denoted by 

filled symbols and the theoretical localization points ( εf , γ ef ) from Table 2 are de- 

noted by open symbols. The results are obtained for H = −0 . 15 and three values of 

b 1 . 

d  

t  

o  

o  
formation of such bands an indicator of unloading is defined as

the sign of the mechanical power of T ′′ · ˙ ε of the deviatoric stress

T ′′ . This indicator is computed at each time step of the simulations

and used to determine the first unloading event and the time step

for which a full localization band has formed. 

8.2. Plane strain extension of a rectangular plate 

The formation of a localization band during plane strain exten-

sion is shown in Fig. 8 . The strain is concentrated into a one to

two GP (Gauss point) thick band in which it continues increasing

whereas unloading is observed in the red zone outside of the band.

Before the onset of material instability, the strain state of the plate

is almost homogeneous. The equivalent elastic strain vs. axial strain

curves at a GP close to the imperfection are exhibited in Fig. 9 . The

states of the GP at the onset of unloading in the mesh and for the

fully developed band are indicated with symbols. They provide an

interval of detection of material instability in the FE simulations.

Each simulated curve stops when convergence can no longer be

achieved in the finite element simulation due to strong localiza-

tion. 

Fig. 9 shows that the theoretical predictions somewhat over-

estimate the total strain at the onset of material instability. The
ifference between the theoretical and finite element predic-

ions decreases with increasing values of b 1 , (i.e. for decreasing

verstress values). In the limit of large b 1 , the classical results

btained for the standard model are retrieved. This suggests that
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Table 3 

Small deformation simple shear: List of the parameters and the failure values εf , γ ef , κ f , θm , 

θn at the first point of localization. 

H = 0 

b 1 κ0 εf γ ef κ f θm [ ◦] θn [ ◦] 

500 0.60372e-2 0.23830e-1 0.90370e-2 0.60372e-2 45.225 45.251 

1000 0.75372e-2 0.14928e-1 0.90371e-2 0.75372e-2 45.223 45.249 

1500 0.80372e-2 0.11960e-1 0.90371e-2 0.80372e-2 45.229 45.259 

H = −0 . 15 

500 0.66894e-2 0.89228e-2 0.90372e-2 0.60373e-2 45.180 45.160 

1000 0.78633e-2 0.74738e-2 0.90372e-2 0.75373e-2 45.180 45.160 

1500 0.82546e-2 0.69908e-2 0.90372e-2 0.80372e-2 45.273 45.347 

H = −0 . 9 

500 0.74845e-2 0.70968e-2 0.90372e-2 0.60373e-2 45.186 45.173 

1000 0.82609e-2 0.65608e-2 0.90372e-2 0.75373e-2 45.267 45.334 

1500 0.85196e-2 0.63822e-2 0.90372e-2 0.80372e-2 45.431 45.663 

Fig. 10. Simulation of shear localization: Finite element mesh and contour map of the ε–field (left) and of the unloading indicator (red: unloading, blue: continued loading) 

at the last simulation step (right). The results are obtained for H = −0 . 15 and b 1 = 500 (see Table 2 for the other simulation parameters). 
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Fig. 11. Simulation of shear localization: response curves at the integration point 

(GP) close to the imperfection. The points identifying the localization interval in the 

numerical simulation are denoted by filled symbols and the theoretical localization 

points ( εf , γ ef ) from Table 2 are denoted by open symbols. The results are obtained 

for H = −0 . 15 and three values of b 1 . 
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p

he existence of the overstress postpones the onset of material

nstability compared to the reference standard case. Using a finer

nite element mesh leads to a thinner band and slightly earlier

ccurrence of the onset of material instability (not presented

ere). Irrespective of the mesh size the orientation of the band is

lways 45 ◦ with respect to the tensile axis. This value is close to

he theoretical value of the angle θn recorded in Table 2 . 

.3. Simple shear of an infinite plate 

For the simulation of simple shear, a square plate with a cen-

ral defect is considered. It is subjected to periodic boundary con-

itions in order to avoid boundary effects in shear. A 2D mesh is

sed under plane strain conditions. The material of the central el-

ment has a value κ0 which is 0.015% smaller than the surround-

ng elements. The defect is nearly indiscernable but is sufficient

o trigger localization starting from this location. The mean total

hear strain applied to the plate increases monotonically and the

train field remains quasi-homogeneous until material instability

ccurs causing the two orthogonal shear bands shown in Fig. 10 .

he shear bands are exactly one element thick and are oriented

t 45 ◦ from the principal shear axes, in exact agreement with the

redicted value of θn in Table 3 . 

The curves in Fig. 11 show that the theoretical predictions of

he elastic strain γ ef at the onset of material instability are in
xcellent agreement with the numerical simulations. However,

he theoretical predictions of the total strain εf at the onset of

aterial instability are a bit smaller than those of the numerical

imulations, with this difference becoming smaller with increas-

ng b 1 . The theoretical predictions are taken from Table 3 . It is

ell-known that shear loading is prone to localization, which is

redicted to take place at the maximum of the shear curve. 
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Fig. 12. Simulation of strain localization in a 3D thin plate in uniaxial tension with 4 quadratic elements in the thickness: The finite element mesh and contour map of the 

ε–field are shown together with a detailed picture of the imperfection zone. The results are shown for H = −0 . 15 and b 1 = 1500 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Simulation of localization in uniaxial tension in a 3D thin plate using four 

quadratic elements in the thickness: response curves at the integration point (GP) 

close to the imperfection. The points identifying the onset of material instability in 

the numerical simulation are denoted by filled symbols and the theoretical limit 

load points ( εL , γ eL ) from Table 1 are denoted by open symbols. The results are 

obtained for H = −0 . 15 and three values of b 1 . 
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8.4. Uniaxial tension of a rectangular plate 

The case of uniaxial tension of a rectangular plate must be

treated using a fully 3D model. It is well–known that the 2D

plane stress model is physically unsound because it ignores the

compatibility conditions with respect to the out-of-plane direc-

tion. As a result, the regularizing effect of the out-of-plane neck-

ing of the thin sheet on shear banding can be observed only in

the 3D case ( Besson et al., 2009 ). Plane stress conditions artifi-

cially promote strain localization. The 3D plate of Fig. 12 has the

same in-plane dimensions and the same geometrical imperfection

as in Section 8.2 . Four quadratic elements through the thickness

are considered for the computational study of localization in a thin

plate in tension. It has been checked that the loading curve up to

the onset of localization is only slightly dependent on the num-

ber of elements through the thickness and the in-plane mesh size.

However, refinement of the in-plane mesh size significantly influ-

ences post-failure response as a result of shear band formation.

The formation of a localization band inclined at about 54 ◦ from

the tensile axis is shown in Fig. 12 . This band orientation is clas-

sically observed during thin sheet deformation for standard plas-

ticity models using the von Mises criterion. It is also found here

for the smooth model. In addition it is noted that the localization

mode characterized by the velocity field (54) , the perturbation vec-

tor Eq. (107) and the values of θm 

, θn in Table 2 is not consistent

with the necking mode predicted by the numerical simulation. 

Due to the combination of in-plane shear banding and out-

of-plane necking modes, the limit load criterion derived in

Section 6.2.2 is better suited to predict the onset of localization

in uniaxial tension. This coincides with the well-known Considère

criterion classically used in tension to detect the onset of necking

in tensile specimens. The tensile curves obtained for three values
 t  
f the b 1 parameters and H = −0 . 15 are shown in Fig. 13 . The pre-

icted limit points are indicated on the curves according to Table 1 ,

ogether with numerically detected localization points. It is found

hat band formation in the FE simulation occurs only slightly after

he predicted limit loads. This demonstrates the consistency of the

imit load analysis with the theoretical failure criterion developed

or the smooth model. 

. Conclusions 

The rate-independent form of the smooth transition elastic-

nelastic model developed in Hollenstein et al. (2013) differs from

he standard rate-independent model in that it depends nonlin-
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arly on the direction of the total deformation rate. Consequently,

nalysis of modes models of material instability for the smooth

odel need special attention. The nonlinear equations were used

o develop an expression for the maximum normal force that can

e applied to a material surface as a condition for the limit load.

lso, a perturbation of an arbitrary homogeneous nonlinear state

f stress was used to develop an expression for a perturbation vec-

or that must vanish to maintain equilibrium. In addition, a special

ase of the material instability criterion developed in ( Rice, 1976 ),

hich requires the rate of traction applied to a material surface

o be stationary for an applied shearing rate was developed and

hown to yield the same condition that the perturbation vector

anishes. 

The small deformation equations for the smooth model were

sed to obtain analytical results for the limit load and perturba-

ion vector conditions for example problems. The smooth model

xhibits an overstress that increases with decreasing values of the

arameter b 1 and it exhibits softening, which tends to cause lo-

alization, with more rapid softening occurring for smaller val-

es of the parameter H . The evolution equations of the small de-

ormation smooth model were solved for monotonic proportional

oading to obtain expressions for stress-strain curves that allow

or analytical solutions of the conditions for material instability.

o study the influence of changes in b 1 , H the initial value κ0 of

he hardening parameter was determined so that the limit load

ccurs at the same specified value γ eL of elastic strain for each

air b 1 , H . The values κL of the hardening variable and εL of the

otal strain at the limit point for each pair b 1 , H are recorded in

able 1 . The main results of this Table are that the limit strain

L increases with decreasing values of b 1 and increasing values

f H . 

In addition, the small deformation equations were programmed

s a constitutive model in a finite element code to obtain numeri-

al solutions for these example problems. Numerical simulations of

xample problems with H = −0 . 15 were considered to examine the

nfluence of the parameter b 1 . Qualitatively, the theoretical predic-

ion of the dependence of localization on b 1 is the same as that

n the numerical simulations for all examples. The numerical and

heoretical values γ ef of the elastic strain and εf of the total strain

t the onset of material instability were determined. These values

f γ ef are in excellent agreement with the theoretical values and

he differences between the numerical and theoretical values of εf 

ecrease with increasing values of b 1 . 

Plane strain extension 

The theoretical and numerical predictions of the angle θn be-

ween the normal to the shearing surface and the direction of ex-

ension are in very good agreement. However, the theoretical val-

es of the total failure strain εf at the onset of material instability

re larger than those of the numerical simulations. 

Simple shear 

The theoretical and numerical predictions of the angle θn are in

xact agreement. However, the theoretical values of the total fail-

re strain εf at the onset of material instability are a bit smaller

han those of the numerical simulations. 

Uniaxial tension of a 3D thin plate 

The numerical simulation of a thin plate requires a 3D formu-

ation to capture the out-of-plane necking mode which is better

redicted by the limit load criterion than the perturbation vector

riterion based on a shearing mode of material instability. The nu-

erical simulations predict the observed value of θn . Also, the nu-

erical and theoretical values of the elastic strain εef at the limit

oad are in excellent agreement. 

One of the main conclusions of this work is that the smooth

odel predicts a tendency for the total strain at the onset of local-

zation to be delayed by increase in the overstress. 
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