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Abstract

Micro-mechanically based constitutivemodels representing inelastic behavior of directionally solidified (DS)materials
are proposed. A finite element (FE) computation used to calibrate themodel is first presented. It is comparedwith amodel
using a static homogenization scheme (uniform stress throughout the material). These approaches lead to significantly
different results. A newmodel is then proposed with a suitable scale transition rule from the macroscopic level to the grain
level. Satisfactory results are obtained for this second model, at the macroscopic level as well as for local responses.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Directionally solidified (DS) materials are
sometimes a good compromise between too expen-
sive single crystals and less resistant polycrystals
for structures like turbine blades operating at high
temperatures. Nevertheless, despite the importance
of these materials, little has been done to develop
constitutive models able to describe their overall
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mechanical properties. DS materials are known
for their excellent tensile ductility and their high
strength at room temperature as well as at high
temperature. The morphology of Directionally
Solidified materials is such that the grains are
purely columnar (Fig. 1). The morphology exhibits
a perfect order in the direction of solidification
(the x3 direction coincides with a h001i direction
of each crystal), and a perfect random character
in the normal plane. This must be reflected by
the scale transition relation in the framework of
a micro–macro modeling. There is a growing inter-
est for this type of application, but the state of the
art of the modeling activity concerns only elastic
ed.
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Fig. 1. Columnar morphology of DS grains.
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properties (Yaguchi and Busso, 2005). The pur-
pose of the present paper is to propose a strategy
for describing this scale transition, using finite ele-
ment computation to build a reference for the DS
aggregate. The local behavior in each grain is sup-
posed to be properly represented by a phenomeno-
logical constitutive equation involving nonlinear
isotropic and kinematic hardenings. One of the
open question is to check if a mean field model is
able to predict the global response of the material,
even if the description of the intragranular hetero-
geneities is missing. It should be mentioned that
such an attempt was successful in a previous study
on a cubic isotropic aggregate (Barbe et al., 2001).

The simplest and most widely used model to
predict polycrystal behavior is the Taylor model
(Taylor, 1938), where uniform plastic strain in each
grain is assumed. Following the self-consistent
plasticity model proposed by Hill (1965) many
authors revisited the concept of self-consistency
(Molinari, 1999) in order to improve polycrystal
plasticity models. The aim of this work is to pro-
vide a polycrystalline model with a suitable transi-
tion rule able to describe DS behavior, having in
view target materials like nickel-base directionally
solidified superalloys. The model is assessed by
means of a finite element (FE) computation in
which each grain is represented by a group of ele-
ments with a columnar morphology. The overall
behavior of the polycrystalline model is compared
to the response of a FE model using volume aver-
ages of stress and strain. The paper is organized
in the following manner: The main lines of consti-
tutive equations for the single crystal model are
recalled briefly in the next section. In Section 3 a
polycrystalline aggregate model is generated, and
computed by the FE technique. The results of this
section will provide a database to assess an homo-
genized polycrystalline model. In that section some
statistical analyses of the strain heterogeneity dis-
tribution are shown in order to provide a deeper
understanding of the local behavior of DS materi-
als. Section 4 is devoted to the comparison between
the responses of (i) a ‘‘super single crystal’’ model,
(ii) the FE model of the polycrystalline aggregate.
In that section an analytical calculation of the yield
surface of the ‘‘super single crystal’’ model is pre-
sented. In Section 5, a polycrystalline model with
an efficient so-called stress concentration proce-
dure is presented. The parameters present in the
transition rule are identified from the macroscopic
stress–strain curves of the FE model. To assess the
reliability of the model, a comparison of local re-
sponses is drawn between the polycrystalline model
and the FE model. For that purpose, stress–strain
curves are compared grain per grain. After check-
ing the response of the proposed model at macro-
scopic and microscopic levels, a study of the
influence of the grain position is performed. An
evaluation of the quality of the transition rule with
respect to intergranular heterogeneity is also made.
2. Constitutive equations for the single crystal

This section briefly presents the elastoviscoplas-
tic single crystal model used in this work. It has
been developed in the framework of crystal plastic-
ity theory (Méric et al., 1991), and widely used,
especially for nickel-base superalloys. It is pre-
sented here in its small perturbation version, which
uses an additive decomposition of the elastic and
the viscoplastic strain rates. The so-called resolved
shear stress ss acting on a particular slip system (s)
is given by the relation:

ss ¼ rg : ms ð1Þ
where rg is the stress tensor in the crystal and ms is
the orientation tensor attributed to the slip system
(s):
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ms ¼ 1

2
ðl s � ns þ ns � lsÞ ð2Þ

ns and l s being the ‘‘slip plane’’ normal vector and
the ‘‘slip direction’’ vector in this plane, respec-
tively. The resolved shear stress ss can be related
to corresponding shear rate _cs via a power law
expression:

_cs ¼ jss 	 xsj 	 rs

k

� �n

signðss 	 xsÞ ð3Þ

For each slip system, internal variables are intro-
duced to describe the hardening of the material:
isotropic hardening variables rs and kinematic
hardening variables xs. Viscoplastic flow reaches
a rate-independent limit for large values of the
parameters n or 1/k. The nonlinear evolution rule
for isotropic hardening involves an interaction ma-
trix [H] which represents self-hardening (diagonal
terms) and latent hardening (non-diagonal terms).
In the present work, the components H rs are cho-
sen equal to drs (Krönecker delta, self-hardening
only), since this was shown to be a reasonable
approximation for nickel-base superalloys (Méric
et al., 1991).

rs ¼ r0 þ Q
X
r

H rsð1	 e	bvrÞ with _vr ¼ j _crj: ð4Þ

The following form of nonlinear kinematic
hardening is adopted:

_xs ¼ c _cs 	 _vs dxs ð5Þ
where c and d are material parameters. For the
case of FCC materials, plastic deformation in the
crystal is the result of slip processes according to
12 octahedral slip systems:

_epg ¼
X12
s¼1

ms _cs ð6Þ
Fig. 2. Mesh of the FE aggregate model.

Table 1
Material parameters

Elasticity Isotropic hardening Kinematic
hardening

E (MPa) m r0 (MPa) Q (MPa) b c (MPa) d

196,000 0.3 111 35 7 1600 40
3. Finite element model

3.1. Computational tools and boundary conditions

The aim of this section is to provide an evalua-
tion of the stress and strain fields in a DS aggre-
gate. For that purpose, an aggregate model is
generated and computed by FE technique (Caille-
taud et al., 2003). A cube formed by columnar
grains is discretised as a regular triangle mesh
and the corresponding crystal orientation is attrib-
uted to each Gauss point. To generate the mesh
corresponding to the microstructure with arbitrary
shapes, a 2D Voronoi polyhedra model (Gilbert,
1962) has been used. The mesh includes 39,210
15-nodes prisms with a triangular section and a
quadratic nodal interpolation (Fig. 2). The FCC
crystal behavior of Section 2 is used with the mate-
rial parameters shown in Table 1. Different tensile
and shear simulations are performed with the
following boundary conditions:

• For shear tests, a displacement vector ui = eijrj is
imposed on the contour (all the nodes of the six
faces), where e is a symmetric tensor and~r is the
position of the considered nodes. The tensor
components are:
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(e11 = 0, e22 = 0, e33 = 0, e12 = 1%, e23 = 0,
e13 = 0) for shear tests in the plane 12,
(e11 = 0, e22 = 0, e33 = 0, e12 = 0, e23 = 0,
e13 = 1%) for the shear tests in the plane 13.

• For the tensile tests, four lateral faces are free,
whereas an axial displacement is imposed on
the two remaining faces.
For the tensile tests in direction 11: u1 = 0 at the

nodes of the face (x1 = 0) and u1 = he11 at the
nodes of the opposite face, such that e11 = 0.3%.
For the tensile tests in direction 22: u2 = 0 at the
nodes of the face (x2 = 0) and u2 = he22 at the
nodes of the opposite face, such that e22 = 0.3%.
For the tensile tests in direction 33: u3 = 0 at
the nodes of the bottom (x3 = 0) and u3 =
he33 at the nodes of the top, such that e33 =
0.5%.

Two strategies are tested to generate the set
of grain orientations. The first one considers 64
distinct orientations, each of them being gener-
ated by rotation around the last Euler angle u.
From now on, this model will be called FE-64-
64. In this notation, the first number specifies the
number of grains whereas the second number spec-
ifies the number of distinct orientations. The sec-
ond aggregate model considered by FE technique
is called FE-64-8. In this aggregate, 8 different
orientations are considered. Each orientation is
attributed to 8 column-like randomly distributed
grains.
3.2. Results of the FE computations

Fig. 3 shows typical contour plots for a tensile
test in direction 11 and for a shear test in the plane
13. The von Mises contour plots show a rather
small variation of stress field. For this reason, it
is reasonable to begin with a static model in which
a uniform stress throughout the material is consid-
ered. Three kinds of results can be deduced from
the FE computations:

(i) The stress–strain curves produced by the glo-
bal volume average. These results can be
obtained by either FE-64-64 or FE-64-8
simulations.
(ii) The volume average on each individual grain
which can be obtained by FE-64-64 and FE-
64-8 simulations.

(iii) The volume average in each phase (i.e. each
set of grains belonging to the same crystallo-
graphic orientation class). These results are
provided by the FE-64-8 computations.

3.3. Statistical analysis

The FE analyses provide also local stress and
strain values inside the grains. These values are
important for subsequent damage and lifetime
assessment. The stress and strain data generated
using the FE simulations are analyzed using statis-
tical techniques in order to study their distribution
characteristics in a way similar to (Sarma and
Dawson, 1995). The FE aggregate of FE-64-8
model is subjected to shear loading in the plane
13 with four levels of average strain as summarized
in Table 2.

The deformation data generated using the finite
element simulations where analysed using statisti-
cal techniques in order to study their distribution
characteristics. Fig. 4 shows the histogram of the
e13 component in the volume. A Gaussian distribu-
tion function is also plotted as a reference. This
demonstrates that the computed distribution is
generally not Gaussian. A frequency histogram
(Fig. 5) is also plotted for each average strain level
and for each last Euler angle u. The abscissa of
each histogram represents the local strain level at
Gauss points, and the ordinate the frequency func-
tion. These histograms have led to the following
remarks:

• As shown in Fig. 5a, most of the histograms are
bell-shaped curves. Indeed they are almost sym-
metric with respect to their mean value. How-
ever the peak is always higher than the peak
of the respective normal distribution. In such
cases, the kurtosis parameter is used to measure
the degree of peakedness of a distribution. The
kurtosis factor of a distribution is defined as:

k ¼ Eððx	 lÞ4Þ
r4

ð7Þ



Fig. 3. Contour plot in the FE aggregate: (a) tensile test 11, von Mises stress (MPa), (b) shear test 13, von Mises stress (MPa),
(c) tensile test 11, cumulative inelastic strain (%), (d) shear test 13, cumulative inelastic strain (%).

Table 2
Values of the average strain chosen for performing statistical
analyses

he13i 0.195% 0.413% 0.588% 0.755%
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where r is the standard deviation, l is the mean
of x and E(t) denotes the expected value of t.
Note that the kurtosis of a normal distribution
is 3. Fig. 5b gives for different loading levels
kurtosis as function of the angle u. It appears
that they are non-normal distributions.

• Each distribution is characterized by its mean
value and its standard deviation. The mean
value is almost equal to the corresponding aver-
age strain. Fig. 5c shows that the spread (or the
dispersion) increases with the loading level. In
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Fig. 4. Histogram and comparison with Gaussian distribution.
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the present case, the values of the standard devi-
ations are respectively equal to 0.1335, 0.379,
0.629 and 0.78.
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• For some particular angles, the shape of the his-
togram indicates a multimodal distribution for
low as well as for high average strain levels
(Fig. 5d).
4. Super single crystal/static model

4.1. Constitutive equations

As a first approximation, it is considered here
that internal stresses remain low even during visco-
plastic flow. This idea is also supported by the fact
that all the grains have already a common axis.
Using this simple static assumption and uniform
elasticity, a uniform stress field is postulated in
the whole aggregate, and the stress concentration
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loading levels. (c) Spread evolution of the sample with loading
t loading levels with a fixed angle.



Table 3
Transformation of stress tensors

r1 ¼
r11cos

2u þ r22sin
2u ðr11 	 r22Þ sinu cosu 0

ðr11 	 r22Þ sinu cosu r11sin
2u þ r22cos

2u 0
0 0 0

0
@

1
A

r2 ¼
r11cos

2u r11 sinu cosu 0
r11 sinu cosu r11sin

2u 0
0 0 r33

0
@

1
A

r3 ¼
0 0 r13 cosu
0 0 r13 sinu

r13 cosu r13 sinu r33

0
@

1
A

r4 ¼
r11cos

2u	r12 sin2u 0:5r11 sin2uþr12 cos2u 0
0:5r11 sin2uþr12 cos2u r11sin

2uþr12 sin2u 0
0 0 0

0
@

1
A
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procedure is reduced to the equality between the
macroscopic stress and the stress in the grain:

rg ¼ r ð8Þ
The resulting aggregate is like a ‘‘super single crys-
tal’’, or a single crystal having a collection of all the
slip systems present in all the grains, since the same
stress level is applied to each of them. Once the con-
stitutive behavior of a single crystal is specified, one
has to find the overall behavior of an aggregate
consisting of columnar oriented grains. The plastic
strain of the representative volume element (RVE)
is the volume average over all grains:

_ep ¼ _epg ð9Þ
The additive strain decomposition and Hooke�s

law give:

e ¼ ee þ ep; r ¼ C : ee ð10Þ
where C is the fourth-rank tensor of elastic
moduli.

4.2. Analytic calculation of the DS yield surface

Plotting the yield surface is a first solution to
have an estimation of the anisotropy of the DS
aggregate. In this section, a perfect DS material is
considered: All grains have a h001i axis parallel
to direction x3. Let us call it [001]. A uniform distri-
bution is then assumed for the crystal axis [100] of
the grains. All the axes h001i are the same, they are
in the x3 direction of the aggregate referential, so
that axes h100i for instance can take any direction
in the x1–x2 plane. The resulting yield surfaces will
look like Tresca�s criterion in a subspace involving
x1 and x2 axes, but will keep a single crystal charac-
ter if the axis x3 is involved. As an illustration, com-
putations are made for a FCC material presenting
octahedral slip only. The initial resolved shear
stress is 100 MPa. (R0) is the crystal frame [100]
[010] [001], and (R) is the coordinate frame associ-
ated with the representative volume element. The
transformation between (R0) and (R) is limited to
a single rotation of angle u around the axis x3.

Four different stress tensors are considered, in
order to illustrate the yield surface for biaxial ten-
sion and tension-shear for directions involving x3
or not:
r1 ¼

r11 0 0

0 r22 0

0 0 0

0
BB@

1
CCA; r2 ¼

r11 0 0

0 0 0

0 0 r33

0
BB@

1
CCA;

r3 ¼

0 0 r13

0 0 0

r13 0 r33

0
BB@

1
CCA; r4 ¼

r11 r12 0

r12 0 0

0 0 0

0
BB@

1
CCA

The components of the four tensors in the crystal
frame R0 are given in Table 3. Accordingly, the
12 resolved stresses of the FCC slip systems are ex-
pressed in Tables 4–7. The generic form of these
resolved stresses corresponds to a straight line:

sg ¼ AðuÞr1 þ BðuÞr2 ð11Þ
where r1 and r2 are the non-zero components of
the considered stress tensor. The inner envelope
(which characterizes the yield surface) of this fam-
ily of straight lines can be obtained (Fig. 6) by
introducing a second family of straight lines ex-
pressed in polar form:

r1 ¼ qðhÞ cos h and r2 ¼ qðhÞ sin h ð12Þ
The polar radius q is obtained by replacing r1

and r2 of Eq. (12) in Eq. (11):

qðh;uÞ ¼ sg

AðuÞ cos h þ BðuÞ sin h
ð13Þ

The yield surface is obtained when the polar
radius is minimum. Accordingly, the partial deriv-
ative of q(h,u) with respect to utreating h as
constant must be equal to zero:



Fig. 6. Methodology used to calculate analytically yield
surfaces of the static model.

Table 4
Resolved shear stresses for the slip systems in the space r11r22ffiffiffi
6

p
s1 ¼ ð	cos2u 	 sinu cosuÞr11 	 ðsin2u 	 sinu cosuÞr11ffiffiffi
6

p
s2 ¼ ð	sin2u 	 sinu cosuÞr11 	 ðcos2u 	 sinu cosuÞr22ffiffiffi
6

p
s3 ¼ cos 2uðr22 	 r22Þffiffiffi
6

p
s4 ¼ ð	cos2u þ sinu cosuÞr11 	 ðsin2u þ sinu cosuÞr22ffiffiffi
6

p
s5 ¼ ð	sin2u þ sinu cosuÞr11 	 ðcos2u þ sinu cosuÞr22ffiffiffi
6

p
s6 ¼ 	 cos 2uðr22 	 r11Þffiffiffi
6

p
s7 ¼ ð	sin2u þ sinu cosuÞr11 	 ðcos2u þ sinu cosuÞr22ffiffiffi
6

p
s8 ¼ cos 2u 	 ðr22 	 r11Þffiffiffi
6

p
s9 ¼ ð	cos2u þ sinu cosuÞr11 	 ðsin2u þ sinu cosuÞr22ffiffiffi
6

p
s10 ¼ cos 2uðr22 	 r11Þffiffiffi
6

p
s11 ¼ ðcos2u þ sinu cosuÞr11 þ ðsin2u 	 sinu cosuÞr22ffiffiffi
6

p
s12 ¼ ðsin2u þ sinu cosuÞr11 þ ðcos2u 	 sinu cosuÞr22

Table 5
Resolved shear stresses for the slip systems in the space r11r33ffiffiffi
6

p
s1 ¼ ð	cos2u 	 sinu cosuÞr11 þ r33ffiffiffi
6

p
s2 ¼ ð	sin2u 	 sinu cosuÞr11 þ r33ffiffiffi
6

p
s3 ¼ 	r11 cos 2uffiffiffi
6

p
s4 ¼ ð	cos2u þ sinu cosuÞr11 þ r33ffiffiffi
6

p
s5 ¼ ð	sin2u þ sinu cosuÞr11 þ r33ffiffiffi
6

p
s6 ¼ r11 cos 2uffiffiffi
6

p
s7 ¼ ð	sin2u þ sinu cosuÞr11 þ r33ffiffiffi
6

p
s8 ¼ 	r11 cos 2uffiffiffi
6

p
s9 ¼ ð	cos2u þ sinu cosuÞr11 þ r33ffiffiffi
6

p
s10 ¼ 	r11 cos 2uffiffiffi
6

p
s11 ¼ ðcos2u þ sinu cosuÞr11 	 r33ffiffiffi
6

p
s12 ¼ ðsin2u þ sinu cosuÞr11 	 r33

Table 6
Resolved shear stresses for the slip systems in the space r13r33ffiffiffi
6

p
s1 ¼ r13 sinu þ r33ffiffiffi
6

p
s2 ¼ r13 cosu þ r33ffiffiffi
6

p
s3 ¼

ffiffiffi
2

p
r13 sinðu 	 p=4Þffiffiffi

6
p

s4 ¼ 	r13 sinu þ r33ffiffiffi
6

p
s5 ¼ r13 cosu þ r33ffiffiffi
6

p
s6 ¼

ffiffiffi
2

p
r13 cosðu 	 p=4Þffiffiffi

6
p

s7 ¼ 	r13 cosu þ r33ffiffiffi
6

p
s3 ¼

ffiffiffi
2

p
r13 cosðu 	 p=4Þffiffiffi

6
p

s9 ¼ r13 sinu þ r33ffiffiffi
6

p
s10 ¼

ffiffiffi
2

p
r13 cosðu þ p=4Þffiffiffi

6
p

s11 ¼ r13 sinu 	 r33ffiffiffi
6

p
s12 ¼ r13 cosu 	 r33

Table 7
Resolved shear stresses for the slip systems in the space r12r11ffiffiffi
6

p
s1 ¼ ð	cos2u 	 sin 2u=2Þr11 þ ðsin 2u þ cos 2uÞr12ffiffiffi
6

p
s2 ¼ ð	sin2u 	 sin 2u=2Þr11 	 ðsin 2u þ cos 2uÞr12ffiffiffi
6

p
s3 ¼ 	r11 cos 2u þ 2r12 sin 2uffiffiffi
6

p
s4 ¼ ð	cos2u þ sin 2u=2Þr11 þ ðsin 2u þ cos 2uÞr12ffiffiffi
6

p
s5 ¼ ð	sin2u þ sin 2u=2Þr11 	 ðsin 2u 	 cos 2uÞr12ffiffiffi
6

p
s6 ¼ r11 cos 2u 	 2r12 sin 2uffiffiffi
6

p
s7 ¼ ð	sin2u þ sin 2u=2Þr11 þ ðcos 2u 	 sin 2uÞr12ffiffiffi
6

p
s8 ¼ 	r11 cos 2u þ 2r12 sin 2uffiffiffi
6

p
s9 ¼ ð	cos2u þ sin 2u=2Þr11 þ ðsin 2u þ cos 2uÞr12ffiffiffi
6

p
s10 ¼ 	r11 cos 2u þ 2r12 sin 2uffiffiffi
6

p
s11 ¼ ðcos2u þ sin 2u=2Þr11 	 ðsin 2u 	 cos 2uÞr12ffiffiffi
6

p
s12 ¼ ðsin2u þ sin 2u=2Þr11 þ ðsin 2u þ cos 2uÞr12
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oq
ou

¼ 0 hence A0ðuÞ cos h þ B0ðuÞ sin h ¼ 0 ð14Þ

This last equation is then substituted into Eq. (13),
and different forms of yield surface functions are
then obtained (smooth for r4 and presenting
corners for the other tensors). All the curves
(Fig. 7a–d) are plotted with a resolved shear stress
sc = 100 MPa.

For the stress tensor r1, the yield surface is
delimited by the six straight lines:

ð
ffiffiffi
2

p
þ 1Þr11 	 ð

ffiffiffi
2

p
	 1Þr22 ¼ �2

ffiffiffi
6

p
sc ð15Þ

ð
ffiffiffi
2

p
	 1Þr11 	 ð

ffiffiffi
2

p
þ 1Þr22 ¼ �2

ffiffiffi
6

p
sc ð16Þ

r11 	 r22 ¼ �
ffiffiffi
6

p
sc ð17Þ

For the stress tensor r2, the yield surface is
delimited by the six straight lines:

	 ð
ffiffiffi
2

p
þ 1Þr11 þ 2r33 ¼ �2

ffiffiffi
6

p
sc ð18Þ

ð
ffiffiffi
2

p
	 1Þr11 þ 2r33 ¼ �2

ffiffiffi
6

p
sc ð19Þ

r11 ¼ �
ffiffiffi
6

p
sc ð20Þ
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For the stress tensor r3, the yield surface is
delimited by the six straight lines:

r33 þ r13 ¼ �
ffiffiffi
6

p
sc ð21Þ

r33 	 r13 ¼ �
ffiffiffi
6

p
sc ð22Þ

r13 ¼ �
ffiffiffi
3

p
sc ð23Þ

From Fig. 7c, one can easily show that the poly-
gonal area inside the yield surface in space r13r33

is almost equal to 10:97s2c . For the stress tensor
r4, the yield surface is delimited by the curves:

q ¼ �2
ffiffiffi
6

p
sc

cos h þ
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3sin2h

p ð24Þ

q ¼ �
ffiffiffi
6

p
scffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3sin2h
p ð25Þ
with

r11 ¼ q cos h and r12 ¼ q sin h ð26Þ
It can be shown that the intersection of the two

last curves is obtained for an angle hi ¼
Arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4

ffiffiffi
2

p
	 5Þ=ð19	 12

ffiffiffi
2

p
Þ

q
which is approxi-

matively equal to 35�. Note that this value is inde-
pendent of the critical resolved shear stress.
Accordingly, the value of the area inside the yield
surface in space r11r12 can be calculated by inte-
gration of two domains from 0 to hi and from hi
to p

2
. This area is almost equal to 8:15s2c . Hence,

the area inside the yield surface in space an
r11r12 is smaller then the area inside the yield sur-
face in space r13r33. Indeed, the equivalent stress
in space r11r12 is always perpendicular to the
h001i axes. As a result, the possibility of finding
an active system is larger than in the space r13r33.
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4.3. Comparison with FE model

The aim of this section is to assess the quality of
the static model. The polycrystalline model using
the simplest transition rule of Section 4.1 (uniform
stress assumption, Eq. (8)) is considered. This
corresponds to a representative volume element
(RVE) computation in which the aggregate is se-
lected so that the orientation distribution is the
same as in FE-64-64. The same tensile and shear
tests are performed with the static model and then
compared to the FE-64-64 responses. Fig. 8a
shows no difference for tensile test in 33 direction,
whereas small differences are observed for 11 and
22 directions. However, a significant deviation
is observed for shear test (Fig. 8b), especially for
12 test, meanwhile either 12 and 13 shear levels
are underestimated by the static model. This dis-
crepancy is just a remainder that a model must
be checked for all types of loadings, and demon-
strates that using a super single crystal approach
is not a valid assumption for a general purpose
DS material model. It is then necessary to intro-
duce an appropriate transition rule in an improved
model. This is the subject of the following section.
5. The b-model

In the previous section, it was shown that the
static assumption may fail to describe correctly
the DS behavior. This is mainly due to the pres-
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Fig. 8. Fitting on uniaxial strain controlled test. Comparison between
tests, (b) shear tests.
ence of non-uniform stresses in the different grains
in the case of shear test and tensile tests in direc-
tions 11 and 22. The material presenting a random
character in the plane normal to x3, the self-consis-
tent scheme is a good candidate to represent the
intergranular interaction. Instead of using the full
self-consistent formalism, what is presented here is
an explicit transition rule, which requires no inte-
gral differential equation to be solved for charac-
terizing the scale transition. The model involves a
set of parameters (only one for isotropic behavior)
that can be calibrated before use by means of FE
computations on representative cells.

5.1. Constitutive equations

The initial idea of the model is to start from
Kröner�s approach of the elastic accommodation
problem which uses Eshelby�s solution (Eshelby,
1957) for an ellipsoidal inclusion in an infinite
medium. The corrective term proposed by Kröner
to compute the local stresses is the product of a
fourth order tensor by the difference between aver-
age strain and local strain (Eq. (27)). The fourth
order tensor involves the elastic moduli tensor C,
the fourth order unit tensor I and Eshelby�s tensor
S (Sanchez-Palencia and Zaoui, 1987). In the pres-
ent model (Eq. (28)), these tensors are still used,
but the local strain is replaced by a phenomenolog-
ical variable bg, that presents a nonlinear evolution
with respect to plastic strain (Eq. (29)). Replacing
total strain by b


assumes that the main source of
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heterogeneity is plasticity more than elasticity.
This new variable was shown able to correctly cap-
ture the plastic accommodation which comes from
the self-consistent formalism (Cailletaud, 1987;
Cailletaud and Pilvin, 1994; Pilvin, 1996).

rg ¼ r þ C : ½ðI 	 SÞ : ðe 	 egÞ� ð27Þ
rg ¼ r þ C : ½ðI 	 SÞ : ðb 	 bgÞ� ð28Þ
_b
g ¼ _epg 	D : bg

X
s2g

j _csj ð29Þ

Since the grains are elongated in one direction, the
chosen S tensor is Eshelby�s tensor for a cylindrical
inclusion, obtained from the elliptic solution by
assuming that two dimensions are equal (a1 = a2)
and that the third one tends to infinity (a3 ! 1)
(Mura, 1987).

In the material axes, the tensor D has the fol-
lowing form, with six independent material
parameters:

D ¼

D11 D12 D23 0 0 0

D12 D11 D23 0 0 0

D23 D23 D23 0 0 0

0 0 0 D44 0 0

0 0 0 0 D55 0

0 0 0 0 0 D55

0
BBBBBBBB@

1
CCCCCCCCA

ð30Þ

Using the deviatoric property of the accommoda-
tion variable trace _b

g ¼ 0 the following additional
condition is enforced:

D33 ¼ D11 þ D12 	 D23 ð31Þ
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On the other hand, the form of S is the
following:

S ¼

S1111 S1122 S1133 0 0 0

S2211 S2222 S2233 0 0 0

0 0 0 0 0 0

0 0 0 S1212 0 0

0 0 0 0 S1313 0

0 0 0 0 0 S2323

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð32Þ

This Eshelby tensor S corresponds to the plane
strain hypothesis. This must be complemented by
the following condition which is enforced for each
crystal orientation:

eg33 ¼ e33 ð33Þ

After some algebraic manipulations, a condition
between the components of the local and global
stress tensors is derived:

rg
33 ¼ r33 þ mðrg

11 	 r11Þ þ ðrg
22 	 r22Þ ð34Þ
5.2. b-model–FE identification

The FE-64-64 computation is taken as a refer-
ence to calibrate the scale transition rule of the
b-model. The material parameters describing crys-
tal behavior are the same in both computations
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the b-model and the aggregate FE-64-64 model: (a) tensile tests,
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(FE and b-model). The only parameters to deter-
mine are those introduced in the matrix D defined
in Eq. (30). The global response of the RVE de-
scribed by FE-64-64 is computed by averaging
the stress and strain component on the whole
mesh. The database generated with FE computa-
tions includes tensile tests (Fig. 9a) and shear tests
(Fig. 9b). The scale transition parameters in matrix
D are identified by comparing the loading curves
coming from FE and b-model integration. As
shown by the figures, the responses obtained with
the two approaches are in good agreement with the
chosen set of coefficients (D11 = 1000, D12 = 75,
D23 = 100, D44 = 10, D55 = 100).

5.3. Model validation

Fig. 8a shows a comparison between the b-
model and the FE-64-64 aggregate model for a
biaxial test not included in the database of the
identification procedure. The two models are in
good agreement. On the other hand, the b-model
can be used in principle for non-monotonic load-
ing conditions. It is then necessary to compare its
response for a cyclic loading and that of the FE
aggregate model. Fig. 8b shows the comparison
for a test in which a symmetric shear strain is
imposed. This test was not included in the identi-
fication procedure and is thus a validation of the
model. This remarkable agreement shows the kine-
matic character of intergranular stresses (Fig. 10).

After having validated the b-model on a macro-
scale, it is necessary to assess its reliability at the
grain level (level 2). Note that a different strategy
would consist in solving the inverse problem made
of the global response and the local responses
taken together to identify the material parameters.
The present approach is more simple, and is
proved to provide an acceptable solution. Two ori-
entations are selected for that purpose u = 20� and
u = 50�. Fig. 11a–c show that the b-model is in
good agreement with FE calculations for tensile
tests as well as for shear tests.

An other mean to make the assessment at the
microscopic level, for a given macroscopic strain
level, is to compare the mean stress per orientation
predicted by the b-model and the FE calculation.
In Fig. 11d the X-coordinate of a given point
(corresponding to a given orientation) is the
local stress obtained by the b-model whereas the
Y-coordinate is the local stress given by the FE
simulation. It can be seen that the group of points
is close to the first bissectrice.
5.4. Intergranular heterogeneity

Fig. 12a shows for two selected orientation,
u = 20� and u = 60�, the influence of the location
of the grain. It can be seen that these variations are
weak. So that global and local responses of FE-64-
64 simulations and FE-64-8 simulations are almost
identical.
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After checking the response of the b-model on
macroscopic model on both macroscopic and
microscopic stress–strain curves, it is also impor-
tant to evaluate the quality of the transition rule
with respect to intergranular heterogeneity. This
is made by comparing the average response of
the elements having the same orientation in the
FE computation with the corresponding local
response for the same crystallographic phase in
the b-model. Note that due to the additional
condition (34) the intergranular strain heteroge-
neities vanish for the 33 direction. The heteroge-
neities are more significant for shear tests than
for tensile tests (Fig. 12b–d). Furthermore, in
the yield surfaces presented in Section 4.2 it was
shown that when the stress components are
contained in a plane perpendicular to the h001i
axes, there is a large amount of relative orienta-
tions between the crystals and the loading frame.
This is why the 12 shear test exhibits a more sig-
nificant intergranular heterogeneity than 13 shear
test.
6. Conclusions

The purpose of the paper was to test the capa-
bilities of a micro-mechanical mean field model
to represent mechanical behaviour of DS materi-
als. A FE model in which grains are represented
by a group of elements with columnar morphology
is used to generate a material database. A number
of loading cases are considered to account for the
orthotropic character of the resulting unit cell. The
results of the FE computations provide informa-
tion at three levels:
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• Macroscopic level, using the volume average
over all Gauss points.

• Phase scale, using the volume average over the
Gauss points of the elements having the same
orientation.

• Intragranular level, which concerns the individ-
ual Gauss points.

An attempt is first made with a static model, but
it is demonstrated that such an approach gives sat-
isfactory results only for a tension along the growth
axis, and fails to represent any type of shear load-
ing. A transition rule is then necessary to account
for residual stresses on the phase level. A b-rule is
used for that purpose. It is successfully calibrated
on the whole numerical data base, using the macro-
scopic responses. A detailed analysis is then shown,
in order to evaluate the scatter to be expected on
the other scales. The b-rule correctly represents
the stress and strain range on the level of the phase.
Further developments have to be made to capture
an evaluation of the intragranular scatter.

It is worth noting that this good prediction
capability can be obtained without capturing the
intragranular heterogeneities. This has to be re-
lated to the fact that the global response is the re-
sult of a series of averages, which are acceptable
with the present microstructure (texture and slip
system). It does not demonstrate that the result
is general, nevertheless, it has already be validated
in similar conditions on a FCC aggregate (Barbe
et al., 2001). The b-model is implemented in the
FE element code Zebulon (Besson et al., 1998).
In the present state, it is possible to use the b-model
as the constitutive equations in the FE method to
analyse inelastic behaviours of machine compo-
nents made of DS material submitted to multi-
axial thermomechanical loadings.
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nologique du comportement inélastique des métaux. Ph.D.
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