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ARTICLE INFO ABSTRACT

A micromorphic crystal plasticity model is used to simulate slip band localization in single crystals under simple
shear at finite deformations. Closed form analytical solutions are derived for single slip in the case of positive,
zero and negative strain hardening. Linear negative strain hardening, i.e. linear softening, leads to a constant
localization slip bandwidth, while non linear softening and saturating behaviour results in an increasing
bandwidth. An enhanced model is therefore proposed in order to maintain a bounded localization slip band-
width when considering an exponential softening behaviour. Analytical solutions are used to validate finite
element computation of the same boundary value problems. The enhanced micromorphic crystal plasticity
model is then applied to predict the interaction between localized slip bands and voids encountered in porous
irradiated materials. For that purpose, periodic porous unit cells are loaded in simple shear with a strain gradient
crystal plasticity matrix material. The finite element simulation results show that, for a given void volume
fraction, the larger the voids, the wider the localization band. However, for a given void size, the larger the void
volume fraction, the narrower the localization band. In addition a satisfactory qualitative agreement of the
rotation and elongation of the voids with the experimental observations made in irradiated materials is observed,
where small voids are shown to remain ellipsoidal for larger shear strains. Large voids deform into peanut-like
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1. Introduction

Strain localization is commonly encountered in experiments invol-
ving a wide range of materials at scales spanning over multiple orders
of magnitude and are referred to as necking, shear bands, Liiders bands,
Portevin-Le Chatelier effect. The pioneering works of Considére (1885);
Hadamard (1903); Thomas (1961); Hill (1962); Mandel (1966); Rice
(1976) set the general framework for predicting strain localization as a
result of a mechanical instability involving either geometric or material
imperfections. In metals, a material-based instability may for example
originate from a porosity growth induced softening behaviour leading
to shear-banding, while necking in a tensile test is an example of a
geometry-based instability (Hart, 1967; Audoly and Hutchinson, 2019).
In single crystals slip bands and kink bands described in (Gilman, 1954;
Jaoul (1965, 2008); Neuhiuser, 1983b) are common occurrences of
material induced strain localization phenomena. Characteristic length
scales arise naturally in strain localization phenomena observed in ex-
periments, but conventional material models are however size-

independent and therefore cannot provide satisfying predictions for
strain localization. In addition when aiming at modelling softening
mechanisms, numerical simulations using conventional theories display
spurious mesh dependent dissipated energy due to the loss of ellipticity
of the underlying partial differential equations (see e.g. Bazant et al.
(1984); Lorentz and Benallal (2005); Germain et al. (2007)). As a re-
medy, regularization methods such as Cosserat, integral and gradient
models (see (Forest, 2005) and references quoted therein) have been
developed extensively in the past few decades also motivated by size
effects observed in experiments. In particular, observations suggest that
some size effects in metals are related to Geometrically Necessary
Dislocations (GND) (Stelmashenko et al., 1993; Fleck and Hutchinson,
1997). Hence strain gradient plasticity (SGP) theories have been ex-
tended to frameworks suited to (sub-)crystalline scales, as for instance
continuum crystal plasticity (Fleck and Hutchinson, 1997; Forest et al.,
2000; Bardella, 2006; Cordero et al., 2010; Niordson and Kysar, 2014)
and references quoted therein). For metallic single crystals strain lo-
calization induced by material softening generally results in the
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formation of slip bands. These thin bands are parallel to the primary
slip plane and their thickness is directly related to the defect density
and softening mechanism involved. In contrast, kink bands are locali-
zation zones of finite thickness that are perpendicular to the slip di-
rection. Kink bands are known to occur when strain incompatibility
arises and if not enough slip systems are available. Asaro and Rice
(1977) have performed a bifurcation analysis of plastic slip localization
for crystals undergoing single slip. Their theoretical analysis shows that
slip and kink bands are equally probable single slip localization modes
in that conditions. Asaro and Rice's bifurcation analysis is based on
standard crystal plasticity. More advanced crystal plasticity models
incorporate the dislocation density tensor as a hardening variable in
addition to scalar dislocation densities (statistically stored dislocations)
(Gurtin, 2002; Wulfinghoff et al., 2015). Dislocation pile-ups are known
to induce a back-stress and associated kinematic hardening (Steinmann
and Stein, 1996; Forest, 2008; Cordero et al., 2010). As a result loca-
lization in kink bands can be superseded by slip bands that do not in-
duce any lattice curvature as proved by the bifurcation analysis in
(Forest, 1998). Strain gradient plasticity introduces length scales in the
continuum models and can therefore provide physically-relevant reg-
ularization properties. It appears that strain gradient plasticity reg-
ularizes kink bands, meaning that simulated kink bands have a finite
thickness (Forest et al., 2001). In contrast the finite element simulation
of slip bands is mesh-dependent (they are one element (in fact one
Gauss point) thick) because they can develop in the absence of accu-
mulation of GND. The recent simplified strain gradient plasticity model
developed by Ling et al. (2018), following the approach from
Waulfinghoff and Bohlke (2012); Wulfinghoff et al. (2013), displays the
unique feature of regularizing both slip and kink bands. This is because
it involves the full gradient of a cumulated slip variable instead of the
dislocation density tensor or individual GND densities. This model is
acknowledged to be too crude to control independently the intensity of
slip and kink bands. The regularization effect on slip bands is of phe-
nomenological nature, it has no precise physical background in contrast
to kink bands which are controlled by the formation of polarized dis-
location walls represented by GND densities. It is a necessary feature for
a model to be used in mesh-objective finite element simulations of slip
banding in crystals.

Although it is of particular importance when investigating flow lo-
calization, only a few works mention the evolution of the length scale
during straining and how it is linked to the hardening/softening be-
haviour. In an early work Zbib and Aifantis (1988) highlighted the slip
band narrowing arising when considering a parabolic hardening/soft-
ening behaviour in a strain gradient framework. In the different but
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closely related context of non-local damage models, Geers et al. (1998);
Simone et al. (2004) evidenced spurious spreading of damage over
continuously wider regions. Recently Poh and Sun (2017) and
Vandoren and Simone (2018) proposed to use a damage-dependent
length scale respectively in micromorphic and integral non-local da-
mage models to address this unwanted phenomenon. Dislocations mo-
tion mechanisms motivated Forest and Sedlacek (2003) to propose
evolving length scales depending on the dislocation density. Dahlberg
and Boasen (2019) provided a strain gradient framework incorporating
an evolution law for the constitutive length scale parameter which is
also physically based and directly related to the dislocation density.
Evolving length scales are also present in the newly developed SGP
model by Petryk and Stupkiewicz (2016). Also, to the authors’ knowl-
edge, the case of saturating softening behaviour has received little at-
tention in the literature. This is particularly important when aiming at
simulating ductile failure at large local strains of materials exhibiting
softening. We will show in the present work that the saturated regime in
most existing SGP models leads to unwanted broadening of the locali-
zation zone. This feature will be analyzed and a remedy will be pro-
posed.

One example of intense flow localization is the mechanism of dis-
location channel deformation (DCD). It consists in a highly hetero-
geneous deformation mode at the grain scale. Abundant observations of
this deformation mode have been made in quenched (Bapna et al.,
1968; Mori and Meshii, 1969; Wechsler, 1973), predeformed (Luft
et al., 1975) and irradiated (Tucker et al., 1969; Smidt Jr, 1970;
Wechsler, 1973; Fish et al., 1973; Farrell et al., 2003; Jiao and Was,
2010; Gussev et al., 2015) metals. Such channels initiate when the first
moving dislocations are clearing a path of isolated sessile obstacles, for
example Frank dislocation loops, leading to a reduced defect density
inside channels. They are also called clear bands due to their contrast in
electron microscopy (Lee et al., 2001). The induced softening along that
path is the precursor to flow localization. It has been shown experi-
mentally in (Farrell et al., 2003) and numerically in (Barton et al.,
2013; Arsenlis et al., 2012; Cui et al., 2018) that deformation locali-
zation in irradiated steels is simultaneously accompanied by a loss of
dislocation interactions and activation of fewer slip systems. The
thickness of dislocation channels is typically measured in a
10 nm-100 nm range in irradiated materials (Farrell et al., 2003). Dis-
location channels are known to have a strong influence on macroscopic
mechanical properties of nuclear materials. Dislocation channels may
indeed interact with grain boundaries and favor the mechanism of Ir-
radiation Assisted Stress Corrosion Cracking (IASCC) (McMurtrey et al.,
2011). Moreover the Transmission Electron Microscope (TEM)

Fig. 1. (a) Dislocation channeling observed by TEM in a highly irradiated (7.5 x 102n/cm?, E > 0.1 MeV) deformed tension specimen tested (stainless steel 316) at
370°C (reproduced from (Fish et al., 1973)) displaying peanut-like void shapes (b) Deformed neutron irradiated stainless steel 316 at 340°C displaying sheared and
elongated irradiation voids (pointed out with yellow arrows) inside a dislocation channel (bounded by cyan dashed lines) (reproduced from (Renault-Laborne et al.,
2018)). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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observations of deformed radiation-damaged stainless steels in Fig. 1a
and b suggest that dislocation channels may also interact with other
irradiation induced defects such as nanometric voids or bubbles.
Elongated voids inside channels indicate possible large local strains.

In this study a reduced finite strain micromorphic single crystal
plasticity model is used to describe slip band localization in single
crystals. The novelty of the approach lies first in the analytical deri-
vation of closed form solutions obtained from a micromorphic crystal
plasticity theory in case of single slip associated to linear hardening and
softening behaviours. It is demonstrated that this kind of model predicts
an increasing and unbounded localization slip bandwidth when a sa-
turation of softening is reached. Second, an enhanced micromorphic
crystal plasticity model, involving an evolving length scale, is then
proposed that predicts a bounded localization slip bandwidth for rea-
listic saturating softening behaviours. Finally, the enhanced model is
applied to study the interaction between localization slip bands and
voids that may exist or nucleate in irradiated materials. For that pur-
pose a 2D plane strain periodic porous unit cell containing one void is
loaded in simple shear with the shearing direction parallel to the single
slip direction. A simple exponential softening behaviour is used in order
to model softening due to irradiation defects clearing by the DCD me-
chanism. The relative influence on localization of the intrinsic length
scale of the micromorphic crystal plasticity model and of the void size
and effective void volume fraction inside the localization slip band are
assessed.

The paper is outlined as follows. In section 2 the main features of
the micromorphic crystal plasticity model are presented and analytical
reference solutions for single crystals under simple shear are derived,
assuming single slip and linear hardening behaviour. An analytical
solution for linear softening is established showing constant slip
bandwidth. An enhanced model is then proposed in order to keep a
bounded localization slip bandwidth for non-linear softening behaviour
in section 3. In section 2 and 3, numerical solutions are compared to the
analytical solutions. Finite element predictions of void/localization
band interactions are presented and discussed in section 4 for 2D plane
strain periodic porous unit cells. Concluding remarks follow in section
5.

2. Simple shear in the cases of linear hardening and perfect
plasticity

The model used in the next sections is taken from (Ling et al., 2018)
and synoptically recalled hereafter. It is based on initial formulations by
Waulfinghoff and Bohlke (2012); Erdle and Bohlke (2017) and finite
deformation extensions from (Forest, 2016). Underline A and under-
wave bold A symbols refer to vectors and second-order tensors, re-
spectively. Dyadic product, outer product, double contraction and
tensorial product are respectively written A.B, A A B, A: B and
A ® B. Transposition, inversion, inversion followed by transposition
and time derivation are respectively written A7, 4!, A7, A.

2.1. A reduced micromorphic single crystal plasticity model at finite
deformations

Let us consider a crystalline continuum for which each material
point can uniquely be defined by a position vector X in the reference
configuration Q, and a position vector x in the current configuration Q.
Following the micromorphic approach of (Germain, 1973; Forest,
2016), at time t, the degrees of freedom (DOF) of the material point are
described by the field of displacement vector u (X, t) and an additional
microslip scalar field % (X, t). This additional field of degrees of
freedom Vs which comes in addition to usual constitutive internal
variables, is introduced to refine the kinematical description at a given
material point X :

DOF = {u, 7,}- 1
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In the present work, the micromorphic variable y, is akin to a cu-
mulative plastic slip variable within the micromorphic approach
(Forest, 2016). It will serve as an auxiliary variable for a convenient
numerical implementation of strain gradient plasticity.

The Lagrangian gradients of the degrees of freedom are:

ou

H(x,t)= — = Grad u,
H (x, t) X radu @

d
K(x. 1) = 2% = Grady,,

ox 3

where the displacement gradient H is directly related to the deforma-
tion gradient F by F =1+ H, and K is referred to as the microslip
gradient vector. We introduce the following stresses:

s=2g pr,
P @
M =21,
0 (5)
S = &s.
0 (6)

where § is the Boussinesq (or first Piola-Kirchhoff) stress tensor which
generates mechanical power with F and ¢ the Cauchy stress tensor
which generates power with F. FL. The vectors M and m are gen-
eralized stresses with respect to the reference and current configura-
tion, respectively. They are respectively conjugate to K and K. F~' in
the power of internal forces, see (Ling et al., 2018). Similarly, S and s
are the generalized stresses in the reference and current configurations
which generate power with 7,. The balance laws for momentum and
generalized momentum take the form

DivS§=0, VX e€EQ, @)

DivM —-S=0, VX e€EQ,, ®

where Q) is the reference configuration of the body. The associated
boundary conditions read

T=Sn, VXei, (C)]

M=M.n, VX €O, (10)

where T is the surface traction vector which generates power over F. M
is the generalized surface traction which generates power over K.
Vector n, is the normal to the surface element of the boundary 6Q, of
the body. The multiplicative decomposition of the deformation gradient
F is adopted

F=E.P, an

where E denotes its elastic part and P its plastic part. The local inter-
mediate configuration C; consists in the transport of the local reference
configuration by the tensor P. The local current configuration C con-
sists in the transport of the reference configuration C, by F, or
equivalently the transport of C; by E. y° is the plastic slip on a system s
defined by its Schmid tensor N* = ¢ ® n® where n* is the normal to
the slip plane and ¢* the slip direction. P is related to the plastic slips by

N
P.P'=) N’
s=1 (1 2)

where N is the total number of slip systems. The elastic Green-Lagrange
strain measure E¢; is introduced as

EéL = %(ET- E-D

E 2)- 13)
A plastic cumulated slip measure y,,,, is now defined as
[
Youm = lysidt.
R e a4
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A
X,
0 B> Xy
L
slip dir.
L —>
slip plane
v
<«—>
W

Fig. 2. Periodic unit cell of width W along X, length L along X, and thickness
T along.X3

The relative plastic slip e quantifies the difference between cumulated
plastic slip and microslip with

eX, 1) = Youm — ¥y (15)

7, is the micromorhpic counterpart of y,,,, they have identical physical
interpretation.

A free energy density function y is chosen in the form:

1
y=1F

PP (EéLs e K, Youm) =

lﬁerz + lp
2 py

EG: C1EG + —
N 2 po 2 po

AK". K + oWy Yeum)»

(16)
C is the fourth rank tensor of elastic moduli, H, a penalty modulus, A a

fligher order modulus and p,, p; and p are volumetric mass densities in
the reference, intermediate and final local configuration respectively.
The function ¥, (},,,,) is a hardening potential which will take various
forms in the following sections. For simplicity a quadratic and isotropic
form was assumed for the gradient K contribution in the free energy
potential, leading to a single higher order modulus A. If the penalty
modulus H, is large enough, the variable y, is almost equal to ¥,,,. In
that case, the gradient K of y, does not significantly differ from the
gradient of the cumulated slip variable y,,,,. In the following sections
the following approximation will be used:

2.
aﬁ ~ a}/cum 9 Tx ~ a27/cum

oX  ax = ox®  ax? )

Yy = Yeum

The micromorphic model then reduces to a SGP model (Forest,
2009). The following state laws are postulated, identically fulfilling the
second law of thermodynamics:

I = C: o, as)
S = —Hye, 19
M = AK, (20)

where the Piola (or second Piola-Kirchhoff) stress tensor II¢ is defined
with respect to the intermediate configuration C; by

I = %E‘l, g. ET= ?E‘l. S. PT. The Mandel stress II™ is introduced
0

with respect to the intermediate configuration by I = ET. E. II¢, in
order to compute the resolved shear stress t° by z° = II™: N*. In con-
trast to strict strain gradient plasticity, the higher order micromorphic
stresses are uniquely defined in the elastic part of the structure.
Whereas the slip variable y vanishes in the elastic part, the microslip y,
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can be different from zero. This occurs close to the boundary with the
plastically active domain. According to the second law of thermo-
dynamics, the residual dissipation inequality is obtained as

N

P d
> (w + Sy pﬁﬂ)b}‘q > 0.
I d

s=1 cum

21

Hence the yield function f* for each slip system s is introduced with

p d e d
fs = |75 + _us - pli lph — 7= It — (To — _ﬁs + pﬁﬂ)’
P P Do

7. (22)

where 7 is the initial critical resolved shear stress, which is assumed for
brevity to be the same for all slip systems. For conciseness hardening is
here assumed to be a function of y,,, only. Noticing that p, = p, due to
plastic incompressibility, from (6) one has Fg=s. Accordingly, a rate-
dependent law is chosen for the plastic slip rates

) dy
TS| — (TO - S+p %ﬁn )

7* = sign(z*)y,
To

23

where y, and n are viscosity parameters.

2.2. Analytical reference solutions for linear hardening and perfect
plasticity

As a simple reference analysis of this model we propose to study the
problem of a periodic unit cell loaded in simple shear and undergoing
single slip for linear hardening and perfect plasticity behaviours.
Predictions of the model are derived analytically in the rate-in-
dependent case and used to validate the finite element computations
performed with the finite element solver Z-set (Besson and Foerch,
1997; Z-set package, 2013).

2.2.1. Geometry and boundary conditions

Let us consider the periodic unit cell of width W in X, length L in
X, and thickness T in X3 = X; A X, directions shown in Fig. 2. As in
(Ling et al., 2018), the problem of simple shear with a unique slip
system (¢, n) aligned with the shearing direction is considered (¢ = X;
and n = X,). A macroscopic (average) transformation gradient F is
applied such that

u=F-1.X +v(X), 24)
with
F=1+F,f{Q n, (25)

where v is a periodic function of periodicity W in X; direction, L in X,
direction and T in X; direction. At origin point O zero displacements
are imposed in the three directions such that

uX =0,X%=0X=0) =0 (26)

In order to enforce existence of gradients of the microslip y, along
X, and thus evidence the boundary layer formation, Dirichlet boundary
conditions along X, are applied while periodic boundary conditions
along X; and X; are considered

7,06 = 0, X, X)) = 1, = W, X%, Xs), @7
(X X—+£ X)—O
Y| A1 2 =2 A4)=0 (28)
T T
X, X%, X3=——|= X, X%, X3 =—|
YX(1 2, A3 2) y)((l 25 A3 2) (29)

Analytical solutions are first obtained in the case of linear hardening
(H > 0) and perfect plasticity (H = 0) corresponding to the following
form of the hardening potential:
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lﬁHyz

,Oll) (ycum) = cum’
h 20, (30)

where y,,,, = Iyl in the case of monotonic single slip for which the su-
perscript s is dropped, and H is the hardening modulus. In the reference
configuration, the equations that need to be satisfied are the balance
laws (7), (8) and yielding condition (22). From (12) one has in simple
shear with a single slip system that P = ¢ + y¢ ® n. Inspired from the
work of (Gurtin, 2000), with F = E. P, we make the assumption of
small elastic deformations in the absence of lattice rotation expected in
the considered slip configuration, i. e Ejp<1 with
E=F.P'=¢+ E,»¢ ® n. Hence one obtains:

E
E&G~"2U® n+n® 0),
Ecr 2(_(X) n+nQ® ¢) 31)
and also I* = C: Eé, = TI1,(I1® n+ n ® 1) where C is the elasticity
tensor. It follows from the definition of Mandel's stress IM = E”. E. II°
and the small elastic strain assumption that I ~ II¢, and thus, drop-

ping the superscript for the unique system s, one has
=" (¢® =T (¢ Q n) (32)

Hence one obtains II{, ~ 7. The assumption of small elastic de-
formations yields also § =~ II°. P~7. Note that P is of the form
P=1+y¢® n,hence P-T=1-yn® ¢ and the balance equation
(7) rewrites

Div(II* —yII*. (n ® ¢)) =0, (33)

which yield, when projected along X; and X,

ot _90m _,

ax, ax; ’ (34)
9T,

0X, (35)

From the periodic boundary conditions (27) and (29), and arbi-
trariness of the width W and thickness T, invariant solutions along X;
and X; will be sought, i.e. Yy X, X%, X3) = Y (X3). Similarly, from (17) vy
is also invariant along X; and X;. As a consequence equations (34) and
(35) give respectively that 7 is invariant along X; and X,. Since the
periodic unit cell can be considered arbitrarily thin along X5 without
loss of generality, 7 is also invariant along X 3. Hence 7 is uniform in the
periodic unit cell:

(X, %, X3) = 1. (36)

Combining (19) and (20) with (8) leads to the differential equation
governing the microslip
d%y,
A—% = H,(y,— 7).

oz (37

From the homogeneity of the shear stress in the unit cell, when
yielding occurs the whole unit cell becomes plastic and the yield con-
dition (22) leads to f= Izl — (7 + Hy + H,(y — y){)) = 0. Combined
with (37) one obtains another form of the differential equation gov-
erning the microslip

2
LT
d&; H+H/*

Hy
(Il = ) = 0.
H + H, (38)
Since the shear stress r is uniform in the unit cell, the differential
equation (38) governing the microslip is a second-order, linear, in-
homogeneous differential equation with constant coefficients. It is el-
liptic if H > 0 and parabolic if H = 0.

2.2.2. Linear hardening (H > 0)
In the case of linear hardening Eq. (38) takes the form

&y, (27¥ o)
—= - y)( =—|—|x,
ax; Ao 4o (39)
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where 1y and « are constants defined by:

|A(H + H)) .
Ay = 2m |———==, assuming H + H, > 0
\ HIH (40)
(/10 )ZHX(|‘L'| - 1)
k=|—| —-—7-.
2m) A(H+ Hy) (41)

Note that for large values of the penalty parameter H,, one has
H, > H and the intrinsic length 1, ~ 27JA/H, which is the expression
for the strain gradient plasticity model. For a strictly positive linear
hardening, the solutions of (39) are of the form

Yx(Xz) =a cosh(anz) +B sinh(—Zn’%) + x,

0 0

42)

where a@ and B are integration constants. For symmetry reasons
yX(Xz) = yX(—XZ) which leads to 8 =0 and a is uniquely determined
from boundary condition (28):

x
cosh(5:5) 43)
which finally leads to

cosh(%Xz)

@ . 44

SinceF=E.P=(+Ex(f® n). €+y¢Q m))=(¢+ Ez+7)(¢Q n)
from (31) and (36) one has

a=-

Yy =K 1-

2Cy S (Fa-v
=10}, = 2CuEgp 1, = I f A (— dx,
2

2 (45)

where C,, denotes the elastic shear modulus. From yielding condition
(22) v can be replaced by % in (45) and the integration pro-
X

vides an expression of r as a function of the applied macroscopic
(average) shear F;, and material parameters:

F, + %
T
cu Tz (46)
2m L
1 2thanh(705)
where — = — — B —
Zy, H L3 H (H+ Hy) (47)

2.2.3. Perfect plasticity (H = 0)

For the case of perfect plasticity, H = 0, the same periodic and
Dirichlet type boundary value problem as in the previous section is
studied. In that case the differential equation (38) becomes

d¥y _
/o Hd=-7n _,
dx; A (48)

The analytical reference solution in case of perfect plasticity is thus
of polynomial form

T — Izl

7%, (6) = X5+ aXo + B,

(49)

where a and  are integration constants, which are uniquely determined
from boundary conditions

_ _ To — Il 2
a=0andf = oA 12, (50)
which finally leads to
= Il s (L)2
X)) = X —=1=11
7, (%) A ( 2 5 1)
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This solution is also obtained when computing the Taylor expansion
at order two of (44) with H going to zero, i. e. 1 going to infinity and
X;/A¢ going to 0. Using the uniformity of the shear stress in the unit cell,
equation (45) leads now to

F,o4 0
e + %
T
Cu 2 (52)
1 1 ?
where — = — + —,
> H, 124 (53)

which is also obtained with the Taylor expansion of (47) when H goes
to zero. In the case of strictly positive linear hardening a boundary layer
solution is obtained. The size of the boundary layer depends on the ratio
between the material length scale 1, and the size L of the unit cell. In
the case of perfect plasticity, it appears that the size of the plastic zone,
or in other words the radius of curvature of the parabola, depends not
only on the higher order modulus A but also on the size L of the unit
cell.

The analytical solutions (44) and (51) are used to validate the finite
element solution of the same boundary value problem. The unit cell is
discretized regularly in 101 elements (reduced integration with eight
Gauss points). The interpolation is quadratic for the displacements u
and linear for Y Cubic elasticity is considered and Ci;, Cp; and Cy
denote the elasticity moduli. Table 1 gathers the material parameters
that have been used for validation in case of linear hardening
H = 1000 MPa and perfect plasticity H = 0 MPa. Fig. 3 shows the finite
element and analytical solutions at Fj, = 1%. Viscosity parameters ¥,
and n have been chosen such that the response is almost rate-in-
dependent. The viscous part of the stress is equal to 7, (7/7,)"/". With the
chosen values of the parameters, it is more than 20 times lower than the
critical resolved shear stress in the range of strain rates considered here.
A perfect agreement is also obtained for any other value of Fy,.

3. Simple shear in the case of softening behaviour

This section is dedicated to the prediction of the micromorphic
crystal plasticity model for softening behaviour and in particular to the
formation of localization slip bands. As mentioned in the introduction
strain gradient models can be used to regularize strain localization
phenomena by introducing one or several characteristic lengths. It is
shown here how the model presented in section 2 incorporates an in-
trinsic length that, in case of single slip and linear softening, is related
to the localization slip bandwidth. Then non-linear saturating softening
behaviour is shown to trigger an increasing slip localization bandwidth.
An enhanced model is then proposed in order to bound the localization
bandwidth and thus confine the localization zone when the softening
behaviour tends toward perfect plasticity.

3.1. Linear softening (H < 0)

Let us now consider a linear softening behaviour (H < 0 in the
hardening potential (30)). The same boundary conditions (27), (28) and
(29) as in previous section are kept. Because of the material softening a
plastic instability is expected. Therefore a solution with localized plastic
deformation over a width A along X, and centered at O is sought for. In
the plastic zone the yield condition is satisfied while y is zero in the
elastic zone

Table 1

Numerical values of material and unit cell parameters.
G G2 Cyy 70 A Hy n %o L
200GPa 136GPa 105GPa 10MPa 1N 10°MPa 15 10l7¢-! 1mm
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A
f‘ov&e[_ﬂz]’ 54)
y=0 VXZE[—E;—i]U[i;E].

27 2 272 (55)

The differential equation (38) governing y, is only valid in the re-
gion X; € [—%; %] and the solutions are of the form

7)) =a cos(Zﬂ%) + sin(Zﬂ%) +x.

0 (56)

For symmetry reasons 7, (X) = 7,(—X;), hence g = 0. Out of the
plastic zone y(X;) =0 and at the elastic/plastic interfaces, i. e at
X, = i%, continuity of microslip y, and of generalized stress normal to
the interface M. X, must hold, hence

()
\*2)=N\F7) T 7)
d
M(ii).X2=AﬁIX, 2 =0.
2 dx, =% (58)

Combining (57) and (58) with (56) one gets

a_lrl—r[,
T H (59)

A = Ao. (60)

Hence it is shown that, for H, > H, the material parameters H and
A fully determine the width 1 = Ay ~ 277JA/H of the localization slip
band that arises in single slip with a linear softening behaviour. This is
in contrast to the parabolic case of the previous section for which the
plastic zone size depends on the length of the unit cell. From (45) the
uniform shear stress writes

F, + ;—‘l
= 1°
Tz (61)
where — = ﬁ.
Z, HL (62)

In the case of strictly negative linear softening the localized solution
obtained is a cosine profile. The period of the cosine function is a
material parameter and it is equal to the width of the localization band.
If the length L of the unit cell is larger than 4, the period of the cosine
function is then equal to L. Numerically, in order to trigger the locali-
zation instability in the center of the periodic unit cell, a defect is in-
troduced in its middle. It consists in a single element having an initially
slightly lower critical resolved shear stress 73%*" taken equal to 99% of
7. The analytical solution (56) is used to validate the finite element
solution of the same boundary value problem using the same mesh as in
section 2. Fig. 4 shows both solutions at F;, = 1%. A perfect agreement
is also obtained for any other value of F,.

3.2. Non-linear softening and localization slip band widening

A linear softening behaviour is useful to establish analytical re-
ference solutions, but is of limited interest for modelling softening in
real materials at large deformations. In order to model any given sa-
turating softening behaviour, for example the clearing of Frank dis-
location loops inside dislocation channels relevant for irradiated ma-
terials, we propose to introduce in (16) a non-linear exponential
softening by means of the hardening potential

Y.
o, = —ﬁfa%eXp(—ﬂ)-
Po 10

(63)

This kind of softening is similar to the phenomenological dislocation
unpinning model proposed by Ling et al. (2017). The goal of the present
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Fig. 3. Analytical (black line) and finite element (red crosses) solutions of differential equation (38) with: (a) a strictly positive linear hardening (H = 1000 MPa) and

(b) perfect plasticity (H = 0 MPa) at F, = 1%.
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Fig. 4. Analytical (black line) and finite element (red crosses) solutions of
differential equation (38) with a linear negative hardening (H = —250MPa) at
Fy = 1%.

subsection is to evidence the broadening of the localization band when
such a non-linear softening behaviour is adopted inside the formulation
presented in section 2. An enhanced model is then proposed in order to
bound a priori the localization slip bandwidth when considering linear
and non-linear softening behaviours. Zbib and Aifantis (1988) evi-
denced the narrowing of localization shear bands by adopting a concave
parabolic hardening. However, parabolic softening is unrealistic at
large strains and is not used in the present work. As shown in the
previous subsection, for simple shear in single slip, a constant band-
width is obtained in case of a linear softening. Hence a slip bandwidth
widening is expected to occur due to the increase of the (negative)
tangent softening modulus of the softening proposed in equation (63).
The yield condition (22) in the particular case of a non-linear ex-
ponential hardening writes:

Ve
ff=1 = [TO - Hx(yx = Youn) + Tayoexp(—cy“m)) =0.

(] (64)

The solution in terms of y,,,, for yielding condition (64) involves the

Lambert 7 function.! Finally y,,, is eliminated from the differential
equation (37) which provides

d%, 70 — Itl — Hyy,
A—% + Hyy ’//”(—Hfa uxp( 0 2x N = — Hl.

dx; LYo Hyy (65)

This differential equation cannot be solved analytically, however a
local analysis in the neighbourhood of a given point X = X suffices to
prove the widening of the localization band. The function i s then

Yeum

approximated by its Taylor expansion in X° with

dip, dy,
= Vo) = HE G, = Yeum X)) + Y X)),
e ' Ty, (66)
d2
with 7 = SP0  x0)),
Y pum 67)

This expression can be substituted in (22) and the same analysis as
in previous subsection leads then to a local characteristic length scale A
which is similar to the case of linear softening

[AH? + H,
A:Zn\/i( z 2 =~

2 A
IHRIH, IHLI (68)

0 0y & H . Ta
|Hy| decreases when 7y, (X;) increases and ranges in ]0, 70]. Youm

reaches its maximum at the center of the defect (X{ = 0), so A is
maximum at Xy = 0 and goes to infinity when softening saturates, i.e.
when 7, (X3) goes to infinity and IHY| goes to 0. Finally this proves that
the localization bandwidth tends to increase when increasing Fy,. This
result has been verified by computing the finite element solution of the
7, profile for the exponential softening potential (63). Fig. 5 shows the
numerical solution obtained for different values of Fi,.

Eventually for large values of y,,,, the localization slip band edges
reach the boundary of the periodic unit cell and plastic deformation
tends to become homogeneous. This feature of localization slip band
broadening is not acceptable when trying to simulate continuing loca-
lization at plastic strains much greater than the softening saturating
strain (y,,, > ¥%)-

L For z € C, and the function f: z — ze?, the Lambert 7 function is defined as
the inverse function of f, i.e such that for z € C, z = f~(ze?) = # (ze?)
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Fig. 5. Finite element solution of equation (37) for an exponential softening
behaviour displaying localization bandwidth widening.

3.3. An enhanced model for a bounded localization slip bandwidth

An enhanced micromorphic crystal plasticity model is therefore
proposed in order to bound a priori the localization slip bandwidth
when solving the problem of simple shear in single slip. Up to now A
was taken as a constant material parameter, while hardening was taken
into account with the hardening potential ¢, (y,,,,). Here a dependence
of the higher order modulus A with respect to y,,, is introduced in the
form:

Ao )2 d’,

A(ymm)=—(— 2 ,
o) "y (69)

where A, has the dimension of a length. The corresponding Lagrangian
potential (16) writes:
1p

Y =—-—
2py

1p

Eé: C:EG + Py 1e

—H,e’ +
Po 2p,

A(ycum)KT K + Pl,bh (}/cum)'

(70)

By virtue of the second law of thermodynamics the state laws (18)
and (19) still hold and (20) becomes

M =A@, K. (71)

The residual dissipation inequality is now

N
2 d
D (w PR S K)nm > 0.
= o Weun 2 W (72)
An enhanced yield function is proposed in the form
d

=1 = (ro - s+ pﬁﬂ + lﬂxf K)

P Wowm 2 Aoum 73)

It can be seen that the introduction of an evolving higher order
modulus induces additional apparent hardening in the expression of the
effective critical resolved shear stress. For the problem of single slip
considered here superscript s is dropped and combining (71) with the
balance equation (8) and yielding condition (73) one obtains the gen-
eral differential equation inside the plastic zone [—’l A]

b
P 1 ad4 (d}'x)z

—x_ 2 dA dy, 7
A7 2dy,,\dX%

- dycum x, dX

dy,

A V) —ltl.

+T0+Pn

ycum
(74)

At this step it is straightforward to show that (73) and (74) reduce
respectively to (22) and (39) in case of a linear hardening/softening
behaviour (¥, (7,,,,) = %Hyczum). In that case Ay = 1 and the solutions of
this equation have been detailed in sections 2.2.2, 2.2.3 and 3.1. For an
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exponential softening behaviour of the type proposed in (63) one has

d Ao\
pnf% =1 exp(—yﬂ) and A(Yy,) = (J) Eexr{—yﬂ)-
eum % 2/ %o (75)
Note that A(y,,,) = 0 such that the free energy potential is convex
with respect to the microslip gradient. Two approximations allow us to

derive an approximate closed form solution to differential equation
74).

3.3.1. Approximation 1

At initiation of plastic slip, gradients along X, of cumulated plastic
slip and microslip are close to zero. Therefore we propose to neglect the
first and second terms of the right-hand side of differential equation
(74) that involve quadratic terms of these gradients. The approximate
differential equation becomes

2

dy,
— Il.
oum (76)

A V) =T+ py

—_x
2
dx;

3.3.2. Approximation 2

The analytical solutions are derived in the limit case of SGCP, i.e.
when the penalty factor H, of the micromorphic model is large enough.
Therefore combining (75) with approximated differential equation (76)
and approximations (17), one gets

2 g d?y,
(ﬂ) Eexp(—m]—y“‘;" =T+ 1 exp(—ycﬂJ — Izl.
21 ) Y n ) 4% % 77)
With the variable substitution
= exp(—yﬂﬂ),
% (78)

the derivatives with respect to X, are rewritten as

ar _ _lexp(_ycﬂ)dyf_um,
dx; 10 % ) 4% 79)

ind chFz _ izexp(—yﬂ)(d%“m)z B lexp(_yﬂ)d%zm
dax; Y Y dX; Y Y ax;

_ lexp(— M] dzyr.‘uzm .
% % ) 4G (80)

R

where quadratic terms of the gradient of cumulated plastic slip are
again neglected. The differential equation governing I is then derived
from Eq. (77) as

ar or ) 27 Vit = 7

|| =[]

ax; Ao Ao Ty (82)
Its solutions are of the form

rX)=a COS(Z?T&) +8 sin(Znﬁ) cd-n
Ao Ay 7 83)

where @ and f are integration constants. Inserting the latter result into
the yield condition f = 0 one has

T — Il + ir(}(z) -% ln(l"(Xz))

X5) =
YX( %) H, H, 84)

For symmetry reasons yX(XZ) = yx(—Xz), hence § = 0. Combining
(57) and (58) one obtains
ﬂ. = Ao, (85)
o= |7l —(r0+ra)_

T (86)

The approximated analytical solution (84) is compared to the finite
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Fig. 6. Analytical (black line) and finite element (red crosses) solutions of
differential equation governing 7, at F, = 0.05% and F, = 0.1%, when con-

sidering the non-linear softening behaviour (63) and the constitutive function
(69) for A(¥,,,)- (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

element solution of the same boundary value problem using the full
model and using the same mesh as in section 2. Fig. 6 shows both so-
lutions at F, = 0.05% and F, = 0.1%. Since approximation 1 is only
valid close to initiation of plastic slip, agreement between analytical
and numerical results deteriorates when F;, increases. Nevertheless one
should notice that close to the elastic/plastic interfaces a good agree-
ment is obtained because gradients of cumulated plastic slip and mi-
croslip remain small in these regions. As a consequence the width of the
localization zone obtained numerically remains bounded and close to
the one derived analytically and given by (85).

Fig. 7 displays in dashed lines the finite element solution obtained
with the expression of A(y,,,) expressed at (69) in case of an ex-
ponential softening for different values of Fs
(Fi, € {0.001, 0.002, 0.003, 0.004}). The solid curves on Fig. 7 are the one
plotted in Fig. 5 used to show localization band widening when a
constant value of A is taken.

The proposed expression of A(y,,,,) allows to bound the localization
bandwidth at any strain when considering an exponential softening.”
However it can be observed from Fig. 7 that while the size of the region
where plastic slip occurred is fixed, the size of the region of continuing
plastic flow decreases for further straining Fj,. The latter region be-
comes vanishingly thin since its size is proportional to the square root of
higher order modulus A which, according to Eq. (75), tends to zero for
increasing plastic slip. This means that the classical crystal plasticity
model, without regularization, is retrieved. To that extent, the band-
width becomes close to the mesh size in the finite element simulation.

4. Application to irradiated voided crystals: void/slip band
interaction

As shown in (Fish et al., 1973) and on Fig. 1b, irradiation induced
nanovoids may be heavily sheared inside dislocation channels during
straining. The objective here is to study the possible interactions be-
tween these voids and such localization bands from a continuum me-
chanical perspective. It is shown experimentally in (Farrell et al., 2003)
and numerically in (Cui et al., 2018) that essentially one single slip
system is active inside such a dislocation channel. Therefore a single
slip system is considered in the following. A periodic distribution of

2Results not shown here indicate that a bounded localization bandwidth is
obtained also when considering a bi-linear (softening followed by a plateau)
behaviour.
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Fig. 7. Finite element solutions of differential equation governing y, for A
constant displaying localization bandwidth widening (solid line) and for
A(Y,,,) inducing a bounded localization bandwidth (dashed line).

voids in a plate is considered for simplicity. Interactions between voids
and localization bands are analyzed in the finite element simulation of a
single unit cell with appropriate periodic boundary conditions.

4.1. Finite element meshes, loading and boundary conditions

The periodic unit cell is made of a one-element thick square plate of
width and height L in direction X; and X, and thickness T along X;. A
cylindrical hole of radius R is located at the center (see Fig. 8). Regular
meshes consist of hexahedral elements which are quadratic in dis-
placements u and linear in y, (reduced integration with eight integra-
tion points).

In the same way as in previous section, an average deformation
gradient F), is prescribed to the unit cell with fully periodic boundary
conditions. This corresponds to the same macroscopic simple glide
deformation field (25) as in the previous section. The microslip variable
7, is taken periodic along all three directions. A unique slip system
(¢, n) aligned with the shearing direction 1 is considered (¢ = X; and
n = X,). An exponential softening behaviour of type (63) is used and
equation (69), and more precisely (75), are adopted for the evolution of
the higher order modulus A(y,,,,). Cubic elasticity is considered and
Table 2 gathers the numerical values of fixed material parameters used
for all the simulations.

4.2. Choice of geometrical and material parameters

The initial void volume fraction is defined as

band __ 7R’T _ 7T_R
0 2RLT 2L’ (87)

which represents the ratio between the volume of the cylindrical hole to
the volume of the box of edge length L along X; and 2R along X, as
plasticity is expected to localize in that region. In fact this void volume
fraction is proportional to the intervoid spacing ratio y, defined as

_2R
Xo = I (88)
The ratio g, of the intrinsic length to void size is defined as
- R
LY (89)

where the constitutive intrinsic length A, enters Eq. (69). For con-
venience purposes in the following yx, will be referred to as the porosity
and g, as the normalized void size.

Throughout all simulations Ay is fixed to 100 nm which corresponds
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A 4

Fig. 8. Periodic unit cell mesh with a cylindrical hole (width and height L and
thickness T).

to an upper bound of the dislocation channels width observed in irra-
diated steels. Noting that according to (Farrell et al., 2003), the greater
the irradiation dose the wider and the fewer the dislocation channels.
Such a size is at the limit of continuum mechanical modelling. It is
therefore assumed that there are enough dislocation sources in these
bands for strain gradient continuum crystal plasticity to be applicable.
Table 3 gathers the discrete values retained for the parameters , and q,
in the following simulations.

4.3. Results

Fig. 9 shows the results obtained for a macroscopic shear strain
Fy, = 0.15. Very large strains are reached inside the localization band in
accordance with the large deformation setting of the theory and finite
element implementation. It is important to note that local strains may
significantly exceed the maximum value of the cumulated plastic strain
Y.um Of the legend bar. Also for visualization purposes all unit cells are
displayed with the same size for a given void volume fraction, even
though the actual hole and cell sizes are varied.

In order to measure the influence of g, and x, on the localization
phenomenon, the localization slip band thickness is defined as

A= max (x}—x§, A (X3) > Aylpe¥/15 and Aycum(xzb) > Ayne/15)
x1=0,x2,x3=0
where
Aypr = max  (AY,,02).
x1=0,x2,x3=0

In other words, the band thickness is measured at 1/15 of the peak
strain value. Figs. 10 and 11 display the evolution of A with the mac-
roscopic strain for three values of g, at y, = 0.2 and x, = 0.4 respec-
tively. For the two figures the dashed lines correspond to the limit
where A reaches four times the initial size along X, of the largest ele-
ment inside the localization band. Therefore, results above this line can
be considered as mesh independent, while it is considered mesh de-
pendent when it goes below it. For both figures the top dashed line
corresponds to g, = 1/3, the middle dashed line to g, = 1/6 and the
bottom dashed line corresponds to g, = 1/18. Fig. 12 shows the evolu-
tion of A with g, at Fy, = 2.5% for two values of x,.
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Table 3
Discrete values of parameters of interest in the simulation
of slip band/void interactions.

Xo = 2R/L 4o = R/Ag

[0.2, 0.4] [1/18,1/12,1/9,1/6,1/3]

4.4. Discussion

4.4.1. Effect of intrinsic length and hole size on void shape

Fig. 9 shows that void shape is significantly impacted both by g, and
Xo- For the lowest values of g, i.e. the lowest normalized void sizes, the
holes remain elliptical, while they take peanut-like shapes when their
size increases and become comparable with the intrinsic length scale. In
addition increasing the porosity yx, induces preservation of elliptical
void shapes for larger normalized void sizes. Eventually even for large
void volume fractions peanut-like shapes are obtained. Peanut-like void
shapes are in good agreement with those observed inside dislocation
channels (see Fig. 1a and b). However this agreement is for now only
qualitative, and one must note that similar void shapes can be obtained
with standard J2 flow theory.

4.4.2. Effect of intrinsic length and hole size on localized slip bandwidth

Figs. 10 and 11 show that, at a given porosity y,, larger values of
normalized void size q, induce thicker localization slip bands. In ad-
dition increasing the porosity y,, for a given normalized void size q,,
decreases the localization slip bandwidth.

Fig. 12 shows more precisely that at a low macroscopic shear strain,
larger normalized void sizes and/or smaller porosities induce thicker
localization slip bands. The effect of the normalized void size can be
understood as follows. When the void radius is much lower than A, the
width of the localization zone is mainly governed by the void size.
Hence, for small values of g, A strongly depends on g,. However when
the void radius is of the order of magnitude of the intrinsic material
length scale A, the width of the localization band is mainly governed by
the latter parameter. Therefore a saturation of the localization band-
width is observed as g, increases. The effect of the porosity can be
understood as follows. For a low porosity y, the localization bandwidth
A is expected to be close to the one of the sound material which has
been shown in previous section to be equal to the intrinsic material
length scale Ao. When increasing porosity y,, with void radii always
smaller than the intrinsic material length scale (g, = R/A¢ < 1), voids
are responsible of more intense flow localization and therefore locali-
zation bands are thinner than in the case of the sound material.

4.4.3. Effect of intrinsic length and hole size on the selection of slip and kink
band modes

It can be seen in Fig. 9 that slip and kink bands, respectively parallel
and perpendicular to the slip direction, initiate where the sheared
material cross-section is reduced due to the presence of the void. In the
simulations performed, kink bands were found to have a lower intensity
than slip bands. It was proven by (Asaro and Rice, 1977) that slip and
kink bands are equivalently probable at initiation of plastic slip for the
problem considered. In the post-bifurcation simulations, the results
clearly show that slip bands dominate at least for the considered con-
figurations. This is probably due to the fact that, in contrast to slip
band, kink bands are associated to strong lattice rotation and curvature
so that their structure evolves rapidly with further overall straining

Table 2
Numerical values of material parameters for the simulation of periodic porous unit cells.
G G Cas T T % Ao H, n Y
200 GPa 136 GPa 105 GPa 235 MPa 35 MPa 0.1 100 nm 10 MPa 15 1020 g1

10
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(a) xo =0.2 and go = 1/3
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0.35

(b) xo =0.4and go =1/3

(¢) xo =0.2 and go = 1/6

(d) xo =0.4 and go = 1/6

(e) xo =0.2 and go = 1/9

(f) xo =0.4 and go = 1/9

(g) xo =0.2 and go = 1/12

(h) xo =0.4 and g0 = 1/12

(i) xo =0.2 and go = 1/18

(j) xo =0.4 and go = 1/18

Fig. 9. Finite element results showing the interaction of a slip band and a void in a unit cell under average shear at F;, = 0.15.

Forest (1998); Forest et al. (2001). The present simulations show that
the relative intensity of kink bands decreases when the macroscopic
strain increases. As expected and according to (Ling et al., 2018) it is
found that when decreasing the normalized void size g, the regular-
ization power of the gradient model affects both kink and slip bands.
For a given porosity y, it is observed that the larger the normalized void
size, the lower is the relative intensity of the kink band compared to the
slip band. In addition it can be observed that, for a given normalized
void size, the relative intensity of the kink band increases when in-
creasing the porosity. It should be emphasized that the present model
incorporates the effect of the spatial derivatives of the microslip both
along and perpendicular to the slip plane. Gradient effects along the slip

11

direction are related to the densities of geometrically necessary dis-
locations which are known to be responsible for significant size effects.
This contribution plays an essential role in the thickness of kink bands
(Forest et al., 2001). In contrast gradient effects perpendicular to the
slip planes are less explored even though they could be related to cross-
slip (or climb at higher temperatures) of dislocations contributing to the
finite thickness of slip band bundles (Neuh&user, 1983a). The present
model is isotropic with respect to the gradient of slip vector which
essentially leads to the same finite thickness for slip and kink bands (see
Ling et al. (2018)). A more elaborate formulation should introduce
anisotropy and include a smaller length scale for slip bands than for
kink bands.
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Fig. 10. Normalized localization slip bandwidth A as a function of £, for three
different values of parameter g, and for y, = 0.2. Dashed lines represent the
normalized width equal to four times the initial mesh size.
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Fig. 11. Normalized localization slip bandwidth A as a function of F;, for three
different values of parameter q, and for y, = 0.4. Dashed lines represent the
normalized width equal to four times the initial mesh size.
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Fig. 12. Normalized localization slip bandwidth A as a function of g, for two
different void volume fractions at the overall shear value F;, = 0.025. Insets
correspond to snapshots of Fig. 9i (left) and 9b (right) at F, = 0.15.
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5. Conclusions

The main findings of the present work can be summarized as fol-
lows:

1. The predictions of a micromorphic crystal plasticity model in case of
single slip linear hardening for a periodic unit cell in simple shear
have been established analytically. These analytical solutions have
been used to validate the finite element implementation. Three cases
were distinguished: linear hardening, perfect plasticity and linear
softening. A fixed localization band width was shown to emerge in
case of linear softening directly related to the higher order modulus
of the micromorphic model.

2. A localization band widening has been observed in the finite ele-
ment simulations at large strains when a non-linear saturating
softening and a constant higher order modulus are considered. This
band broadening has not been mentioned in the previous literature
on plastic strain localization because most of the results in the lit-
erature are limited to linear softening and do not consider the sa-
turating regime. It has been observed in the case of damage locali-
zation and cracking for some gradient damage model simulations.
Such a broadening of plastic bands is not relevant for the simulation
of continuing localization in slip bands observed for instance in ir-
radiated materials.

3. An enhanced model is proposed in order to preserve a bounded
localization band width when a non-linear saturating softening be-
haviour is used. It is based on a non-constant higher order modulus
which varies with the cumulated plastic slip. Finite element results
at large strains and an approximate analytical solution using such an
evolving length scale confirm the absence of widening of the loca-
lization slip band in simple shear. The proposed constitutive func-
tion A(y,,,,) is decreasing toward zero which leads to a vanishingly
small slip band width in the saturated regime. This is similar to
existing gradient damage models based on an evolving and van-
ishing intrinsic length scale at fracture.

4. The enhanced model was applied to the study of void and slip band
interaction. The effects of normalized void size and porosity versus
intrinsic material length scale on the shape of deformed void, the
localization band width, and the localized deformation pattern were
illustrated by systematic micromorphic finite element simulations at
large strains. Void shape was shown to evolve from elliptical to-
wards peanut-like shape when increasing normalized void size or
decreasing void volume fraction which correspond to the experi-
mental observation (see Fig. 1a). This model applied to a porous
material has shown that the localization band width depends si-
multaneously on the intrinsic material length scale and the void size.
Kink bands and slip bands are always observed at initiation of
plastic slip and the relative intensity of slips bands compared to kink
bands increases when increasing the macroscopic shear strain.

Future work will be dedicated to quantify the influence of several
other physical parameters like the tensile versus shear stress ratio (i.e
stress biaxiality), the slip system orientation and the number of active
slip systems.
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