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Abstract

A reduced strain gradient crystal plasticity theory which involves the gradient of a single scalar field is presented. Rate-
ependent and rate-independent crystal plasticity settings are considered. The theory is then reformulated following first the
icromorphic approach and second a Lagrange multiplier approach. The finite element implementation of the latter is detailed.
omputational efficiency of the Lagrange multiplier approach is highlighted in an example involving regularization of strain

ocalization. The numerical performance improvement is shown to reach up to two orders of magnitude in computation time
peedup. Then, size effects predicted by micromorphic and Lagrange multiplier based formulations of strain gradient plasticity
re assessed. First of all numerical comparisons are performed on single crystal wires in torsion. Saturation of the size effects
nduced by the micromorphic approach and absence of saturation with the Lagrange multiplier approach when sample size is
ecreased are demonstrated. The Lagrange multiplier based formulation is finally applied to characterize size effects predicted
or the ductile growth of porous unit-cells at imposed stress triaxiality. Excellent agreement with micromorphic results is
btained.
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The anisotropic elasto-plastic deformation of crystalline aggregates including shape change, crystallographic
exture, and strain hardening can be predicted by classical continuum crystal plasticity [1,2]. The classical continuum
rystal plasticity formulation can be enhanced in order to predict experimentally observed size effects such as
recipitate or grain size effects, for instance based on the introduction of the dislocation density tensor and associated
onstitutive length scales [3–5].

Experimental evidence of size effects can be found in different mechanical tests such as micro-torsion [3,6–8],
icro-compression [9,10], micro-bending [6,11,12] and micro-indentation [6,13,14] of crystalline materials. Size-

ependent crystal plasticity modelling is required when the specimen or grain size becomes comparable to the
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intrinsic lengths of the underlying plastic deformation mechanisms [3,15]. The gradient of shear strain results in
the development of the dislocation density tensor which can be described in terms of the storage of geometrically
necessary dislocations (GND) [16–20]. The GND density controls the material strain hardening together with the
usual scalar dislocation densities, also called statistically stored dislocations (SSD).

The strain gradient plasticity approach can also be used to regularize the simulation of shear band formation
n crystalline solids. Strain softening results in a narrow band of intense shearing. The possible loss of ellipticity
f partial differential equations in strain softening materials results in an ill-posed boundary value problem and
lassically shows dependency on mesh size or density. The shear band dependency on the mesh size or density
an be overcome by introducing intrinsic material length scale in conventional plasticity [21–26] and in crystal
lasticity [27–29]. Furthermore, the difficulties in assessment of active slip systems within the crystal plasticity
ramework can be overcome by rate-dependent [30] or rate-independent [29,31] formulations.

Implementation of strain gradient crystal plasticity in a finite element code is a challenging task that has been
erformed for example by Shu [32], Borg et al. [33], Yalcinkaya et al. [34], Bardella et al. [35], Nellemann
t al. [36,37] and Panteghini and Bardella [38] at small strains and by Niordson and Kysar [39], Lewandowski
nd Stupkiewicz [40], Ling et al. [28] and Kaiser and Menzel [29] at finite deformations. An efficient method to
mplement strain gradient plasticity models is to resort to the micromorphic approach proposed by Forest [41] at
mall strains and Forest [42] at finite deformation, as demonstrated by Anand et al. [23] and Brepols et al. [43] for
onventional plasticity and by Cordero et al. [44], Aslan et al. [45] and Ryś et al. [46] for crystal plasticity based on

the dislocation density tensor. According to this approach, additional plastic microdeformation degrees of freedom,
in the sense of Eringen and Suhubi [47], are introduced at each node and the curl part of the microdeformation tensor
is assumed to expend work with a conjugate couple stress tensor. A penalty parameter, which can be interpreted
as a higher order elasticity modulus, is used to constrain the plastic microdeformation to be as close as possible to
the usual plastic deformation. As a consequence, the curl of the microdeformation tensor almost coincides with the
dislocation density tensor.

The computational cost of finite element simulation based on strain gradient or micromorphic crystal plasticity
is rather high due to the number of additional degrees of freedom and the strong nonlinearities of the problem. A
reduced micromorphic crystal plasticity model was proposed by Wulfinghoff and Böhlke [48], Wulfinghoff et al.
[49], Erdle and Böhlke [50], Ling et al. [28] and Scherer et al. [51]. It is limited to a single scalar additional degree
of freedom, called microslip variable which is bounded to remain close to the cumulative plastic slip by means
of the penalty parameter. The gradient of the microslip is then assumed to be an argument of the Helmholtz free
energy density function. This approach can be compared to the relaxation of the strain gradient plasticity model
by a Lagrange multiplier based formulation recently proposed by Zhang et al. [52] for isotropic materials. As in
the micromorphic approach, one hardening variable is duplicated in two separate instances. One instance of the
variable is dedicated to nonlocality and the other to nonlinearity, see [52]. The equivalence between both variables
is weakly enforced by a Lagrange multiplier, instead of a penalty term. The Lagrange term is added to the free
energy function and treated as an additional field variable. This strong coupling scheme was shown to reduce
the computational cost drastically compared to previous algorithms. Details of finite element implementation of
micromorphic strain gradient rate-dependent crystal plasticity based on Newton–Raphson method to integrate the
differential equations can be found in [28]. The numerical implementation of a Lagrange multiplier based strain
gradient isotropic plasticity model was presented in [52]

The objective of the present work is to compare the computational performances and predictions of reduced
micromorphic crystal plasticity and a new Lagrange multiplier based implementation of strain gradient plasticity.
The novelty of the work lies, first, in this new formulation of strain gradient plasticity with a Lagrangian function
and, second, in the comparison of the predictions of the two models. The computational performance and physical
relevance of both models are also assessed. Three distinct physical situations are considered. First, regularization
of strain localization in a periodic bar undergoing strain-softening is investigated. Then, the size and orientation
dependent torsion of FCC single crystal wires is investigated showing that both models coincide at intermediate
wire diameters but differ in their asymptotic behaviour. Further, the numerically efficient Lagrange multiplier based
constitutive framework is used to study the ductile growth and coalescence of voids in porous unit-cells. The results
are compared to data obtained with the micromorphic approach that are already available in the literature.

The outline of the paper is as follows. In Section 2, a thermodynamically consistent formulation of reduced

strain gradient crystal plasticity is presented in the rate-dependent and rate-independent cases. In Section 3 the

2



J.-M. Scherer, V. Phalke, J. Besson et al. Computer Methods in Applied Mechanics and Engineering 372 (2020) 113426

f
b

2

2

q

s
t

c

F
r

w
r

constitutive framework of reduced micromorphic and Lagrange multiplier approaches are described. The numerical
implementation of the latter is presented in Section 4. Numerical examples of a sheared periodic bar, a cylinder in
torsion and a porous unit-cell under axisymmetric triaxial loading are provided in Section 5. Concluding remarks
follow in Section 6.

The notations used in the paper are as follows. Underlined bold a and under-wave bold A
∼

stand respectively
or first and second rank tensors. The transpose, inverse, transpose of inverse and time derivative are denoted
y A

∼

T , A
∼

−1, A
∼

−T and Ȧ
∼

respectively. The single and double contractions are written as A
∼
.b = Ai j b j e i and

A
≈

: B
∼

= Ai jkl Bkl e i ⊗ e j respectively. The following tensor products are used: a ⊗ b = ai b j e i ⊗ e j ,

A
∼

⊗ B
∼

= Ai j Bkl e i ⊗ e j ⊗ e k ⊗ e l , A
∼
⊗B

∼
= Aik B jl e i ⊗ e j ⊗ e k ⊗ e l and A

∼
⊗B

∼
= Ail B jk e i ⊗ e j ⊗ e k ⊗ e l ,

where e i refers to an orthonormal base vector.

. A reduced strain gradient crystal plasticity theory

.1. Thermodynamical formulation

A reduced strain gradient crystal plasticity theory is adopted in which only the gradient of a scalar effective
uantity is considered in keeping with [53]. Based on the work by Wulfinghoff and Böhlke [48] the cumulated

plastic slip γcum , defined as

γcum =

∫ t

0

N∑
s=1

|γ̇ s
| dt (1)

is chosen to be the thermodynamic variable carrying gradient effects. γ̇ s denotes the plastic slip rate on the s−th slip
system. In the finite strain setting, the deformation gradient F

∼
, with components Fi j = ∂xi/∂X j , is multiplicatively

plit into an elastic part E
∼

and a plastic part P
∼

such that F
∼

= E
∼
.P

∼
. The plastic velocity gradient L

∼

p is related to
he slip rates on each slip system by

L
∼

p
= Ṗ

∼
.P

∼

−1
=

N∑
s=1

γ̇ s(m s
⊗ n s) with L

∼
= Ḟ

∼
.F

∼

−1
= Ė

∼
.E

∼

−1
+ E

∼
.L

∼

p.E
∼

−1 (2)

where m s and n s refer to the gliding direction and direction normal to the slip plane respectively. In the reference
configuration, upon neglecting body forces, following [3,54] the principle of virtual power, for all material subsets
D0 of the body, can be written as∫

D0

(
S
∼

: Ḟ
∼

+ Sγ̇cum + M .K̇
)

dV0 =

∫
∂D0

(
T .u̇ + M γ̇cum

)
dS0 ∀u̇ , ∀γ̇cum, ∀D0 (3)

where S
∼

is the Boussinesq (or nominal 1st Piola–Kirchhoff) stress tensor related to the Cauchy stress tensor σ
∼

by
S
∼

= (ρ0/ρ)σ
∼
.F

∼

−T with ρ0 (respect. ρ) the volumetric mass density in the reference configuration (respect. current
onfiguration). Vector T is the traction vector and u̇ is an arbitrary velocity field. S and M are higher order stresses

and M a higher order traction scalar. K is the Lagrangian gradient of the cumulated plastic slip, K = Grad γcum .
rom equation (3) it can be derived that, within any subset D0 of the body, the stresses satisfy the equilibrium
elations

Div S
∼

= 0 ∀X ∈ D0 (4)

Div M − S = 0 ∀X ∈ D0 (5)

in the absence of body forces and in the static case. As a result of equation (3), on the surface of the subset ∂D0

the stresses S
∼

and M are in equilibrium with the traction vector T and scalar M according to

T = S
∼
.n 0 ∀X ∈ ∂D0, (6)

M = M .n 0 ∀X ∈ ∂D0 (7)

here n 0 refers to the outward unit surface normal. In order to formulate a complete thermodynamic theory of
educed strain gradient crystal plasticity a free energy potential ψ needs to be defined. The specific free energy
3
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potential ψ is chosen to depend on the elastic Green–Lagrange strain measure E
∼

e
GL = (1/2)

(
E
∼

T .E
∼

− 1
∼

)
, the

cumulated plastic slip γcum , its Lagrangian gradient K and hardening variables r s left to be defined.

ψ
(

E
∼

e
GL , γcum, r s, K

)
=

1
2ρ♯

E
∼

e
GL : C

≈
: E

∼

e
GL + ψh(r s, γcum) +

A
2ρ0

K .K (8)

where ρ♯ refers to the volumetric mass density in the intermediate configuration (i.e. the configuration resulting
from the transport of the reference configuration by P

∼
). The contribution of the cumulated plastic slip gradient

is weighed by the strictly positive material parameter, so called higher order modulus, A. The Clausius–Duhem
inequality (isothermal case) resulting from 1st and 2nd principles of thermodynamics enforces

S
∼

ρ0
: Ḟ

∼
+

S
ρ0
γ̇cum +

M
ρ0
.K̇ − ψ̇ ≥ 0 (9)

he first term on left-hand side of equation (9) can be decomposed into an elastic contribution and a plastic
ontribution

S
∼

ρ0
: Ḟ

∼
=

Π
∼

e

ρ♯
: Ė

∼

e
GL +

Π
∼

M

ρ♯
:
(

Ṗ
∼
.P

∼

−1) (10)

here Π
∼

e is the second Piola–Kirchhoff stress tensor defined by Π
∼

e
= (ρ♯/ρ)E

∼

−1.σ
∼
.E

∼

−T
= (ρ♯/ρ0)E

∼

−1.S
∼
.P

∼

T

ith respect to the intermediate configuration and Π
∼

M is the Mandel stress tensor defined by Π
∼

M
= E

∼

T .E
∼
.Π

∼

e.
The residual dissipation in equation (9) then writes(

Π
∼

e

ρ♯
−

∂ψ

∂E
∼

e
GL

)
: Ė

∼

e
GL +

Π
∼

M

ρ♯
:
(

Ṗ
∼
.P

∼

−1)
+

(
S
ρ0

−
∂ψh

∂γcum

)
γ̇cum

+

(
M
ρ0

−
A
ρ0

K
)
.K̇ −

N∑
s=1

∂ψh

∂r s
ṙ s

≥ 0

(11)

ere we assume that the higher order stress S has a dissipative part which will be denoted −H , while M is assumed
to be non-dissipative. As discussed by Forest and Bertram [55] it is the most simple assumption to derive Aifantis’
model. We then postulate the state laws

Π
∼

e
= ρ♯

∂ψ

∂E
∼

e
GL

= C
≈

: E
∼

e
GL (12)

S = ρ0
∂ψh

∂γcum
− H (13)

M = ρ0
∂ψ

∂K
= AK (14)

inally the residual dissipation reduces to

Π
∼

M

ρ♯
:
(

Ṗ
∼
.P

∼

−1)
−

H
ρ0
γ̇cum −

N∑
s=1

∂ψh

∂r s
ṙ s

≥ 0 (15)

The resolved shear stress τ s is the energetic counterpart of γ̇ s and from equation (2) it can be deduced that it is
related to Mandel stress Π

∼

M by τ s
= Π

∼

M
: N

∼

s where N
∼

s
= m s

⊗ n s is the Schmid tensor. Assuming that the rate
of hardening variable r s is proportional to the slip rate γ̇ s (e.g. ṙ s

= gs(rs)|γ̇ s
|) leads to the following expression

of the residual dissipation
N∑

s=1

[
|τ s

| −
ρ♯

ρ0
H − ρ♯

∂ψh

∂r s
gs(rs)

]
|γ̇ s

| ≥ 0 (16)

where it has been assumed that sign (τ s) = sign (γ̇ s). Equation (16) motivates the introduction of the yield function
of each system defined by

f s
= |τ s

| −

(
τ s

0 +
ρ♯ H + ρ♯

∂ψh
s

gs(rs)
)

= |τ s
| −

(
τ s

c −
ρ♯ S

)
(17)
ρ0 ∂r ρ0

4
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where τ s
0 is the initial critical resolved shear stress of sth system. We here introduce the critical resolved shear

stress τ s
c = τ s

0 + ρ♯∂ψh/∂r s gs(rs) + ρ♯∂ψh/∂γcum . By combining equations (5) and (14) one obtains

S = Div M = Div (AK ) (18)

s it can be seen from yield criterion equation (17), the divergence term induces a coupling between constitutive
onlinearity and spatial nonlocality. Therefore pointwise integration of the differential equation governing the
aterial behaviour over a given domain is precluded. Two different relaxation approaches to deal with this coupling

re presented in Section 3 and compared in terms of computational performance and physical predictions in
ection 5.

.2. Rate-dependent and rate-independent formulations

A rate-dependent (viscoplastic) and a rate-independent formulation of crystal plasticity are presented here and
sed in the next sections.

.2.1. Rate-dependent crystal plasticity
As emphasized in [30] (and references therein) most rate-independent crystal plasticity theories lead to an ill-

onditioned problem regarding the selection of active slip systems. Different methods exist to ensure uniqueness,
ut their numerical implementation may also play a crucial role in the active slip system selection. One possible way
o overcome these issues is to work within a rate-dependent setting. In this framework the slip rates are no longer
efined by a rate-independent yield surface, but are governed by a rate-dependent potential surface. Smoothness of
iscous potential functions allows one to obtain the direction of the strain increment by the normality rule. Evolution
f the plastic slip variables γ s can for example be obtained by considering Norton-type flow rules:

γ̇ s
= γ̇0

⟨
f s

τ s
0

⟩n

sign
(
τ s)

= γ̇0Φ
s
RD( f s)sign

(
τ s) (19)

where γ̇0 and n are material parameters which control the rate sensitivity of the material response. Macauley brackets
of a scalar x , written ⟨x⟩, denote the positive part of x and Φs

RD denotes the rate-dependent flow function. High
values of the power exponent n and of the reference rate γ̇0 lead to a low strain rate sensitivity in a given strain
rate range.

2.2.2. Rate-independent crystal plasticity
Another possible way to select the active slip systems is to use the rate-independent formulation proposed

by Forest and Rubin [31] and intensively used by Farooq et al. [56] (later referred to as RubiX formulation).
It is characterized by a smooth elastic–plastic transition with no slip indeterminacy. It is based on a strictly rate-
independent overstress allowing to remove ill-conditioning of the selection of activated slip systems. The main idea
consists in replacing equation (19) by:

γ̇ s
= ε̇eq

⟨
f s

R

⟩
sign

(
τ s)

= ε̇eqΦ
s
RI ( f s)sign

(
τ s) (20)

where ε̇eq is a non-negative homogeneous function of degree one in the total velocity gradient L
∼

. The rate-
independent flow function is noted Φs

RI and ε̇eq is taken here as the total equivalent distortional strain rate:

ε̇eq =

√
2
3

D
∼

′
: D

∼

′ D
∼

′
=

1
2

(
L
∼

+ L
∼

T )
−

1
3

(trace L
∼

)1
∼

(21)

R is a positive constant having the unit of a stress and which controls the amplitude of the rate-independent
verstress. As this work proceeds Γ̇ (resp. Φs) will be used indistinguishably to represent either γ̇0 or ε̇eq (resp.
Φs

RD or Φs
RI ).

2.3. Summary of constitutive equations

Equilibrium equations, state laws and evolution equations are summarized in Table 1.
5
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Table 1
Summary of equilibrium equations, state laws and evolutions equations.

Equilibrium equations State laws Evolution equations

Div S
∼

= 0 ∀X ∈ D0 Πe
∼

= C
≈

: E
∼

e
GL Ė

∼
= Ḟ

∼
.F

∼

−1.E
∼

− E
∼
.

( N∑
s=1

γ̇ s N
∼

s

)
Div M − S = 0 ∀X ∈ D0 M = AK γ̇ s

= Γ̇Φs
(

|τ s
| −

(
τ s

c −
ρ♯

ρ0
S
))

sign
(
τ s)

T = S
∼
.n 0 ∀X ∈ ∂D0 S = ρ0

∂ψh

∂γcum
− H ṙ s

= gs (rs )|γ̇ s
|

M = M .n 0 ∀X ∈ ∂D0 γ̇cum =

N∑
s=1

|γ̇ s
|

3. Relaxations of strain gradient plasticity theory

3.1. Micromorphic approach

Wulfinghoff and Böhlke [48] and Ling et al. [28] used the micromorphic approach [41] to tackle the issue
of nonlocality and nonlinearity coupling. Their approach is based on the introduction of an additional degree
of freedom, denoted γχ , enriching the kinematic description of the material behaviour. γχ is the micromorphic
nonlocal) counterpart of γcum , and, therefore it bears the same physical interpretation. However γcum and γχ are
reated independently in the resolution of the equations governing the material behaviour. In this context the principle
f virtual power equation (3) is extended to higher order contributions:∫

D0

(
S
∼

: Ḟ
∼

+ Sγ̇χ + M .Grad γ̇χ
)

dV0 =

∫
∂D0

(
T .u̇ + M γ̇χ

)
dS0 ∀u̇ , ∀γ̇χ , ∀D0 (22)

Using the divergence theorem one can again derive the balance laws in the reference configuration, namely
equations (4) and (5), while on the surface ∂D0 stresses are in equilibrium with the traction vector and scalar
as in equations (6) and (7). In order to ensure quasi-equality between γcum and γχ , a penalty term is introduced in
the free energy potential penalizing their difference γcum − γχ , where Hχ is a penalty modulus which is usually
taken large enough so that the results obtained with the model do not depend on the chosen value (typically
Hχ ∼ 104

− 105 MPa). With this method the specific free energy density equation (8) now writes

ψ
(

E
∼

e
GL , r

s, γcum, γχ , K χ

)
=

1
2ρ♯

E
∼

e
GL : C

≈
: E

∼

e
GL + ψh(r s, γcum)

+
A

2ρ0
K χ .K χ +

Hχ

2ρ0
(γcum − γχ )2

(23)

here K χ = Grad γχ . The 1st and 2nd principles of thermodynamics now enforce

S
∼

ρ0
: Ḟ

∼
+

S
ρ0
γ̇χ +

M
ρ0
.K̇ χ − ψ̇ ≥ 0 (24)

he mechanical dissipation therefore becomes(
Π
∼

e

ρ♯
−

∂ψ

∂E
∼

e
GL

)
: Ė

∼

e
GL +

Π
∼

M

ρ♯
:
(

Ṗ
∼
.P

∼

−1)
+

(
S
ρ0

−
∂ψ

∂γχ

)
γ̇χ −

∂ψ

∂γcum
γ̇cum

+

(
M
ρ0

−
A
ρ0

K χ

)
.K̇ χ −

N∑
s=1

∂ψh

∂r s
ṙ s

≥ 0

(25)

fter selecting non-dissipative contributions, the following state laws are adopted

Π
∼

e
= ρ♯

∂ψ

∂E
∼

e
GL

(26)

S = ρ0
∂ψ

= −Hχ (γcum − γχ ) (27)

∂γχ

6
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M = ρ0
∂ψ

∂K χ

= AK χ (28)

n contrast to the previous section, the constitutive assumption that S is non-dissipative is made here. Therefore the
nergy dissipated with γ̇χ vanishes. Yet, a term involving the higher order stress S and conjugate to γ̇cum remains.

The residual dissipation now writes

Π
∼

M

ρ♯
:
(

Ṗ
∼
.P

∼

−1)
−

N∑
s=1

∂ψh

∂r s
ṙ s

−

(
Hχ

ρ0
(γcum − γχ ) +

∂ψh

∂γcum

)
γ̇cum ≥ 0 (29)

hich can also be written
N∑

s=1

[
|τ s

| −
ρ♯

ρ0
Hχ (γcum − γχ ) − ρ♯

∂ψh

∂γcum
− ρ♯

∂ψh

∂r s
gs(rs)

]
|γ̇ s

| ≥ 0 (30)

y combining state law equation (27), equilibrium equation (5) and state law equation (28) it comes S =

Hχ (γcum − γχ ) = Div M = Div (AK χ ). Therefore the micromorphic approach is a relaxation1 of the strict
strain gradient formulation from Section 2 in the sense that no spatial derivatives are explicitly involved for the
non-local contribution in equation (30). The plastic slip rates now are

γ̇ s
= Γ̇Φs

(
|τ s

| −

(
τ s

c +
ρ♯

ρ0
Hχ (γcum − γχ )

))
sign

(
τ s) (31)

The main drawback of this method, in the context of viscoplasticity, lies in the necessity of taking a large value
for Hχ in order to assure quasi-equality between γχ and γcum . In the limit case of almost rate insensitivity the
viscoplastic parameters n and γ̇0 are such that the nonlinear system of equation governing activation of slip systems
is very stiff and thus extremely sensitive to the errors that are made during the iterative process (typically an
Euler-backward scheme) used to solve them. As a consequence small time steps are necessary in order to achieve
convergence. One possible way to tackle this issue and allow the use of large time steps with the micromorphic
approach is to use a rate-independent crystal plasticity setting such as the one proposed by Forest and Rubin [31]
and presented in Section 2.2.2.

3.2. Lagrange multiplier approach

Alternatively, the Lagrange multiplier method proposed by Fortin and Glowinski [58] and successfully applied
in [52] can be used. This approach is described here for relaxing the theory presented in Section 2.1. The main
ideas of the method are first to duplicate the variable upon which the nonlinear-nonlocal coupling is acting and
second to enforce equality between both variables through a Lagrangian function. In the context of the model
presented in Section 2.1 the nonlocal instance of the coupling variable will be denoted γχ while its local instance
is γcum . Similarly to the micromorphic approach, K χ = Grad γχ is regarded as a state variable. Enforcing equality
between γχ and γcum is achieved using a Lagrange multiplier λ. It turns out that the previous free energy density
in equation (8) becomes a Lagrangian function

L
(

E
∼

e
GL , γcum, r s, γχ , K χ , λ

)
=

1
2ρ♯

E
∼

e
GL : C

≈
: E

∼

e
GL + ψh(r s, γcum)

+
A

2ρ0
K χ .K χ +

λ

ρ0
(γχ − γcum) +

µχ

2ρ0
(γχ − γcum)2

(32)

here µχ is a Lagrangian penalization modulus. The 1st and 2nd principles of thermodynamics still require to
erify equation (24), where ψ̇ is now replaced by L̇, and the mechanical dissipation is written as in equation (25).
he postulated state laws are now

Π
∼

e
= ρ♯

∂ψ

∂E
∼

e
GL

(33)

1 Relaxation is meant here in a sense different from Neff et al. [57], where this terminology was used to describe a “linear micromorphic
model with symmetric Cauchy force stresses” which is put in contrast to “the classical Mindlin-Eringen model for micromorphic media with
intrinsically non-symmetric force stresses”.
7
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S = ρ0
∂ψ

∂γχ
= λ+ µχ (γχ − γcum) = ∆χ − µχγcum (34)

M = ρ0
∂ψ

∂K χ

= AK χ (35)

imilarly to the micromorphic approach, the constitutive assumption that S is non-dissipative is made. Therefore the
energy dissipated with γ̇χ vanishes. Yet, a term involving the higher order stress S and conjugate to γ̇cum remains. For
convenience we introduce the scalar stress ∆χ = λ+ µχγχ . By definition ∂L/∂λ must vanish when the constraint

cum = γχ is met

∂L
∂λ
λ̇ = (γχ − γcum)

λ̇

ρ0
= 0 (36)

nd therefore the residual mechanical dissipation becomes

Π
∼

M

ρ♯
:
(

Ṗ
∼

P
∼

−1)
−

N∑
s=1

∂ψh

∂r s
ṙ s

−

(
µχγcum − ∆χ

ρ0
+

∂ψh

∂γcum

)
γ̇cum ≥ 0 (37)

which can also be written
N∑

s=1

[
|τ s

| −
ρ♯

ρ0

(
µχγcum − ∆χ

)
− ρ♯

∂ψh

∂γcum
− ρ♯

∂ψh

∂r s
gs(rs)

]
|γ̇ s

| ≥ 0 (38)

y combining state law equation (34), equilibrium equation (5) and state law equation (35) it comes S =

χ−µχγcum = Div M = Div (AK χ ). Therefore the Lagrange multiplier approach is a relaxation of the strict strain
gradient formulation from Section 2 in the sense that no spatial derivative is explicitly involved in the non-local
contribution in equation (38). The plastic slip rates now are

γ̇ s
= Γ̇Φs

(
|τ s

| −

(
τ s

c +
ρ♯

ρ0

(
µχγcum − ∆χ

)))
sign

(
τ s) (39)

4. Numerical implementation

The numerical implementation in a finite element setting of the Lagrange multiplier approach is described. Details
on the implementation of the micromorphic formulation can be found in [28].

4.1. Integration of constitutive equations

The sets of degrees of freedom (DOF), input variables (IN), output variables (OUT) and integration variables
(INT) are:

DOF: {u , γχ , λ} IN: {F
∼
,∆χ } OUT: {S

∼
, γM} INT: {E

∼
, γ s, r s, γcum} (40)

here γM is merely a copy of γcum obtained at the end of the constitutive integration. Integrating the constitutive
quations consists, for known values of all variables at a given time step n, in computing the evolution of the output
nd internal variables at next time step n + 1 knowing the evolution laws of the input variables. At the global level
he output variables need to satisfy the weak form of the balance equations (4), (5), (6) and (7). It can be noted
hat

S
∼

= Jσ
∼
.F

∼

−T
=

1
2

J
Je

E
∼
.

(
C
≈

:
(
E
∼

T .E
∼

− 1
∼

))
.E

∼

T .F
∼

−T (41)

here state law equation (26) has been used along with the elastic free energy used in equation (32) and J = det
(
F
∼

)
nd J = det

(
E
)
. The evolution of S depends on evolutions of E and F. Within the Lagrange multiplier
e

∼ ∼ ∼ ∼

8
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T
p
γ

approach the set of equations to be solved at the local level are similar to evolution equations in Table 1 and
can be reformulated incrementally as the problem of finding the solution of the following system of equations
R(∆E

∼
,∆γ s,∆r s,∆γcum):

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RE
∼

= ∆E
∼

− ∆F
∼
.F

∼

−1.E
∼

− E
∼
.

(
N∑

s=1

∆γ s N
∼

s

)
= 0

Rγ s = ∆γ s
− ∆ΓΦs

(
|τ s

| −

⟨
τ s

c −
ρ♯

ρ0

(
∆χ − µχγcum

)⟩)
sign

(
τ s)

= 0

Rr s = ∆r s
− gs(rs)|∆γ s

| = 0

Rγcum = ∆γcum −

N∑
s=1

|∆γ s
| = 0

(42)

where ∆Γ = ∆εeq in the rate-independent formulation and ∆Γ = γ̇0∆t in the rate-dependent formulation. Note that
it may happen that τ s

c −(ρ♯/ρ0)
(
∆χ − µχγcum

)
< 0. In that case this value is replaced by 0 in the computation. Note

also that equation (42) does not guarantee that plastic incompressibility is satisfied. In order to fulfil this condition,
the tensor E

∼
is corrected at the beginning of each iteration of the Newton algorithm used to solve equation (42).

This correction amounts to replace E
∼

by (J/Je)1/3 E
∼

. As a result, the corrected tensor P
∼

verifies det
(

P
∼

)
= 1, which

corresponds to the plastic incompressibility condition. Solving R(∆E
∼
,∆γ s,∆r s,∆γcum) = 0 is performed using

a Newton algorithm with an Euler backward (implicit) scheme which requires computation of the Jacobian matrix
J = ∂R/∂∆vint (or some approximation of it). The analytical Jacobian matrix for the resolution of equation (42)
is given in Appendix A.

4.2. Finite element formulation

The model is implemented in the finite element software Z-set using a 3D total Lagrangian formulation
following [59,60]. The principle of virtual power in the context of the Lagrange multiplier method combines
equations (4), (5), (6), (7), and in addition equation (36) must be satisfied⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∀u̇
∫

D0

S
∼

: Ḟ
∼

dV0 =

∫
∂D0

T .u̇ dS0 (a)

∀γ̇χ

∫
D0

AK χ .K̇ χ + (∆χ − µχγM )γ̇χdV0 =

∫
∂D0

M γ̇χdS0 (b)

∀λ̇

∫
D0

(γχ − γM )λ̇dV0 = 0 (c)

(43)

The finite element problem is solved by a monolithic iterative method. The material body occupies the domain D0
in its reference configuration, the decomposition of this body in n finite elements raises⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀u̇
n∑

e=1

∫
De

0

S
∼

: Ḟ
∼

dV e
0 =

nS∑
e=1

∫
∂De

0

T .u̇ dSe
0 (a)

∀γ̇χ

n∑
e=1

∫
De

0

AK χ .K̇ χ + (∆χ − µχγM )γ̇χdV e
0 =

nS∑
e=1

∫
∂De

0

M γ̇χdSe
0 (b)

∀λ̇

n∑
e=1

∫
De

0

(γχ − γM )λ̇dV e
0 = 0 (c)

(44)

he boundary ∂D0 is discretized into nS surface elements ∂De
0 for the application of surface tractions. As this section

roceeds tensors are written with index notations. Within the volume of each element the degrees of freedom ui ,
χ and λ are interpolated by their values at p nodes for the displacements (ũa

i for a ∈ [1; p]) and q nodes for
Lagrange multiplier λ and the microslipγχ (̃λb and γ̃ b

χ for b ∈ [1; q])

ui =

p∑
uN a ũa

i γχ =

q∑
χN bγ̃ b

χ λ =

q∑
χN b̃λb thus ∆χ =

q∑
χN b (̃λb

+ µχ γ̃
b
χ

)
(45)
a=1 b=1 b=1 b=1

9
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where uN a and χN b are shape functions, the superscripts denoting the element node number. The deformation
gradient Fi j and the Lagrangian gradient of microslip Ki are given by

Fi j =

p∑
a=1

uBa
j ũa

i Kχ i =

q∑
b=1

χBb
i γ̃

b
χ (46)

with uBa
j = ∂uN a/∂X j and χBb

i = ∂χN b/∂X i . Using these relations in equations (44)(a), (44)(b) and (44)(c) leads
to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
e=1

∫
De

0

Si j

p∑
a=1

uBa
j
˙̃ua

i dV e
0 =

nS∑
e=1

∫
∂De

0

Ti

p∑
a=1

uN a ˙̃ua
i dSe

0 (a)

n∑
e=1

∫
De

0

A
q∑

b=1

χBb
i γ̃

b
χ

q∑
b=1

χBb
i

˙̃γ b
χ +

( q∑
b=1

χN b (̃λb
+ µχ γ̃

b
χ

)
− µχγM

) q∑
b=1

χN b ˙̃γ b
χdV e

0 =

nS∑
e=1

∫
∂De

0

M
q∑

b=1

χN b ˙̃γ b
χdSe

0 (b)

n∑
e=1

∫
De

0

( q∑
b=1

χN bγ̃ b
χ − γM

) q∑
b=1

χN b ˙̃λbdV e
0 = 0 (c)

(47)

which can be reformulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
e=1

p∑
a=1

[∫
De

0

Si j
u Ba

j dV e
0

]
˙̃ua

i =

nS∑
e=1

p∑
a=1

[∫
∂De

0

Ti
u N adSe

0

]
˙̃ua

i (a)

n∑
e=1

q∑
b=1

[∫
De

0

A
q∑

k=1

χBk
i γ̃

k
χ
χBb

i +

( q∑
k=1

χN k (̃λk
+ µχ γ̃

k
χ

)
− µχγM

)
χN bdV e

0

]
˙̃γ b
χ =

nS∑
e=1

q∑
b=1

[∫
∂De

0

MχN bdSe
0

]
˙̃γ b
χ (b)

n∑
e=1

q∑
b=1

[∫
De

0

( q∑
k=1

χN k γ̃ b
χ − γM

)
χN bdV e

0

]
˙̃λb

= 0 (c)

(48)

According to equations (48)(a), (48)(b) and (48)(c) an internal reaction is associated with each degree-of-freedom.
We thus refer to Ra

int(ui ,e) as the internal reaction related to ui on node a of element e

Ra
int(ui ,e) =

∫
De

0

Si j
u Ba

j dV e
0 (49)

and to Rb
int(γχ ,e) (resp. Rb

int(λ,e)) as the internal reaction related to γχ (resp. λ) on node b of element e

Rb
int(γχ ,e) =

∫
De

0

A
q∑

k=1

χBk
i γ̃

k
χ
χBb

i +

( q∑
k=1

χN k (̃λk
+ µχ γ̃

k
χ

)
− µχγM

)
χN bdV e

0 (50)

Rb
int(λ,e) =

∫
De

0

( q∑
k=1

χN k γ̃ b
χ − γM

)
χN bdV e

0 (51)

Analogously, an external reaction is associated to each degree of freedom. We refer to Ra
ext(ui ,e), Rb

ext(γχ ,e), Rb
ext(λ,e)

as the external reactions related to ui on node a, γχ and λ on node b of element e

Ra
ext(ui ,e) =

∫
e

Ti
u N adSe

0 Rb
ext(γχ ,e) =

∫
e

MχN bdSe
0 Rb

ext(λ,e) = 0 (52)

∂D0 ∂D0

10
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S
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w

With these expressions equations (48)(a), (48)(b) and (48)(c) write⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
e=1

p∑
a=1

Ra
int(ui ,e)

˙̃ua
i =

nS∑
e=1

p∑
a=1

Ra
ext(ui ,e)

˙̃ua
i (a)

n∑
e=1

q∑
b=1

Rb
int(γχ ,e)

˙̃γ b
χ =

nS∑
e=1

q∑
b=1

Rb
ext(γχ ,e)

˙̃γ b
χ (b)

n∑
e=1

q∑
b=1

Rb
int(λ,e)

˙̃λb
=

nS∑
e=1

q∑
b=1

Rb
ext(λ,e)

˙̃λb (c)

(53)

This system of equations is solved using Newton’s method. The details of the numerical implementation are given
in Appendices B and C. As this work proceeds, quadratic (resp. linear) interpolation functions are used for the
displacement (resp. microslip and Lagrange multiplier) degrees of freedom.

5. Numerical examples

5.1. 1D localization band formation

5.1.1. Validation of the Lagrange multiplier implementation
Validation of the implementation is done by solving the problem of a periodic bar of length L along X 2 (see

Fig. 1a) in simple shear with a single slip system and a linear softening behaviour (H < 0)

τc(γ ) = τ0 + Hγ (54)

uch a hardening behaviour corresponds to a hardening free energy potential ψh = Hγ 2/2. In the reference
onfiguration, the gliding direction m is aligned with X 1, the normal to the slip plane n is aligned with X 2.

macroscopic shear deformation F
∼

= 1
∼

+ F12m ⊗ n is imposed such that the displacement field is given by
u = (F

∼
− 1

∼
).X + v (X ). Periodic boundary conditions are imposed on the displacement fluctuation v , micro-slip

variable γχ and Lagrange multiplier λ. As discussed in [51] the analytical solution to this problem, in terms of
plastic slip, is a localization band following a sine shape within the [−λ0/2; λ0/2] region and no slip elsewhere

γ (X2, F12) =

⎧⎨⎩
|τ |−τ0

H

(
cos

(
2π X2

λ0

)
+ 1

)
if X2 ∈

[
−
λ0
2 ;

λ0
2

]
0 if X2 ∈

[
−

L
2 ; −

λ0
2

]
∪

[
λ0
2 ;

L
2

] (55)

ith the wavelength λ0 = 2π
√

A/|H |, where H is the slope of linear softening and A the higher order modulus. It
is important to notice that in the context of the Lagrange multiplier approach, when the penalty factor µχ = 0, the
Lagrange multiplier λ, which is a degree of freedom, coincides with the Laplacian of γ in this elementary problem.
Yet, it can be noted from equation (55) that the Laplacian of γ takes the form

∆γ (X2, F12) =

⎧⎨⎩ −

(
2π
λ0

)2
|τ |−τ0

H cos
(

2π X2
λ0

)
if X2 ∈

[
−
λ0
2 ;

λ0
2

]
0 if X2 ∈

[
−

L
2 ; −

λ0
2

]
∪

[
λ0
2 ;

L
2

] (56)

which is discontinuous in ±λ0/2. Therefore solving numerically this problem by finite elements with standard
continuous shape functions might lead to difficulties. Figs. 1b and 1c show the finite element solutions to this
problem in case µχ = 0, for discretizations of respectively n = 51 and n = 201 elements along the X 2 direction of
the bar and a wavelength λ0 = L/2. It is observed that strong oscillations of plastic slip (solid red line) occur around
the analytical solution (dashed black line) for both finite element discretizations. These oscillations are caused by
abnormal fluctuations of the Lagrange multiplier (solid blue line) also plotted on the same figures. Fluctuations are
probably due to poor approximations of the Lagrange multiplier degree of freedom at the discontinuity. This issue
can be solved by using the Lagrangian penalization term in equation (32). The additional penalty term is very similar
to the micromorphic penalization, but it bears a completely different meaning. While in the micromorphic approach
Hχ has to be large in order to ensure quasi-equality between γcum and γχ , in the Lagrange multiplier approach µχ
only helps to provide additional coercivity and can take much lower values in practice. Figs. 1d and 1e show the

finite element solution of the periodic bar in simple shear when µχ = 50 MPa for n = 51 and n = 201. It can

11
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Fig. 1. (a) Geometry of the periodic bar. (b–e) Analytical (dashed black lines) and numerical (solid blue and red lines) solutions of cumulated
plastic slip γχ (red) and Laplacian term ∆χ (blue) along a periodic strip in simple shear for a linear softening behaviour. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

be observed that the oscillations almost vanish everywhere, except at ±λ0/2 where their amplitude is much lower
and that a smooth solution coinciding with the analytical solution is obtained everywhere else. Another possible
alternative to properly account for the discontinuity of the Lagrange multiplier could be to use a discontinuous
Galerkin finite element formulation [61,62].

Another observation can be made on the interdependence between mesh density and the value of µχ which
yields a smooth profile of ∆ . The profiles of ∆ in a reduced region of the bar for several values of µ and the
χ χ χ

12
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Fig. 2. Numerical solutions of the Laplacian term ∆χ profile along a periodic strip in simple shear for several values of µχ . The discretization
is n = 51 elements in (a) and n = 201 elements in (b).

able 2
umerical values of material parameters for the comparison of computational efficiencies.

C44 τ0 H Hχ µχ n γ̇0 R

105 GPa 100 MPa −10 MPa 5 × 104 MPa 50 MPa 15 1030 s−1 0.1 MPa

two different mesh densities n = 51 and n = 201 are plotted in Fig. 2. It can be seen that if the value of µχ is not
large enough, oscillations of ∆χ are still observed even if µχ ̸= 0. Increasing the value of µχ tends to smooth out
he profile of ∆χ . In this example, no clear evolution of the profile can be observed for values of µχ greater than
r equal to 10 MPa. The results obtained with µχ = 5 MPa suggest that at a given value of µχ , a finer mesh leads
o a smoother profile of the Laplacian term ∆χ . In other words, increasing the discretization reduces the value of
χ required to obtain a smooth profile of ∆χ .

.1.2. Computational efficiency
The computational efficiency of both relaxed formulations for the rate-independent and viscous settings are

ompared in this section. The four possible variants (micromorphic or Lagrange multiplier approach and rate-
ependent or rate-independent formulation) are used to solve the localization problem presented above. It can be
hown that the shear stress τ is uniform. In order for the results to be comparable in terms of computational
fficiency, the viscous stress τvs = τ0(γ̇ /γ̇0)1/n , for the rate-dependent setting, and the overstress τos = R(γ̇ /ε̇eq ),
or the rate-independent setting, need to be calibrated in order for the numerical solution to be close to the rate-
ndependent solution without overstress with a given precision. The macroscopic shear strain rate is chosen to be
˙F12 = 10−2 s−1. From the analytical expression of τ = (F12 +τ0/Ze)/(1/C44 +1/Ze) with 1/Ze = λ0/H L derived
in [51] it follows that the maximum viscous stress is

τmax
vs = τ0

⎛⎝ 2 ˙F12

γ̇0 H
(

1
C44

+
1

Ze

)
⎞⎠1/n

(57)

hile the rate-independent overstress is uniform and given by

τos =

√
3R

H
(

1
C44

+
1

Ze

) (58)

0̇, n and R are chosen such that τmax
vs and τos are less than 1% of τ0. The material parameter used are summarized

in Table 2. Four different values of A are chosen such that λ0/L = 2π
√

A/|H |/L takes the following values
0.25; 0.5; 0.75; 1]. The one-element thick bar is meshed with n = 201 quadratic elements with reduced integration
13
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Fig. 3. Computation times for the finite element resolution of the periodic strip in simple shear and single slip for four different λ0/L ratios
and four different formulations.

(C3D20R). In the micromorphic approach each node has three displacement degrees of freedom and the linear nodes
have one additional degree of freedom γχ . In the Lagrange multiplier approach each node has three displacement
degrees of freedom and the linear nodes have two additional degrees of freedom γχ and λ. The number of degrees
of freedom in the micromorphic simulations is nDO F = 4077, while it is nDO F = 4485 with the Lagrange multiplier
based formulation. Results not shown here exhibit an overall discrepancy of less than 1% on the predicted numerical
γ field between the four formulations after a mean shear deformation gradient of F12 = 100%. All simulations
re also in excellent agreement with the analytical solution. Simulations were ran on a single Intel Core i7-7600U
PU. Reference computation time is Tre f = 2316 s and corresponds to the time needed for the viscous micromorphic

ormulation to reach F12 = 100% with λ0/L0 = 0.25. The relative computation times for the four different values
of λ0/L and four different formulations are displayed in Fig. 3.

First, despite the slightly larger number of degrees of freedom, the computational cost reduction obtained with the
Lagrange multiplier based formulation, as compared to the micromorphic approach, is striking. In the rate-dependent
setting this speedup ranges from 30 up to almost 200. In the rate-independent setting this speedup ranges between
1.5 and 70. Regarding the micromorphic implementation only, the speedup obtained with the rate-independent
setting, as compared to the viscous setting, ranges from more than 2.5 to about 17 as the ratio λ0/L increases.
Furthermore, regarding the Lagrange multiplier formulation only, the rate-dependent and rate-independent settings
have very similar computational performances. The rate-independent setting is slightly more efficient for the lowest
λ0/L ratios, while on the contrary the rate-dependent formulation performs better at λ0/L = 1.

The rate of convergence in the local integration scheme was checked for the micromorphic and Lagrange
ultiplier approaches. Both methods display a very similar rate of convergence that is very close to the quadratic

ound of a Newton scheme. The gap of performances between the two implementations is in fact attributed to the
oor conditioning of the local Jacobian matrix when the penalization modulus Hχ is taken large. Pre-conditioning

techniques could be applied in order to enhance the performances of the micromorphic approach.
As this work proceeds, the rate-dependent setting is adopted and results obtained with micromorphic and

Lagrange multiplier approaches are compared. As already discussed by Cordero et al. [44] micromorphic and
strict strain gradient formulations, such as the Lagrange multiplier based formulation, are indeed not always strictly
equivalent. Therefore the choice of the appropriate formulation should not only be motivated by the computational
efficiency but also by the desired scaling law.

5.2. Size effects in torsion tests

The torsion of single and polycrystal wires has been the subject of intensive experimental and computational
research. Nouailhas and Cailletaud [63] discovered that the torsion of a single crystal bar or tube is characterized
14
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by two types of strain gradients: a radial gradient from the centre to the outer surface due to the loading, but
also a gradient along the outer circumference due to the anisotropic activation of slip systems. This was observed
experimentally by means of strain gauges placed along the circumference [64]. The transition from single to
polycrystals for microwires of increasing diameters was computed using finite element crystal plasticity in [65]
and more recently in [66]. The size-dependent torsion of FCC single crystal bars is investigated below by means
of the proposed micromorphic and strain gradient plasticity models.

5.2.1. Problem setup
Simulations are performed with a single crystal cylindrical microwire of diameter D = 2R0 meshed with elements

hat are quadratic for displacements degrees of freedom and linear for γχ and λ. Quadratic shape functions are used
for displacements degrees of freedom because they are known to provide better interpolation accuracy than linear
shape functions. Furthermore, quadratic elements are also known to be less subject to locking issues. However linear
shape functions are used for γχ and λ in order to limit the number of degrees of freedom. It is in fact assumed that
plastic deformations vary less rapidly than displacements, in such a way that linear shape functions give sufficient
precision to interpolate accumulated plastic slip. With the formalism developed in this work quadratic shape function
for γχ and λ could also have been used. As reduced integration involves a lesser number of integration points than
full integration, 20-node brick elements with reduced integration possessing 8 Gauss points (instead of 27 for full
integration) are used. Reducing the number of integration points clearly decreases the accuracy of the integration,
but it also reduces the computational cost. Furthermore, reduced integrated elements are known to be less stiff
than fully integrated elements. Therefore, reduced integration is often recommended in order to avoid the problem
of locking and possible oscillations. Yet, reduced integration can lead to hourglassing issues when the element
stiffness matrix is zero. Several ways to address hourglassing have been proposed in literature [67]: inserting an
artificial stiffness to the hourglass deformation modes, inserting an artificial viscosity, refining the mesh, etc. In this
work methods to prevent hourglass were not used because no significant hourglass modes could be observed in the
simulations which are presented below.

The bottom face of the microwire is clamped while the top surface undergoes a rigid body rotation around the
wire axis. The lateral faces are kept traction free, which means that T = 0 and M = 0 from equations (6) and
(7). Two orientations of the single crystal are considered: ⟨001⟩ and ⟨111⟩ aligned with the microwire axis. The
geometry and the boundary conditions are as shown in Fig. 4. The Cartesian coordinate system is chosen for the
two microwire single crystals (later respectively denoted ⟨001⟩ and ⟨111⟩) such that

X 1 = [110] X 2 = [11̄0] X 3 = [001] (59)

and

X 1 = [1̄1̄2] X 2 = [11̄0] X 3 = [111] (60)

respectively.
Face-centred cubic (FCC) single crystal microwires are simulated. The hardening laws per slip system are based

on the evolution of usual scalar dislocation densities. The hardening term accounts for lattice friction and dislocation
interactions [68]. The critical resolved shear stress (CRSS) is taken as:

τ s
c = τ0 + µ

√ 12∑
u=1

asuru (61)

here τ0 is the thermal component of the CRSS due to lattice friction, ru denotes adimensional dislocation density
ru/b2

= ρu is the usual dislocation density, i.e. the length of dislocation lines per unit volume, b is the norm
f the dislocation Burgers vector b ), µ is the shear modulus, and asu is a matrix describing interactions between

dislocations. Such a hardening behaviour is standard in the literature, but the link to a free energy potential ψh

remains an open question. The evolution equation for the adimensional dislocation density r s

ṙ s
= |γ̇ s

|

⎛⎝
√∑12

u=1 bsuru

κ
− Gcr s

⎞⎠ (62)
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Fig. 4. Microwire torsion (a) boundary conditions (b) example mesh from the top side in which the black line represents an initial material
ine. For the ⟨001⟩ crystal orientation the black line is oriented along a ⟨110⟩ direction. For the ⟨111⟩ crystal orientation it is oriented along
⟨112̄⟩ direction.

able 3
umerical values of material parameters for the simulation of microwires in torsion.

C11 C12 C44 τ0 n γ̇0 µ Gc κ

259.6 GPa 179 GPa 109.6 GPa 320 MPa 20 1033 s−1 77.2 GPa 10.4 42.8

r s
0 asu bsu (s ̸= u) buu Hχ µχ

5.38 × 10−11 0.124 1 0 104 MPa 103 MPa

Table 4
Numerical values of ℓ/2R0 ratios for the simulation of microwires in torsion.

ℓ/2R0 ⟨001⟩ 0.03 0.07 0.10 0.31 0.44 0.54

ℓ/2R0 ⟨111⟩ 0.03 0.08 0.11 0.35 0.50 0.61

accounts for multiplication and annihilation of dislocations. The parameter κ is proportional to the number of
obstacles crossed by a dislocation before being immobilized, Gc is the critical distance controlling the annihilation
of dislocations with opposite signs, and bsu describes the interactions between dislocations. The structures of the
matrices asu and bsu are given in [28] for FCC crystals. Cubic elasticity is considered. The wrought Inconel 718

aterial parameters at room temperature used for the numerical simulation are given in Table 3. r s
0 denotes the

initial value of the adimensional dislocation density, which is assumed to be the same for all slip systems. The
various intrinsic length scale to diameter ratios (ℓ/2R0) considered in the simulations are given in Table 4.

.2.2. Results and discussion
Figs. 5 and 6 show the accumulated plastic strain fields in the deformed configuration for FCC single crystals

ith wire axis parallel to ⟨001⟩ and ⟨111⟩ respectively. A cross section of each sample is illustrated in Figs. 5 and
. The radial and circumferential plastic strain gradients are clearly visible. A four-fold pattern is observed for the
001⟩ specimen with maximum plastic strain values along ⟨100⟩ directions. A six-fold pattern is observed for the
111⟩ specimen with maximum plastic strain values along ⟨112̄⟩ directions. The overall curves are presented using

normalized torque T/R3
0 as a function of surface strain γR defined as
γR = k R0 (63)
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Fig. 5. Cumulative plastic strain (γcum ) field in FCC single crystal for ⟨001⟩ crystal orientation in classical crystal plasticity with respect
o deformed configuration. The rotation of material line shown in Fig. 4b with increasing surface strain is shown by a black line on the
ross-section.

here k is the applied twist per unit length (θ/L). They are given in Fig. 7 for the two single crystal orientations
001⟩ and ⟨111⟩ using classical crystal plasticity. The ⟨001⟩ crystal orientation is found to be significantly stronger
han the ⟨111⟩ wire. The orientation of the crystal to the loading direction causes different slip activity and results
n different mechanical responses. The twist angle at the cross-section of the microwire is calculated as θh = θh/L ,
here h is the height from the bottom end. The initial material line for ⟨001⟩ and ⟨111⟩ crystal orientation is

shown in Fig. 4b. The rotation of material line with increasing surface strain is as shown in Figs. 5 and 6. The
response of the micromorphic wire is also provided in Fig. 7 for comparison for a given internal length value. In the
micromorphic approach, the penalty parameter Hχ is chosen sufficiently large for γcum and γχ to almost coincide.
The chosen value of Hχ in the simulation is 104 MPa. The intrinsic length scale (ℓ) considered in the simulation
is defined as ℓ =

√
A/|H | as proposed in [28], where H is the initial equivalent linear hardening modulus. H is

estimated by performing uniaxial tensile test on one element as proposed in [69]. Its value is given by the ratio of
τ s and γ s for one activated slip system at the beginning of its activation. Thus the estimated H values for ⟨001⟩

and ⟨111⟩ crystal orientation are 2500 MPa and 2000 MPa respectively. The intrinsic length scale can be varied by
varying the constitutive parameter A. The various values of A and of the intrinsic length scale to diameter ratio
(ℓ/2R0) of microwire are given in Table 4. The micromorphic response in Fig. 7 exhibits a linear hardening of the
wire in contrast to the saturated classical crystal plasticity response. The magnitude of the slope depends on the
value of the internal length as demonstrated in the following.

The effect of different ratios ℓ/2R0 on the size effects in torsion microwires has been studied for the two models
considered in this work, namely the micromorphic and strain gradient plasticity formulations. The torque vs. surface

strain curves of the micromorphic model are compared with the Lagrange multiplier based model. The cumulative
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a

Fig. 6. Cumulative plastic strain (γcum ) field in FCC single crystal for ⟨111⟩ crystal orientation in classical crystal plasticity with respect to
deformed configuration. The material line shown in Fig. 4b and its rotation with increasing surface strain are shown by a black line on the
cross-section.

Fig. 7. Shear stress vs. surface strain in FCC single crystal wires for ⟨001⟩ and ⟨111⟩ crystal orientation using classical crystal plasticity
nd micromorphic models.
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Fig. 8. Cumulative plastic strain distribution in FCC single crystal for ⟨001⟩ crystal orientation for different values of ratio ℓ/2R0 using (a)
micromorphic (b) Lagrange multiplier models at surface strain of 0.08 (fields reported on the reference configuration).

plastic strain (γcum) fields for different ℓ/2R0 of microwire (ℓ/2R0 = 0.03, 0.07, 0.10 and 0.44 for ⟨001⟩ and
ℓ/2R0 = 0.03, 0.08, 0.11 and 0.50 for ⟨111⟩ crystal orientation) obtained using both models are shown in Figs. 8
and 9. It can be seen that, for low and intermediate values of the ratio ℓ/2R0, the two models predict the same
accumulated plastic slip fields. In contrast, for the larger value ℓ/2R0 = 0.31, the circumferential gradient has
lmost disappeared according to the Lagrange multiplier based model whereas it is still present in the micromorphic
imulation. Increasing the length scale for a fixed wire diameter leads to a strong decrease of the plastic strain
radient. This can be attributed to the fact that the energetic cost of plastic strain gradient increases with ℓ and the

free energy of the sample is minimum for a limited value of the gradient. These observations are valid for both
orientations ⟨001⟩ and ⟨111⟩. It is remarkable that the four-fold and six-fold patterns disappear for large enough
internal length scale values.

The corresponding torque vs. surface strain curves are provided in Figs. 10 and 11. They clearly show the
size-dependent hardening effect for both models. For small and intermediate values of the internal length, the
micromorphic and Lagrange multiplier models are found to deliver the same overall responses. This result is
expected since the value of penalty parameter in the micromorphic model has been chosen so as to ensure such a
correspondence. However, keeping the same value of the penalty parameter Hχ and increasing the internal length, or

equivalently the value of the parameter A, leads to a saturation of the torque-shear strain curve for the micromorphic
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Fig. 9. Cumulative plastic strain distribution in FCC single crystal for ⟨111⟩ crystal orientation for different values of ratio ℓ/2R0 using (a)
micromorphic (b) Lagrange multiplier models at surface strain of 0.08 (fields reported on the reference configuration).

model. In contrast, the Lagrange multiplier based model predicts ever increasing hardening. Figs. 10a and 11a show
almost the same micromorphic response for the two largest ℓ/2R0 values whereas distinct curves are obtained with
the Lagrange multiplier approach, see Figs. 10b and 11b. This saturation of size effects predicted by a micromorphic
formulation has already been demonstrated analytically for the microcurl theory by Cordero et al. [44] in the case
of periodic shearing of a laminate at small strains and small rotations. The present new results show that this feature
also exists at large strains for torsion. These observations apply to both orientations ⟨001⟩ and ⟨111⟩. The strongest
additional hardening effect is obtained when the internal length takes values comparable to the wire diameter, as
expected.

The predictions of the Lagrange multiplier based formulation can be considered in fact as the limit case when
the penalty modulus Hχ goes to infinity in the micromorphic formulation. The predictions obtained with the
micromorphic formulation for several values of Hχ are plotted in Fig. 12. As Hχ rises the prediction of the
micromorphic formulation goes closer to the prediction obtained with the Lagrange multiplier based formulation.
However increasing Hχ builds up drastically the computation time since the penalization becomes very stiff. In
practice, one could use the penalty term Hχ in the micromorphic formulation as a parameter to fit the scaling law
measured in experiments. This possibility was discussed for micromorphic and Cosserat models in [44]. Such a
parametrization is however not possible with the Lagrange multiplier based formulation. Nevertheless saturation
of the scaling law can also be achieved, with both formulations, by using a more elaborate free energy potential
20



J.-M. Scherer, V. Phalke, J. Besson et al. Computer Methods in Applied Mechanics and Engineering 372 (2020) 113426
Fig. 10. Normalized torque vs. surface strain curves for FCC ⟨001⟩ crystal orientation for different values of ratio ℓ/2R0 using (a)
micromorphic (b) Lagrange multiplier models.

Fig. 11. Normalized torque vs. surface strain curves for FCC ⟨111⟩ crystal orientation for different values of ratio ℓ/2R0 using (a)
micromorphic (b) Lagrange multiplier models.

associated to gradient terms. The rather simple quadratic form used in this study can indeed be modified in order
to obtain more physically relevant scaling laws.

5.3. Size effects in ductile fracture: void growth and coalescence

Porous unit-cell simulations are commonly used to assess the mechanisms of void growth and void coalescence
which play a major role in the ductile failure of metallic materials. Voids can nucleate at defects such as inclusions
and precipitates by cracking or debonding of these defects. Voids may also be induced by other mechanisms such as
irradiation in nuclear materials. In all these cases voids are sub-crystalline imperfections. Following the pioneering
work of Hori and Nemat-Nasser [70,71] recent numerical studies have considered voids embedded in FCC [72] and
HCP [73] single crystals. In addition, Hussein et al. [74], Borg et al. [75] and Zhao et al. [76] have analysed the
size effects predicted by strain gradient plasticity, dislocations dynamics and molecular dynamics respectively, in
plates containing cylindrical holes. Recently [28] performed the first size-dependent 3D porous single crystal unit-

cell simulations where the micromorphic crystal plasticity formulation presented in Section 3.1 was used. Similar
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Fig. 12. Normalized torque vs. surface strain curves for FCC ⟨001⟩ crystal orientation for different values of Hχ and for ℓ/2R0 = 0.44.

nit-cell simulations are reproduced with the Lagrange multiplier based formulation presented in Section 3.2 and
ompared to the results obtained by Ling et al. [28].

.3.1. Problem setup
An initially spherical void of radius R0 is placed at the centre of a cube of size L0 as presented in Fig. 13a. The

matrix material surrounding the void is a FCC single crystal (later denoted ⟨100⟩) such that

X 1 = [100] X 2 = [010] X 3 = [001] (64)

Therefore, for symmetry reasons only one eighth of the porous unit-cell is considered. Fig. 13b shows the
corresponding finite element mesh for a void volume fraction f0 = (4/3)π (R0/L0)3

= 1%. Quadratic (resp. linear)
shape functions are used for the displacement (resp. micro-slip γχ and Lagrange multiplier λ) degrees of freedom.
Elements with reduced integration are used. A triaxial axisymmetric loading is applied by prescribing displacement
boundary conditions on the inner faces of the cube at X1 = 0, X2 = 0, X3 = 0 and outer faces at X1 = L0/2,
X2 = L0/2, X3 = L0/2

U1(X1 = 0, X2, X3) = 0 U1(X1 = L0/2, X2, X3) = U1(t) (65)
U2(X1, X2 = 0, X3) = 0 U2(X1, X2 = L0/2, X3) = U2(t) (66)
U3(X1, X2, X3 = 0) = 0 U3(X1, X2, X3 = L0/2) = U3(t) (67)

xternal forces F1, F2 and F3 are respectively associated to U1, U2 and U3. The macroscopic Cauchy stress
omponents Σ11, Σ22 and Σ33 are defined by

Σ11 =
4F1

(L0 + 2U2)(L0 + 2U3)
Σ22 =

4F2

(L0 + 2U1)(L0 + 2U3)
Σ33 =

4F3

(L0 + 2U1)(L0 + 2U2)
(68)

macroscopic strain rate ˙F11 = 10−4 s−1 is imposed along the X 1 direction. Displacements U2 and U3 are adjusted
following the procedure described in [72] in order to enforce a constant stress triaxiality T where

T =
Σm

Σeq
=

1 + η2 + η3

3
√

1 − η2 − η3 − η2η3 + η2
2 + η2

3

(69)

ith the relations Σ22 = η2Σ11 and Σ33 = η3Σ11. For the applied axisymmetric loading considered in this Section,
he values η2 = η3 = 0.625 were chosen, corresponding to a triaxiality of 2.

The same dislocation density based hardening laws equation (61) and evolution equation (62) are used. Different
aterial parameters are however considered and listed in Table 5 in order to match the material parameters used

n [28]. Several values of A are used in order to investigate size effects. As discussed in previous section and by Ling
22
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Fig. 13. (a) Geometry of a cubic porous unit-cell. (b) 1/8th of the finite element mesh for f0 = 1%. Total number of degrees of freedom
is nDO F = 2767.

Table 5
Numerical values of material parameters for the simulation of porous unit-cells.

C11 C12 C44 τ0 n γ̇0 µ Gc κ

200 GPa 136 GPa 105 GPa 88 MPa 15 1029 s−1 65.6 GPa 10.4 42.8

r s
0 a1, a2 a3 a4 a5 a6 bi j (i ̸= j) bi i µχ

5.38 × 10−11 0.124 0.07 0.625 0.137 0.122 1 0 102, 103, 104 MPa

et al. [28] the intrinsic length scale ℓ =
√

A/H can be considered, where H denotes the linear hardening modulus
at initiation of plastic slip in a uniaxial tensile test. The ratio ℓ/L0 then governs the predicted size effects. For the

aterial parameters presented in Table 5 one obtains H = 2777 MPa for the ⟨100⟩ crystal orientation. The numerical
alues of ℓ/L0 used for the simulation of porous unit-cells are: 0, 1/300, 1/90, 1/30 and 1/3. Several values of

the penalization modulus µχ are also considered in order to measure its impact on the macroscopic stress–strain
behaviour.

5.3.2. Results and discussion
The void volume fraction f is postprocessed from the unit-cell simulations by computing the volume contained

in the mesh Vmesh (excluding the void) and the total volume contained in the cube Vtot = (L0+2U1)(L0+2U2)(L0+

U3) (including the void)

f = 1 −
Vmesh

Vtot
(70)

Fig. 14 plots the evolution of f with the macroscopic deformation E11 = 2U1/L0 for the different ℓ/L0 ratios
considered. The results obtained with the novel Lagrange multiplier based formulation are plotted aside the results
presented in [28] which were obtained with the micromorphic formulation with the same material parameters, but
where the entire unit-cells were computed. It can be noted that when ℓ/L0 vanishes, both formulations predict almost
exactly the same result. Nevertheless some discrepancies become visible as ℓ/L0 increases. This observation can be
put in parallel to the discussion made in previous section. The Lagrange multiplier approach corresponds indeed to
the limit case of the micromorphic formulation as Hχ approaches infinity. However in [28] for numerical efficiency
reasons Hχ was taken equal to 5 × 104 MPa. Size effects obtained with both formulations are therefore in good
qualitative agreement, but turn out to be more pronounced with the Lagrange multiplier setting. These effects are
as follows.

With the applied loading the void volume fraction is a monotonically increasing function of E11. In absence of
size effects (i.e. ℓ/L0 = 0) evolution of the void volume fraction does not depend on the cell size. However as
ℓ/L0 increases void volume fraction evolution becomes size-dependent. The larger the ℓ/L0 ratio is, the slower

the void volume fraction rises with macroscopic deformation. This first size effect is due to a more diffuse plastic
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Fig. 14. Void volume fraction f evolution with respect to macroscopic deformation E11 for different intrinsic length to cell size ratios ℓ/L0
obtained with the micromorphic (solid lines) and the Lagrange multiplier (dashed lines) formulations in porous unit-cell simulations with
f0 = 0.01 and material parameters presented in Table 5. Hollow squares denote onsets of void coalescence.

deformation field when the intrinsic length ℓ gets closer to L0. For the three lowest values of the ratio considered,
the void volume fraction evolution displays two distinct regimes, while for the two largest ratios only one regime
is visible. This two-regime evolution is characteristic of void growth and void coalescence. During the first regime,
voids grow rather slowly because of overall yielding of the matrix surrounding them. At some point necking of the
ligament separating voids is reached, which leads to a sudden steepening of void growth evolution. This acceleration
is due to intense localization of plastic deformation inside the ligament. Onset of void coalescence by intervoid
ligament necking is characterized by a transition from a triaxial to a uniaxial straining mode [77]. This transition
can therefore be detected by computing over time the ratio |∆U2|/|∆U1|. Coalescence can be considered to set on as
soon as this ratio becomes lower than an arbitrary small critical value, say 5%. Hollow squares are plotted in Fig. 14
in order to depict the macroscopic strain and void volume fraction at which coalescence begins. For the sake of
clarity, coalescence onsets are only displayed for the results obtained by Ling et al. [28]. For a given characteristic
length, the micromorphic and Lagrange multiplier formulations predict almost identical strain and void volume
fractions at onset of coalescence. The second size effect which appears is that void growth to void coalescence
transition is postponed when ℓ/L0 is increased. This delay is due to the weaker void volume increase during the

rowth regime. For the two largest value of ℓ/L0 a very flat void growth regime is observed. The quasi-absence
f void growth explains why coalescence does not occur in the range of applied deformations. Necking of the
ntervoid ligament would indeed require larger stresses to be applied. A third size effect which can be observed is a
light increase of the void volume fraction at coalescence when the intrinsic length increases. This additional effect
s due to the fact that size effects prevent intense localization of plastic deformation. Therefore void coalescence
hich occurs by localization of plastic slip in the intervoid ligament requires a larger void volume fraction in order

o happen. The macroscopic stress–strain curves obtained with the Lagrange multiplier formulation are plotted in
ig. 15 aside to the results obtained with the micromorphic formulation presented in [28]. As previously noted for
oid volume fraction in Fig. 14, both formulations are also equivalent in terms of stress–strain behaviour when
ize effects are absent. However the discrepancies between both formulations observed in presence of size effects
n void volume fraction evolution are also visible on the stress–strain behaviour. The void volume fraction plays
ndeed a detrimental role on the macroscopic stress. With low and intermediate intrinsic length scales, voids grow
ignificantly and the material displays a two-regime stress–strain behaviour. During the first regime hardening of
he matrix material dominates over softening induced by void growth. This regime is therefore characterized by an
ncrease of the macroscopic stress despite the augmentation of f . In the second regime, softening induced by void

growth overcomes the hardening capacity of the matrix leading to a macroscopic softening behaviour. However, for
the largest intrinsic length, softening induced by void growth does not overcome hardening of the matrix material,
thus the second stress softening regime is not observed. Hollow squares are also plotted on the stress–strain curves

in order to depict onset of void coalescence. As discussed earlier, strong size effects postpone the onset of void
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Fig. 15. Macroscopic stress–strain behaviour for different intrinsic length to cell size ratios ℓ/L0 obtained with the micromorphic formulation
(dots) by Ling et al. [28] and the Lagrange multiplier formulation (dashed lines) in porous unit-cell simulations with f0 = 0.01 and material
arameters presented in Table 5. Hollow squares denote onsets of void coalescence.

Fig. 16. Cumulated plastic strain fields in porous unit-cells at E11 = 0.3 obtained with the Lagrange multiplier formulation with
χ = 104 MPa.

oalescence, because of impeded void growth. As a collateral effect, it can be noted that the macroscopic stress at
oalescence increases notably with ℓ/L0. The influence of the penalization modulus µχ in the Lagrange multiplier
ormulation is visible in Figs. 14 and 15. For the smallest characteristic length µχ has a rather weak impact on the
oid volume fraction evolution and stress behaviour. As the characteristic length increases, the importance of µχ

rises. It can be observed that greater values of µχ induce a slightly slower void growth and a harder stress–strain
ehaviour. These effects become more visible at large strains.

The cumulated plastic strain field obtained with the Lagrange multiplier formulation with µχ = 104 MPa are
displayed in Fig. 16 at a macroscopic strain E11 = 0.3 for several values of the ratio ℓ/L0. These fields are
quantitatively in excellent agreement with the results obtained by Ling et al. [28] with the micromorphic approach.
According to conventional crystal plasticity, plastic strains are predominantly localized in the vicinity of the void,
in particular where the cross-section area orthogonal to the main tensile direction is minimum. Plastic anisotropy
causes the presence of several soft zones, where γcum is maximum and which correspond to regions with highest
Schmid factors. As the ratio ℓ/L0 is increased the cumulated plastic slip tends to become more homogeneous across
he porous unit-cell. Therefore, the maximum local value of γcum drops. In addition, the number of local maxima

decreases. Three intense maxima were indeed visible with conventional crystal plasticity, while only two much less
intense maxima can be observed when ℓ/L = 30.
0
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6. Conclusions

The major outcomes of this study can be stated as follows:

1. A Lagrange multiplier approach accounting for the nonlinearity and nonlocality coupling inherent to strain
gradient plasticity was presented. It was compared to the micromorphic approach in the context of crystal
plasticity. The main idea of the Lagrange multiplier approach is to enforce weakly equality between local
and nonlocal variables through a Lagrange multiplier.

2. The finite element implementation of the Lagrange multiplier method was detailed. In particular tangent and
Jacobian matrices were derived.

3. The computational efficiencies of the micromorphic and Lagrange multiplier formulations were compared.
Rate-dependent and rate-independent crystal plasticity settings were used. A significant speedup, reaching
a computational time reduction of up to a factor 200, is obtained with the Lagrange multiplier based and
rate-dependent formulation compared to the micromorphic and rate-dependent formulation. Important benefits
are also displayed with the rate-independent setting as compared to the viscoplastic flow rule, in particular
when the micromorphic approach is considered.

4. The prediction of size effects with the micromorphic and Lagrange multiplier approaches were compared for
single crystals torsion tests. It was shown that both models provide similar results for small and intermediate
internal length scales. However, for larger internal length scales, the hardening due to strain gradients saturates
according to the micromorphic approach. A similar saturation effect was observed on the grain size effect on
the yield stress in polycrystals using the microcurl model at small strains in [78]. The scaling law is different
for the Lagrange multiplier formulation since such a saturation is not observed.

5. Advantage of the Lagrange multiplier numerical efficiency has been taken in order to perform simulations
of void growth in porous unit-cells up to void coalescence. Comparison to simulations made previously with
the micromorphic formulation displays a very good agreement between both formulations.

Although this model remains computationally rather expensive, the results obtained in this work suggest that
imulation of structures, such as real specimens, are now within reach in more reasonable computation times. The
ork initiated in [51] on the evolution of voids in a softening matrix material will be pursued by performing
D porous unit-cell simulations by taking advantage of the enhanced computational performance of the Lagrange
ultiplier formulation. The advances obtained in this paper will also be coupled in a future work to recent extensions

f standard crystal plasticity to ductile failure [72] and damage [79].
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ppendix A. Jacobian matrix ∂R/∂vint

The Jacobian matrix is needed to integrate the constitutive equations at the Gauss point level. The block form
f the Jacobian matrix writes

J =
∂R
∂∆vint

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂RE
∼

∂∆E
∼

∂RE
∼

∂∆γ p

∂RE
∼

∂∆rq

∂RE
∼

∂∆γcum
∂Rγ s

∂∆E
∼

∂Rγ s

∂∆γ p

∂Rγ s

∂∆rq

∂Rγ s

∂∆γcum
∂Rr s

∂∆E
∼

∂Rr s

∂∆γ p

∂Rr s

∂∆rq

∂Rr s

∂∆γcum
∂Rγcum

∂∆E
∼

∂Rγcum

∂∆γ p

∂Rγcum

∂∆rq

∂Rγcum

∂∆γcum

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.1)
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• Derivatives of RE
∼

RE
∼

= ∆E
∼

− ∆F
∼
.F

∼

−1.E
∼

+ E
∼
.

(
N∑

s=1

∆γ s N
∼

s

)
(A.2)

∂RE
∼

∂∆E
∼

= 1
≈

− (∆F
∼
.F

∼

−1)⊗1
≈

+ 1
≈
⊗

(
N∑

s=1

∆γ s N
∼

s

)T

(A.3)

∂RE
∼

∂∆γ p
= E

∼
.N

∼

p
∂RE

∼

∂∆rq
= 0

∂RE
∼

∂∆γcum
= 0 (A.4)

• Derivatives of Rγ s

Rγ s = ∆γ s
− ∆ΓΦs

(
|τ s

| −

⟨
τ s

c −
ρ♯

ρ0

(
∆χ − µχγcum

)⟩)
sign

(
τ s) (A.5)

∂Rγ s

∂∆E
∼

= −∆Γ
∂Φs

∂τ s

∂τ s

∂Π
∼

M :
∂Π

∼

M

∂C
∼

e :
∂C

∼

e

∂E
∼

:
∂E

∼

∂∆E
∼

sign
(
τ s) C

∼

e
= E

∼

T .E
∼

(A.6)

with

∂Φs

∂τ s
=
∂Φs

∂ f s

∂ f s

∂τ s
= sign

(
τ s)Φs′

Φs′

=

⎧⎪⎨⎪⎩Φs′

RD =
n
τ n

0

⟨
f s

τ0

⟩n−1

Φs′

RI = 1/R

∂τ s

∂Π
∼

M = N
∼

s (A.7)

∂Π
∼

M

∂C
∼

e =

∂

[
C
∼

e.

(
C
≈

:
1
2 (C

∼

e
− 1)

)]
∂C

∼

e = (1
∼
⊗Π

∼

eT ) +
1
2

(C
∼

e
⊗1

∼
) : C

≈
(A.8)

∂C
∼

e

∂E
∼

= 1
∼
⊗E

∼

T
+ E

∼

T
⊗1

∼

∂E
∼

∂∆E
∼

= 1
≈

(A.9)

∂Rγ s

∂∆E
∼

= −∆ΓΦs′

N
∼

s
:

[
(1
∼
⊗Π

∼

e) +
1
2

(C
∼

e
⊗1

∼
) : C

≈

]
: (1

∼
⊗E

∼

T
+ E

∼

T
⊗1

∼
) (A.10)

∂Rγ s

∂∆γ p
= δsp (A.11)

∂Rγ s

∂∆rq
= −∆Γ

∂Φs

∂ f s

∂ f s

∂τ s
c

∂τ s
c

∂∆rq
sign

(
τ s)

= sign
(
τ s)∆ΓΦs′ 1

2
µ

(
N∑

u=1

asuru

)−
1
2

asq (A.12)

∂Rγ s

∂∆γcum
= −∆Γ

∂Φs

∂ f s

∂ f s

∂γcum
sign

(
τ s)

= ∆ΓΦs′

µχ sign
(
τ s) (A.13)

• Derivatives of Rr s

Rr s = ∆r s
− |∆γ s

|

⎛⎝
√∑N

u=1 bsuru

κ
− Gcr s

⎞⎠ (A.14)

∂Rr s

∂∆E
∼

= 0
∂Rr s

∂∆γ p
= −sign

(
∆γ s) δsp

⎛⎝
√∑N

u=1 bsuru

κ
− Gcr s

⎞⎠ (A.15)

∂Rr s

∂∆rq
= δsq − |∆γ s

|

⎛⎜⎜⎝1
2

(∑N
u=1 bsuru

)−
1
2

bsq

κ
− Gcδsq

⎞⎟⎟⎠ ∂Rr s

∂∆γcum
= 0 (A.16)
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q

• Derivatives of Rγcum

Rγcum = ∆γcum −

N∑
s=1

|∆γ s
| (A.17)

∂Rγcum

∂∆E
∼

= 0
∂Rγcum

∂∆γ p
= −sign

(
∆γ p) ∂Rγcum

∂∆rq
= 0

∂Rγcum

∂∆γcum
= 1 (A.18)

Appendix B. Details on the finite element implementation

In order to facilitate the numerical implementation in finite element code, the previous equations are written in
vector and matrix form. The rates of nodal degrees of freedom ˙̃ua , ˙̃γ b

χ and ˙̃λb are arranged in vector form as

{ ˙̃ua
i } = { ˙̃ue

} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃u1
1

˙̃u1
2

˙̃u1
3

...

˙̃u p
1

˙̃u p
2

˙̃u p
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

{ ˙̃γ b
χ } = { ˙̃γ e

χ } =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃γ 1
χ

˙̃γ 2
χ

...

˙̃γ
q
χ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
{
˙̃λb

} = {
˙̃λe

} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃λ1

˙̃λ2

...

˙̃λq

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B.1)

Here, we drop the superscripts a and b used for summation over the nodes of one element and add a superscript
label e, in order to indicate that the vector is for one individual element and to distinguish it from vectors for the
entire finite element mesh. Recall that p is the number of nodes possessing displacement degrees of freedom and

is that for ∆χ and microslip γχ . Voigt’s notation is used for writing tensors in the form of vectors and matrices.
Especially, the second-order non-symmetric tensor F

∼
is arranged in the form:

{F
∼
} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F11

F22

F33

F12

F23

F31

F21

F32

F13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B.2)

Thus, shape functions uN a
i and χN b can be written as

[uN] =

⎡⎢⎢⎣
uN 1 0 0 · · ·

uN p 0 0

0 uN 1 0 · · · 0 uN p 0

0 0 uN 1
· · · 0 0 uN p

⎤⎥⎥⎦ (B.3)
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and

[χN] =
[
χN 1 χN 2 χN 3

· · ·
χN q .

]
(B.4)

Accordingly, uBa
i j and χBa

i can also be written in matrix form denoted by [uB] and [χB]:

[uB] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂uN 1

∂X1
0 0 · · ·

∂uN p

∂X1
0 0

0
∂uN 1

∂X2
0 · · · 0

∂uN p

∂X2
0

0 0
∂uN 1

∂X3
· · · 0 0

∂uN p

∂X3
∂uN 1

∂X2
0 0 · · ·

∂uN p

∂X2
0 0

0
∂uN 1

∂X3
0 · · · 0

∂uN p

∂X3
0

0 0
∂uN 1

∂X1
· · · 0 0

∂uN p

∂X1

0
∂uN 1

∂X1
0 · · · 0

∂uN p

∂X1
0

0 0
∂uN 1

∂X2
· · · 0 0

∂uN p

∂X2
∂uN 1

∂X3
0 0 · · ·

∂uN p

∂X3
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.5)

and

[χB] =

⎡⎢⎢⎢⎢⎢⎢⎣
∂χN 1

∂X1

∂χN 2

∂X1

∂χN 3

∂X1
· · ·

∂χN q

∂X1
∂χN 1

∂X2

∂χN 2

∂X2

∂χN 3

∂X2
· · ·

∂χN q

∂X2
∂χN 1

∂X3

∂χN 2

∂X3

∂χN 3

∂X3
· · ·

∂χN q

∂X3

⎤⎥⎥⎥⎥⎥⎥⎦ (B.6)

The interpolation of increment of the displacements u̇i , microslip γ̇χ and Lagrange multiplier λ̇ in one element thus
write

{u̇ } = [uN].{ ˙̃ue
} {γ̇ χ } = [χN].{ ˙̃γ e

χ } (B.7)

{λ̇} = [χN].{ ˙̃λe
} thus {∆̇χ } = [χN].

[
{
˙̃λe

} + µχ { ˙̃γ e
χ }

]
(B.8)

and therefore it follows that

{Ḟ
∼
} = [uB].{ ˙̃ue

} {K̇ χ } = [χB].{ ˙̃γ e
χ }. (B.9)

With stress and strain variables expressed with Voigt’s notation, equations (49), (50), (51) and (52) follow

{Re
int(u)} =

∫
De

0

[uB]T .{S
∼
}dV e

0 (B.10)

{Re
int(γχ )} =

∫
De

0

A[χB]T .[χB].{γ χ } + [χN]T .
(
{∆χ } − µχ {γ M}

)
dV e

0 (B.11)

{Re
int(λ)} =

∫
De

0

[χN]T .
(
{γ χ } − {γ M}

)
dV e

0 (B.12)

{Re
ext(u)} =

∫
∂De

0

[uN]T .{T }dSe
0 (B.13)

{Re
ext(γχ )} =

∫
e
[χN]T .{M}dSe

0 (B.14)

∂D0
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O

{Re
ext(λ)} = {000} (B.15)

where [uB]T is the transpose of the matrix [uB] and the same notation is used for other matrices. In practice the
integrals are approximated in each element by a Gaussian quadrature rule. The global finite element set of equations
is obtained by applying an assembly operator A on internal reactions and external reactions:

{Rint(u)} = A({Re
int(u)}) {Rint(γχ )} = A({Re

int(γχ )}) {Rint(λ)} = A({Re
int(λ)}) (B.16)

{Rext(u)} = A({Re
ext(u)}) {Rext(γχ )} = A({Re

ext(γχ )}) {Rext(λ)} = A({Re
ext(λ)}) (B.17)

The reader is referred to Besson et al. [80] for the description of the assembly procedure. Thus, the global finite
element set of equations (53)(a), (53)(b) and (53)(c) to be solved can be written as⎧⎨⎩

{Rint(u)}

{Rint(γχ )}

{Rint(λ)}

⎫⎬⎭ .
⎧⎨⎩

{ ˙̃u}

{ ˙̃γ χ }

{
˙̃λ}

⎫⎬⎭ =

⎧⎨⎩
{Rext(u)}

{Rext(γχ )}

{Rext(λ)}

⎫⎬⎭ .
⎧⎨⎩

{ ˙̃u}

{ ˙̃γ χ }

{
˙̃λ}

⎫⎬⎭ (B.18)

Since the system is nonlinear, it can be solved by Newton’s method which requires the calculation of the Jacobian
matrix with respect to the internal reactions [80]. The Jacobian matrix of an individual element, split into nine
blocks, writes

⎡⎣[Ke
(uu)] [Ke

(ug)] [Ke
(ul)]

[Ke
(gu)] [Ke

(gg)] [Ke
(gl)]

[Ke
(lu)] [Ke

(lg)] [Ke
(ll)]

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
∂{Re

int(u)}

∂ {̃ue}

] [
∂{Re

int(u)}

∂{γ̃ e
χ }

] [
∂{Re

int(u)}

∂ {̃λe}

]
[
∂{Re

int(γχ )}

∂ {̃ue}

] [
∂{Re

int(γχ )}

∂{γ̃ e
χ }

] [
∂{Re

int(γχ )}

∂ {̃λe}

]
[
∂{Re

int(λ)}

∂ {̃ue}

] [
∂{Re

int(λ)}

∂{γ̃ e
χ }

] [
∂{Re

int(λ)}

∂ {̃λe}

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.19)

Using the assembly operation A, one can calculate the global Jacobian matrix [K]

[K] = A

⎡⎣[Ke
(uu)] [Ke

(ug)] [Ke
(ul)]

[Ke
(gu)] [Ke

(gg)] [Ke
(gl)]

[Ke
(lu)] [Ke

(lg)] [Ke
(ll)]

⎤⎦ (B.20)

ne calculates the blocks for an individual element and obtains the so-called element stiffness matrix:

[Ke
(uu)] =

∂{Re
int(u)}

∂ {̃ue}
=

∫
De

0

[uB]T .
∂{S

∼
}

∂{F
∼
}
.
∂{F

∼
}

∂ {̃ue}
dV e

0

=

∫
De

0

[uB]T .
∂{S

∼
}

∂{F
∼
}
.[uB] dV e

0 (B.21)

[Ke
(ug)] =

∂{Re
int(u)}

∂{γ̃ e
χ }

=

∫
De

0

(
[uB]T .

∂{S
∼
}

∂{γ χ }
.
∂{γ χ }

∂{γ̃ e
χ }

+ [uB]T .
∂{S

∼
}

∂{∆χ }
.
∂{∆χ }

∂{γ̃ χ }
.
∂{γ̃ χ }

∂{γ̃ e
χ }

)
dV e

0

=

∫
De

0

(
[uB]T .

∂{S
∼
}

∂{γ χ }
.[χN] + µχ [uB]T .

∂{S
∼
}

∂{λ}
.[χN]

)
dV e

0 (B.22)

[Ke
(ul)] =

∂{Re
int(u)}

∂ {̃λe}
=

∫
De

0

(
[uB]T .

∂{S
∼
}

∂{∆χ }
.
∂{∆χ }

∂{λ}
.
∂{λ}

∂ {̃λe}

)
dV e

0

=

∫
De

0

(
[uB]T .

∂{S
∼
}

∂{∆χ }
.[χN]

)
dV e

0 (B.23)

[Ke
(gu)] =

∂{Re
int(γχ )}

∂ {̃ue}
=

∫
De

0

(
−µχ [χN]T .

∂{γM}

∂{F
∼
}
.
∂{F

∼
}

∂ {̃ue}

)
dV e

0

=

∫
e

(
−µχ [χN]T .

∂{γM}

∂{F}
.[uB]

)
dV e

0 (B.24)

D0 ∼
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A

[Ke
(gg)] =

∂{Re
int(γχ )}

∂{γ̃ e
χ }

=

∫
De

0

(
A[χB]T .[χB].

∂{γ χ }

∂{γ̃ e
χ }

+ µχ [χN]T .
∂{γ χ }

∂{γ̃ e
χ }

−µχ [χN]T .
∂{γM}

∂{∆χ }
.
∂{∆χ }

∂{γ̃ χ }
.
∂{γ̃ χ }

∂{γ̃ e
χ }

)
dV e

0

=

∫
De

0

(
A[χB]T .[χB].[χN] + µχ [χN]T .[χN] − µ2

χ [χN]T .
∂{γM}

∂{∆χ }
.[χN]

)
dV e

0 (B.25)

[Ke
(gl)] =

∂{Re
int(γχ )}

∂ {̃λe}
=

∫
De

0

(
[χN]T .

∂{λ}

∂ {̃λe}
− µχ [χN]T .

∂{γM}

∂{∆χ }
.
∂{∆χ }

∂{λ}

∂{λ}

∂ {̃λe}

)
dV e

0

=

∫
De

0

(
[χN]T .[χN] − µχ [χN]T .

∂{γM}

∂{∆χ }
.[χN]

)
dV e

0 (B.26)

[Ke
(lu)] =

∂{Re
int(λ)}

∂ {̃ue}
=

∫
De

0

(
−[χN]T .

∂{γM}

∂{F
∼
}
.
∂{F

∼
}

∂ {̃ue}

)
dV e

0

=

∫
De

0

(
−[χN]T .

∂{γM}

∂{F
∼
}
.[uB]

)
dV e

0 (B.27)

[Ke
(lg)] =

∂{Re
int(λ)}

∂{γ̃ e
χ }

=

∫
De

0

(
[χN]T .

∂{γ χ }

∂{γ̃ e
χ }

− [χN]T .
∂{γM}

∂{∆χ }
.
∂{∆χ }

∂{γ χ }
.
∂{γ χ }

∂{γ̃ e
χ }

)
dV e

0

=

∫
De

0

(
[χN]T .[χN] − µχ [χN]T .

∂{γM}

∂{∆χ }
.[χN]

)
dV e

0 (B.28)

[Ke
(ll)] =

∂{Re
int(λ)}

∂ {̃λe}
=

∫
De

0

(
−[χN]T .

∂{γM}

∂{∆χ }
.
∂{∆χ }

∂{λ}
.
∂{λ}

∂ {̃λe}

)
dV e

0

=

∫
De

0

(
−[χN]T .

∂{γM}

∂{∆χ }
.[χN]

)
dV e

0 (B.29)

In the element stiffness matrix, one can find four derivatives which will be evaluated by consistent tangent matrix
{J∗

} in the next section. The consistent tangent matrix {J∗
} is defined as:

J∗
=
δ∆vOUT

δ∆vIN
(B.30)

ppendix C. Details on the consistent tangent matrix

It is shown in [28] that the consistent tangent matrix is

J∗
=

{
∂∆vOUT

∂∆vINT

[
−

(
∂R

∂∆vINT

)−1
∂R
∂∆vIN

]
+
∂∆vOUT

∂∆vIN

}
(C.1)

which involves the inverse of the (local) Jacobian matrix J = ∂R/∂vINT.

•
∂∆vOUT
∂∆vINT

∂∆S
∼

∂∆E
∼

=
∂S

∼

∂E
∼

=
∂S

∼

∂σ
∼

:
∂σ

∼

∂E
∼

(C.2)

∂S
∼

∂σ
∼

= J1
∼
⊗F

∼

−1 (C.3)

∂σ
∼
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∼

= −
1
Je

(E
∼
.Π

∼

e.E
∼

T ) ⊗ E
∼

−T
+

1
Je

1
∼
⊗(Π

∼

e.E
∼

T )T

+
1

(E
∼
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∼
) :
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∼

e

+
1 [

(E
∼
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∼
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∼

]
: (1

∼
⊗1

∼
) (C.4)
Je ∂E
∼

Je
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∂Π
∼

e

∂E
∼

=
∂Π

∼

e

∂E
∼

e
GL

:
∂E

∼

e
GL

∂E
∼
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e
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e
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≈

(C.6)
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e
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1
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∂∆S
∼

∂∆γ s
= 0

∂∆S
∼

∂∆r s
= 0

∂∆S
∼
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= 0 (C.8)
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For the rate-dependent formulation
∂Rγ s
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= 0 (C.14)

For the rate-independent formulation
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∂Rγcum
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