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a  b  s  t  r  a  c  t

A  stress  gradient  continuum  theory  is  presented  that  fundamentally  differs  from  the well-established
strain  gradient  model.  It is  based  on the  assumption  that the  deviatoric  part of  the  gradient  of the  Cauchy
stress  tensor  can  contribute  to the  free  energy  density  of solid  materials.  It requires  the introduction  of
so-called  micro-displacement  degrees  of  freedom  in addition  to  the usual  displacement  components.  An
isotropic  linear  elasticity  theory  is worked  out  for two-dimensional  stress  gradient  media.  The  analytical
solution  of  a simple  boundary  value  problem  illustrates  the  essential  differences  between  stress  and
strain  gradient  models.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Much attention has been dedicated to strain gradient effects in
continuum mechanics and materials sciences in the last fifty years,
since the pioneering work of Toupin (1962) and Mindlin (1965).
The second gradient theory represents an extension of the classical
Cauchy continuum by incorporating the effect of the second gra-
dient of the displacement field into the balance and constitutive
equations of the medium, in addition to the usual first gradient
of the displacement. It must be noted that the second gradient of
the displacement theory and the strain gradient model represent
the same continuum, due to compatibility conditions, as shown
by Mindlin and Eshel (1968).  Higher order stresses, called hyper-
stresses or double stresses, must be included in the theory as the
quantities conjugate to the components of the second gradient
of displacement. This results in an extended balance of momen-
tum equation and additional boundary conditions. These equations
have been derived first by Toupin and Mindlin using variations of
the elastic energy, and then by Germain (1973a) by means of the
method of virtual power. A derivation à la Cauchy,  i.e. based on
the representation of generalized contact forces, was established
more recently by Noll and Virga (1990) and Dell’Isola and Seppecher
(1995, 1997),  due to the fact that the Neumann conditions are rather
intricate in a second gradient medium.

∗ Corresponding author. Tel.: +33 1 60 76 30 51; fax: +33 1 60 76 31 50.
E-mail address: samuel.forest@ensmp.fr (S. Forest).

In contrast, the role of stress gradients has been the subject
of little attention, if one excepts its introduction in fatigue crack
initiation models at notches and holes of various sizes as studied
in the engineering community (Bascoul and Maso, 1981; Lahellec
et al., 2005). More recently, a stress-gradient based criterion has
been proposed for dislocation nucleation in crystals at a nano-scale
(Acharya and Miller, 2004).

Regarding continuum mechanics, there is a long-standing
misconception or, at least, ambiguity going through the whole lit-
erature on generalized continua, that implicitly considers that the
strain gradient theory can also be regarded as a stress gradient
model. The stress gradient can be found in Aifantis gradient elastic-
ity model (Aifantis, 1992, 2009; Ru and Aifantis, 1993; Lazar et al.,
2006) in the form:

�
∼

= �
∼

− c∇2�
∼

(1)

where �
∼

is an effective stress tensor whose divergence vanishes in

the absence of body forces and c is a material parameter associated
with a characteristic length. In a Cartesian orthonormal coordinate
system the Laplace operator is applied to each component of the
matrix. The Laplace term arises as the divergence of the gradient
of the stress field. However, it can be shown that the presence of
the stress gradient in this model is the result of a specific constitu-
tive assumption made in Mindlin’s strain gradient elasticity (Forest
and Aifantis, 2010). Accordingly, Aifantis gradient elasticity must be
considered as a strain gradient model.

As a result, the question arises whether it is possible
to formulate a stress gradient continuum theory describing
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size-dependent material properties and how much it may  dif-
fer from the well-established strain gradient model. Generalized
continuum theories include strain gradient, micromorphic and
non-local models (Eringen, 1999, 2002) that introduce higher order
strain gradients, additional degrees of freedom or non-local ker-
nels, but not explicitly the stress gradient as a primary variable. To
the knowledge of the authors, a stress gradient continuum theory
does not exist in the literature. The objective of the present work
is to establish the framework of such a stress gradient theory and
to illustrate the predicted behavior in the case of linear isotropic
elasticity. In particular we will prove that this theory fundamen-
tally differs from Mindlin’s strain gradient model: stress gradient
and strain gradient models are two distinct representations of the
continuum.

The presented stress gradient theory for the 3D continuum is
similar to the so-called bending-gradient theory recently proposed
by Lebée and Sab (2011a,b) for out-of-plane loaded elastic thick
laminated plates. In this plate theory, the stress energy density is
a function of the local bending moment and its gradient. More-
over, these authors show that the well-known Reissner plate theory
(Reissner, 1945) for out-of-plane loaded elastic thick homogeneous
plates actually is a degenerated case of their bending-gradient the-
ory. In the bending-gradient theory the stress energy density is a
function of the local bending moment and of the spherical part of
its gradient which coincides with the classical shear forces, see also
(Cecchi and Sab, 2007; Nguyen et al., 2007, 2008).

A systematic comparison of the new model will be drawn with
Mindlin’s second gradient theory and Germain’s general micro-
morphic theory (Germain, 1973b). The pros and the cons of each
model will be addressed at different stages of the discussion. In
particular, both computational and physical, or more precisely
micro-mechanical, arguments will be raised to characterize the
new approach.

For the sake of brevity, the theory is developed within the small
deformation framework and under static conditions. A first con-
struction of the theory is proposed in Section 2 for elastic stress
gradient solids. The general theory, independent of the constitu-
tive behavior, is presented based on the method of virtual power
in Section 3. A two-dimensional linear isotropic elasticity theory is
formulated in Section 4. Finally, the responses of the stress gradi-
ent and strain gradient continua are compared in Section 5 in the
case of a generic boundary value problem involving periodic body
forces.

Tensors of zeroth, first, second, third and fourth ranks are
respectively denoted by a, a, a

∼
, a

∼
(or a

∼
) and a

≈
. The intrinsic nota-

tion is usually complemented by the index notation to avoid any
confusion. The tensor product is denoted by ⊗. We  also define the
symmetrized tensor product using the following notations:

a
s⊗b = 1

2
(a ⊗ b + b ⊗ a), a(ibj) = 1

2
(aibj + ajbi) (2)

The nabla operator is denoted by ∇ and operates as follows on
a vector field, in a Cartesian orthonormal basis (e1, e2, e3):

u(x) ⊗ ∇ = ∂ui

∂xj

ei ⊗ ej = ui,jei ⊗ ej (3)

The Cauchy stress tensor is denoted by �
∼

and has the following

components:

�
∼

= �ijei ⊗ ej (4)

The stress gradient tensor is defined as

�
∼

⊗ ∇ = �ij,kei ⊗ ej ⊗ ek (5)

Its divergence is the vector

�
∼

· ∇ = �ij,jei (6)

2. Formulation of a stress gradient elasticity model

2.1. Algebra of deviatoric third rank tensors

The stress gradient tensor is the third rank tensor defined by
Eq. (5).  Its components are symmetric with respect to the two  first
indices. In this work, the space of third rank tensors that are sym-
metric with respect to the first two indices is denoted by R. It is
a vector space of dimension 18 which is endowed with the scalar
product:

R
∼

∴ R
∼

= RijkRijk, ∀R
∼

∈ R (7)

Each tensor R
∼

∈ R can then be decomposed into a spherical part

R
∼

s ∈ S ⊂ R and a deviatoric part R
∼

d ∈ D  ⊂ R:

R
∼

= R
∼

s + R
∼

d (8)

with

Rs
ijk = 1

4
(Rilmılmıjk + Rjlmılmıik) (9)

Here, the space D  is the subset of R containing the deviatoric
elements R

∼
such that

R
∼

: 1
∼

= 0, Rijkıjk = 0 (10)

where 1
∼

is the second rank identity tensor and ıij is the Kronecker

symbol. It follows that S = D⊥ and R = D  ⊕ S.
We finally note that the spherical part of the stress gradient is

directly related to the divergence of the stress tensor by

(�
∼

⊗ ∇)s
ijk = 1

4
(�im,mıjk + �jm,mıik) (11)

or equivalently,

(�
∼

⊗ ∇) : 1
∼

= (�
∼

⊗ ∇)s : 1
∼

= �
∼

· ∇ (12)

The previous definitions are valid in the physical three-
dimensional space. However, we  will also need expressions in the
two-dimensional case. In the purely two-dimensional case, the for-
mula (9) must be replaced by

Rs
ijk = 1

3
(Rilmılmıjk + Rjlmılmıik)

where the indices i, j, k only take the values 1, 2. In the two-
dimensional case, the matrix form of the decomposition (8)
becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R111

R122

R221

R222

R211

R112

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs
111

Rs
122

Rs
221

Rs
222

Rs
211

Rs
112

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rd
111

Rd
122

Rd
221

Rd
222

Rd
211

Rd
112

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)
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with

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs
111

Rs
122

Rs
221

Rs
222

Rs
211

Rs
112

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3

(R111 + R122)

1
3

(R111 + R122)

0

2
3

(R211 + R222)

1
3

(R211 + R222)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rd
111

Rd
122

Rd
221

Rd
222

Rd
211

Rd
112

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

(R111 − 2R122)

−1
3

(R111 − 2R122)

R221

1
3

(R222 − 2R211)

−1
3

(R222 − 2R211)

R112

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

It can be checked that, in the two-dimensional case, a deviatoric
tensor R

∼
∈ D is such that

R111 + R122 = 0, R211 + R222 = 0 (15)

2.2. Construction of an elastic stress gradient material theory

We consider a homogeneous elastic Cauchy material occupying
the domain �.  Clamping conditions are imposed at its boundary ∂�
where the displacement vector vanishes: u(x) = 0, ∀x ∈ ∂�. The
solid � is subjected to body forces f . The variational formulation
of the considered boundary value problem consists in minimizing
the complementary energy

W∗(�
∼

) =
∫

�

1
2

�
∼

: S
≈

: �
∼

dV

where S
≈

is the elastic compliance tensor. The minimization takes

place with respect to all statically admissible stress fields �
∼

∈ SA

with

SA = {�
∼
|�
∼

· ∇ + f = 0 in �}

The proposed stress gradient theory is based on the idea that the
deviatoric part of the stress gradient can contribute to the energy,
in addition to the stress tensor itself. The space SASG of statically
admissible fields now contains the elements �

∼
and R

∼
that fulfill the

following conditions on �:

�
∼

· ∇ + f = 0 (16)

R
∼

= (�
∼

⊗ ∇)d (17)

Note that the spherical part of the stress gradient is entirely
determined by the first balance equation (16) so that its deviatoric
part only, denoted by R

∼
, can enter the stress energy potential.

We introduce the stress energy density potential w∗(�
∼

, R
∼

).

The solution of the boundary value problem considered

previously is now obtained by minimizing the complementary
energy functional1

W∗SG(�
∼

) =
∫

�

w∗(�
∼

, R
∼

)dV (18)

with respect to all (�
∼

, R
∼

) ∈ SASG .

To obtain the dual variational formulation of the previous stress
gradient problem, we  multiply Eq. (16) by the displacement vector
and integrate by parts over �:∫

�

�
∼

: �
∼

dv =
∫

�

f · u dv +
∫

∂�

(�
∼

· n) · u da,∫
�

�ijεijdV =
∫

�

fiuidV +
∫

∂�

�ijnjuida (19)

where �∼ is the strain tensor defined as the symmetric part of the
displacement gradient field.

In a similar way, we  multiply Eq. (17) by new kinematic variables
˚
∼

∈ D and integrate over �:∫
�

R
∼

∴ ˚
∼

− (�
∼

⊗ ∇)d ∴ ˚
∼

dv =
∫

�

R
∼

∴ �
∼

− (�
∼

⊗ ∇) ∴ ˚
∼

dv

=
∫

�

Rijk�ijk − �ij,k�ijk dv

= 0 (20)

Integration by parts of the previous equation gives:∫
�

�
∼

: ˚
∼

· ∇ + R
∼

∴ ˚
∼

dv =
∫

∂�

�
∼

: ˚
∼

· n da (21)∫
�

�ij�ijk,k + Rijk�ijkdV =
∫

∂�

�ij�ijknkda (22)

Summing up Eqs. (19) and (21), the following variational for-
mulation is obtained∫

�

(�
∼

: (�
∼

+ ˚
∼

· ∇) + R
∼

∴ ˚
∼

) dv

=
∫

�

f · u dv +
∫

∂�

�
∼

: (u
s⊗n + ˚

∼
· n) da (23)

∫
�

(
�ij(εij + �ijk,k) + Rijk�ijk

)
dV

=
∫

�

fiuidV +
∫

∂�

�ij(u(inj) + �ijknk)da (24)

This expression provides the definition of the strain measures
that are conjugate to the stress and stress gradient tensors. The
stress tensor is conjugate to the following generalized strain mea-
sure

e
∼

:= �
∼

+ ˚
∼

· ∇, eij = εij + �ijk,k (25)

whereas the new kinematic degrees of freedom ˚
∼

are conjugate

to R
∼

. It is recalled that both ˚
∼

and R
∼

are deviatoric third order

1 SG stands for stress gradient.
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tensors. The conjugate stress and strain measures are related by
the constitutive equations:

e
∼

=
∂w∗(�

∼
, R

∼
)

∂�
∼

and ˚
∼

=
∂w∗(�

∼
, R

∼
)

∂R
∼

The variational formulation (23) also provides the new clamping
conditions for the considered boundary value problem:

u
s⊗n + ˚

∼
· n = 0, u(inj) + �ijknk = 0 (26)

3. Method of virtual power for the stress gradient medium

The balance equations and general boundary conditions for
stress gradient media can also be formulated independently of the
type of material behavior. This is done now by means of the method
of virtual power as used by Germain in the case of strain gradient
media (Germain, 1973a; Maugin, 1980).

3.1. Derivation of balance equations and boundary conditions

The usual set of kinematic degrees of freedom (DOF) available at
each material point, namely the components of the displacement
vector, is extended to incorporate the components of an element
˚
∼

∈ D:

DOF = {u, ˚
∼

}, DOF = {ui, �ijk} (27)

The two sets of kinematic DOF are assumed to be indepen-
dent and to both have the dimension of length. The new kinematic
DOF �ijk are symmetric with respect to the first two  indices.
They are deviatoric in the sense defined in Section 2.1 for third
rank tensors belonging to D. They are called micro-displacements,
by analogy to the micro-deformation degrees of freedom intro-
duced in the micromorphic theory by Eringen (1999).  In the 3D
case, the number of degrees of freedom of the theory at a mate-
rial point is 18, corresponding to 3 components of displacements
and 15 micro-displacement components, due to the constraint that
˚
∼

s = 0.

The proposed theory is a first gradient theory with respect to
the sets of degrees of freedom. The gradient of the displacement is
assumed to work with the usual symmetric Cauchy stress. Further-
more we assume that the divergence of the micro-displacement
also contributes to the overall work. The following set is therefore
defined:

GRAD = {u ⊗ ∇, ˚
∼

, ˚
∼

· ∇}, GRAD = {ui,j, �ijk, �ijk,k} (28)

The following form of the virtual work density of internal forces
is postulated, as a linear form with respect to the elements of
GRAD:

p(i)(u∗, ˚
∼

∗) = �
∼

: u∗ ⊗ ∇ + R
∼

∴ ˚
∼

∗ + �
∼

: ˚
∼

∗ · ∇

= �iju
∗
i,j + Rijk�∗

ijk + �ij�
∗
ijk,k (29)

where u∗ and ˚
∼

∗ are virtual displacement and micro-displacement

fields. The stress conjugate to the gradient of displacement field is
the symmetric Cauchy stress. We  have assumed that the general-
ized stress conjugate to the divergence of the micro-displacement
tensor is equal to the Cauchy stress itself. The generalized stress
R
∼

∈ D  is conjugate to the micro-displacement tensor and shares

the same symmetry properties. Accordingly, both ˚
∼

and R
∼

are

deviatoric third rank tensors. We  can compute the virtual work

of internal forces on any sub-domain V ⊂ � and integrate by
parts:

P(i)(u∗, ˚
∼

∗) =
∫

V

p(i)(u∗, ˚
∼

∗) dv

=
∫

∂V

�
∼

: (u∗ s⊗n + ˚
∼

· n) da −
∫

V

((�
∼

· ∇) · u∗

+ ((�
∼

⊗ ∇)d − R
∼

) ∴ ˚
∼

) dv (30)

This prompts us to introduce the following form for the work
density of contact forces at material points on the boundary ∂V,
with normal vector n:

p(c)(u∗, ˚
∼

∗) = T
∼

: (u∗ s⊗n + ˚
∼

∗ · n) = Tij(u
∗
i nj + �∗

ijknk) (31)

where T
∼

is a symmetric stress tensor prescribed at the surface.

The work density of forces acting at a distance is then

p(e)(u∗, ˚
∼

∗) = f · u∗ + F
∼

∴ ˚
∼

∗ = fiu
∗
i + Fijk�∗

ijk (32)

where f and F
∼

are given first rank and third rank volume simple

forces, respectively.
In the static case, the principle of virtual work then stipulates

that, for all subdomain V and for all virtual fields u∗ and ˚
∼

∗, we have∫
V

p(i)(u∗, ˚
∼

∗) dv =
∫

V

p(e)(u∗, ˚
∼

∗) dv +
∫

∂V

p(c)(u∗, ˚
∼

∗) da (33)

Integration by parts and application of the principle for all sub-
domains lead to the field equations of the problem

�
∼

· ∇ + f = 0, (�
∼

⊗ ∇)d − R
∼

+ F
∼

= 0, ∀x ∈ � (34)

�ij,j + fi = 0, (�ij,k)d − Rijk + Fijk = 0, ∀x ∈ � (35)

and the corresponding boundary conditions:

T
∼

= �
∼

, Tij = �ij ∀x ∈ ∂� (36)

As a result, the stress gradient theory allows to prescribe all the
components of the stress tensor at the boundary. There are six dual
conditions which amount to fixing the six kinematic components

of u
s⊗n + ˚

∼
· n at the boundary.

At this stage, one may  ask why  the theory has 18 independent
degrees of freedom and only six boundary conditions. This is due
to the fact that once the 6 components of the stress tensor �ij are
known at the boundary, the 12 independent components of the
tangential derivative of the stress are automatically known.

3.2. Comparison with Mindlin’s strain gradient model

A parallel can be drawn between Mindlin’s original strain gra-
dient model and the proposed stress gradient theory. Fundamental
differences arise. The pros and the cons regarding possible compu-
tational advantages of the stress gradient model are pointed out.

Mindlin’s strain gradient model or, equivalently, second gradi-
ent of displacement theory relies on the usual three displacement
degrees of freedom. From the three equivalent formulations
reported by Mindlin and Eshel (1968), we adopt the presentation
based on the second gradient of displacement. The work density of
internal forces takes the following form:

p(i)(u) = �
∼

: u ⊗ ∇ + S
∼

∴ u ⊗ ∇ ⊗ ∇ = �ij ui,j + Sijk ui,jk (37)
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where the hyper-stress tensor S
∼

, symmetric with respect to its two

last indices, is introduced. The work density of forces acting at a
distance allows the introduction of simple, double and triple body
forces (Germain, 1973a):

p(e)(u) = f · u + F
∼

: u ⊗ ∇ + F
∼

∴ u ⊗ ∇ ⊗ ∇

= fi ui + Fij ui,j + Fijk ui,jk (38)

where F
∼

generally contains a skew-symmetric part accounting for

volume couples. For the representation of contact forces, it is nec-
essary to introduce normal and tangent gradient operators at a
boundary. They are called ∇n and ∇t, respectively. In the case of
a vector field, they read

u ⊗ ∇ = u ⊗ ∇n + u ⊗ ∇t , ui,j = Dn
j ui + Dt

j ui (39)

with2

u ⊗ ∇n := ((u ⊗ ∇) · n) ⊗ n = Dnu ⊗ n, where Dnu = (u ⊗ ∇) · n

Dn
j ui := ui,knknj = (Dnui)nj, Dt

j ui := ui,j − ui,knknj

The displacement and its normal gradient only can be controlled
at a boundary. This leads to the following representation of contact
forces at a smooth boundary:

p(c)(u) = t · u + m · Dnu = tiui + mi(Dnu)i (40)

where t and m are simple and double traction vectors. The method
of virtual work provides then the field equations for the second
gradient continuum in the form:

�
∼

· ∇ + f = 0, with �
∼

= �
∼

− F
∼

− (S
∼

− F
∼

) · ∇ (41)

�ij,j + fi = 0, with �ij = �ij − Fij − Sijk,k + Fijk,k (42)

The boundary conditions then involve complex surface terms:

t = �
∼

· n + 2RS
∼

: n ⊗ n − ∇t · (S
∼

· n) (43)

ti = �ijnj + 2RSijknjnk − Dt
j
(Sijknk)

m = S
∼

: n ⊗ n, mi = Sijknjnk
(44)

where R is Gauss mean curvature 2R = n · ∇t = Dt
k
nk.

Table 1 shows the similarities and differences between the stress
and strain gradient theories. The stress gradient model introduces
15 more degrees of freedom than the strain gradient one. Both the-
ories are based on one second rank and one third rank stress tensors
but in the stress gradient model the third rank generalized stress
tensor is deviatoric. Both theories require 6 boundary conditions to
be prescribed. The 6 essential conditions in strain gradient theory
amount to fixing the components of the displacement and normal
gradient vector of the displacement. The corresponding essential
conditions in the stress gradient case deal with the six compo-
nents u(inj) + �ijknk. The condition (26) involves only the values
of the degrees of freedom and the normal vector, and no surface
derivative, in contrast to the boundary condition (43). The natural
conditions of the stress gradient model consist in prescribing the six
stress components. In contrast, the natural conditions of the strain

2 For a scalar field �, we  have Dn
j
� = �,knk nj, Dn� = �,knk = ∇� · n, Dt

j
� = �,j −

Dn
j
�. For the derivation of boundary conditions, the Stokes theorem for a smooth

closed surface S is used:∫
S

∇ t� da =
∫

S

(∇ t · n) �n da,

∫
S

Dt
i
� da =

∫
S

(Dt
k
nk) �ni da

gradient model are quite intricate since the traction vector depends
on the surface curvature and on the tangent derivative of the dou-
ble stress tensor. This fact may  represent a significant advantage
of the stress gradient model from the point of view of compu-
tational mechanics. It turns out that the question of prescribing
the boundary conditions (43) has not been discussed in the papers
dealing with the finite element implementation of the strain gra-
dient model (Shu et al., 1999; Wei, 2006). Also higher order shape
functions or additional Lagrange multipliers must be used in the
implementation of the strain gradient element. The main disad-
vantage of the stress gradient model is the increased number of
degrees of freedom. This drawback becomes less and less relevant
with the increasing computing power.

3.3. Relation to Germain’s general micromorphic theory

It is instructive to compare the previous gradient theories to
one of the most general theory of materials with microstruc-
ture, namely Germain’s general micromorphic continuum model
(Germain, 1973b).  This generalization of Eringen’s micromorphic
model (Eringen, 1999) relies on the introduction of additional
degrees of freedom in the form of second order, third order and
possibly higher order deformation tensors. Let us concentrate on
the second order micromorphic theory he proposed, which is based
on the following form of the power density of internal forces:

p(i) = �
∼

: u ⊗ ∇ + 1
s
∼

: �
∼

+ 2
s
∼
∴ ˚

∼
+

1
S
∼
∴ �

∼
⊗ ∇ +

2
S
≈

:: ˚
∼

⊗ ∇

= �i,jui,j + 1
sij	ij + 2

sijk�ijk +
1
Sijk	ij,k +

2
Sijkl�ijk,l (45)

where the additional degrees of freedom 	ij and �ijk are inde-
pendent second and third order tensor fields. The tensors �

∼
and

˚
∼

are generally non compatible fields, meaning that they do not

correspond to gradients of a vector and second order tensor fields,
respectively. As a result, they generally do not display any symme-
try property with respect to their indices. They are associated with

the conjugate stresses
1
s
∼

,
2
s
∼

,
1
S
∼

,
2
S
≈

in the power linear form. The prin-

ciple of virtual power can be used to derive the balance equations
fulfilled by the generalized stresses, written here in the static case
in the absence of volume forces:

�
∼

· ∇ = 0,
1
S
∼

· ∇ − 1
s
∼

= 0,
2
S
≈

· ∇ − 2
s
∼

= 0 (46)

�ij,j = 0,
1
Sijk,k − 1

sij = 0,
2
Sijkl,l − 2

sijk = 0

At this stage, two special cases can be considered:

1 First order micromorphic model with kinematic internal constraint.
In the micromorphic model obtained when ˚

∼
≡ 0, the following

kinematic internal constraint is enforced:

�
∼

≡ u ⊗ ∇, 	ij ≡ ui,j (47)

which means that the microdeformation �
∼

is no longer

independent of the displacement field. Accordingly, the microde-
formation gradient �

∼
⊗ ∇ coincides with the second gradient of

the displacement field u ⊗ ∇ ⊗ ∇ . Mindlin’s second gradient the-
ory is retrieved in that way. The simple force stress tensor then

is �
∼

+ 1
s
∼

and Mindlin’s hyperstress tensor is
1
S
∼

.

2 Second order micromorphic model with static internal constraint.
In the spirit of Eringen and Germain, �

∼
and ˚

∼
have the physical
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Table  1
Comparison between the strain gradient and stress gradient theories.

Strain gradient continuum Stress gradient continuum

DOF 3 displacements 3 displacements ui

ui +15 deviatoric micro-displacements
�ijk = �jik

Stress tensors Simple stress tensor (Pa) Simple stress tensor (Pa)
6  components � ij = � ji 6 components � ij = � ji

Double stress tensor (Pa m)  Deviatoric stress gradient (Pa m−1)
18  components Sijk = Sikj 15 components Rijk = Rjik

Essential boundary conditions 3 prescribed displacements 6 prescribed components
ui u(inj) + �ijknk

3 prescribed normal
Displacement gradient Dnu

Natural boundary conditions 3 simple tractions (Pa) 6 stress tensor
ti components (Pa)
3  double tractions (Pa m)  � ij

mi

Body forces Simple forces fi (N m−3) Simple forces fi (N m−3)
Double forces Fij (N m−2) Third rank simple forces Fijk (N m−3)
Triple forces Fijk (N m−1)

Isotropic linear elastic moduli 2 Lamé constants (Pa) 2 Lamé constants (Pa)
+5  higher order moduli (Pa m2) +3 higher order modulus (Pa m−2) (2D)

dimensions of strain and strain gradient, respectively. But more
general physical types of degrees of freedom can be imagined. For
instance we can enforce the following static internal constraint
for the highest order stress tensor:

2
S
≈

≡ �
∼

⊗ 1
∼

,
2
Sijkl ≡ �ijıkl (48)

which means that the second order stress tensor is not inde-
pendent from the simple stress tensor. From the third balance
equations in (46) it follows that

2
s
∼

=
2
S
≈

· ∇ = �
∼

⊗ ∇,
2
sijk =

2
Sijkl,l = (�ijıkl),l = �ij,k (49)

Under these conditions, and considering the second order micro-
morphic degrees of freedom only, the power density function
(45) reduces to the expression (29) postulated for the stress gra-
dient medium.

4. Two-dimensional stress gradient isotropic linear
elasticity

Constitutive equations are derived for a linear elastic isotropic
stress gradient material. The elastic potential is an isotropic func-
tion of the second order symmetric tensor e

∼
and of the third order

tensor ˚
∼

∈ D. The form of isotropic scalar functions depending on

a symmetric second rank tensor and on a third rank tensor ∈ R
has been worked out by Mindlin for linear elastic isotropic sec-
ond gradient materials. This function can be used in the present
context:

w(e
∼

, ˚
∼

) = 1
2


eiiejj + �eijeij + a1�iik�kjj + a2�ijj�ikk + a3�iik�jjk

+ a4�ijk�ijk + a5�ijk�kji (50)

where 
, � are generalized Lamé constants and ai(i = 1, 5) are higher
order elastic moduli (Mindlin and Eshel, 1968). The stress tensors
are obtained by means of the state laws:

�
∼

= ∂w

∂e
∼

= 
(trace e
∼

)1
∼

+ 2�e
∼

, R
∼

= ∂w

∂˚
∼

(51)

The remainder of this work is limited to a two-dimensional
isotropic elastic continuum, for the sake of simplicity. Note that
plane strain conditions in a three-dimensional space will gener-
ally induce non-vanishing stress gradient components R331 = �33,1

and R332 = �33,2. Conversely, plane stress conditions will in general
be associated with non-vanishing micro-displacements �331 and
�332 induced by the generalized elasticity law. That is why  the
analysis is now limited to a two-dimensional space, like for an in-
plane loaded membrane continuum. In that case, all indices of the
considered tensors take the values 1 or 2.

Under these conditions, the elastic potential (50) leads to the
following constitutive equations written in a matrix form:⎡⎢⎣ R111

2R122

R221

⎤⎥⎦ =
[

A
]⎡⎢⎣ �111

�122

�221

⎤⎥⎦
⎡⎢⎣ R222

2R211

R112

⎤⎥⎦ =
[

A
]⎡⎢⎣ �222

�211

�112

⎤⎥⎦ (52)

where the matrix [A] is

[
A
]

=

⎡⎢⎣ 2a a1 + 2a2 a1 + 2a3

a1 + 2a2 2a2 + 4a4 + 2a5 a1 + 2a5

a1 + 2a3 a1 + 2a5 2a3 + 2a4

⎤⎥⎦ (53)

with a = a1 + a2 + a3 + a4 + a5. The factor two appearing in front of the
components R122 and R211 ensures that the scalar product of the 6-
dimensional vectors RI and �I coincides with the work of internal
forces R

∼
∴ ˚

∼
.

Due to the fact that the tensors R
∼

and ˚
∼

are deviatoric, there exist

some linear relationships between some of the higher order elastic
moduli. We enforce the condition that, when applied to a deviatoric
third rank tensor, the relation (53) should deliver a deviatoric third
rank tensor, which means that

�111 + �122 = 0, �211 + �222 = 0,

R111 + R122 = 0, R211 + R222 = 0 (54)

It can be shown that the enforced condition then requires that:

3a1 + 4a3 + 2a5 = 0 (55)

Taking this linear relationship into account, the generalized
Hooke matrix in (53) becomes[

A
]

=

[ −a1 + 2a2 − 2a3 + 2a4 a1 + 2a2 a1 + 2a3

a1 + 2a2 −3a1 + 2a2 − 4a3 + 4a4 −2a1 − 4a3

a1 + 2a3 −2a1 − 4a3 2a3 + 2a4

]
(56)

It can be checked that a spherical tensor ˚
∼

, when inserted in

(56), leads to a spherical tensor R
∼

.
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Since the stress gradient theory only considers deviatoric ten-
sors ˚

∼
and R

∼
, the components �122 = − �111 and �211 = − �222 can

be eliminated from the constitutive law (56). We  obtain the fol-
lowing reduced matrix form for the isotropic linear elastic stress
gradient constitutive relation:[

R111

R221

]
=

[
Â
][

3�111

�221

] [
R222

R112

]
=

[
Â
][

3�222

�112

]
(57)

with

[
Â
]

=
[ 2

3
(a4 − a1 − a3) a1 + 2a3

a1 + 2a3 2(a3 + a4)

]
(58)

As a result, two-dimensional linear isotropic elasticity involves
3 independent elasticity moduli. The factor 3 is introduced in front
of �111 and �222 in (58) so that the work of internal forces can still
be computed by the scalar product of the RI and �I vectors. Defi-
nite positivity of the quadratic form is equivalent to a4 − a1 − a3 > 0,
a3 + a4 > 0 and 4/3(a4 − a1 − a3)(a3 + a4) − (a1 + 2a3)2 > 0.

Generalized elastic compliances can be defined by inverting the
generalized Hooke law (58) in the form:[

3�111

�221

]
=

[
B
][

R111

R221

] [
3�222

�112

]
=

[
B
][

R222

R112

]
(59)

with[
B
]

=
[

b11 b12

b12 b22

]
(60)

where the coefficients bij are directly related to the ai. Definite pos-
itivity of the elastic potential is equivalent to b11 > 0, b22 > 0 and
b11b22 − b2

12 > 0.
At this stage, some comments on the physical dimension of the

introduced quantities are necessary. We  already mentioned that
the units of micro-displacements and stress gradient respectively
are m and Pa m−1≡ N m−3. The physical dimension of the gen-
eralized moduli ai is Pa m−2≡ N m−4. The inverse of the matrix
of generalized elasticity moduli in (53) provides the generalized
compliances with unit m2 Pa−1.

5. Resolution of a boundary value problem for stress and
strain gradient media

We consider a generic problem of an elastic medium sub-
jected to spatially periodic volume forces that we solve successively
for Cauchy, stress gradient and strain gradient continua in
the static case. The objective is to point out the main differ-
ences in the response of gradient continua to loading in the
bulk.

5.1. Position of the problem and reference Cauchy solutions

We consider a system of body forces of the form

f = (f1e1 + f2e2) sin ωx2 (61)

which display a periodicity in the x2 direction, with given wave
length 2/ω. The effect of each component of the body force is
investigated for a two-dimensional homogeneous medium assum-
ing that no additional loading is applied at infinity. We  seek for the
solution of the problem exhibiting the same symmetry properties
as the loading, namely it is periodic with respect to direction 2 and
invariant with respect to direction 1.

5.1.1. Horizontal body force in a Cauchy medium
The displacement and stress fields in the bulk of the body are

given first when f1 /= 0 and f2 = 0. A displacement of the following
form is searched for

u1 = u1(x2), u2 = u3 = 0 ⇒ ε11 = ε22 = 0,

ε12 = u1,2

2
,  �12 = �u1,2 (62)

The balance equation implies that

�12,2 + f1 sin ωx2 = �u1,22 + f1 sin ωx2 = 0 (63)

which provides

u1 = f1
�ω2

sin ωx2 + cx2 + d, �12 = f1
�ω

cos ωx2 + �c (64)

where c, d are integration constants. The overall stress must vanish
so that c = 0.

This loading condition therefore induces a periodic shear stress
gradient R122 = �12,2.

5.1.2. Vertical body force in a Cauchy medium
The displacement and stress fields in the bulk of the body are

now given when f1 = 0 and f2 /= 0. The following form of the dis-
placement field is searched for

u1 = 0, u2 = u2(x2), u3 = 0 ⇒ ε11 = ε12 = 0, ε22 = u2,2

�11 = 
u2,2, �22 = (
 + 2�)u2,2

The balance of momentum equation implies that

�22,2 + f2 sin ωx2 = 0 ⇒ (
 + 2�)u2,22 + f2 sin ωx2 = 0 (65)

which provides

u2 = f2
(
 + 2�)ω2

sin ωx2 + cx2 + d (66)

�11 = 
f2
(
 + 2�)ω

cos ωx2 + 
c, �22 = f2
ω

cos ωx2 + (
 + 2�)c

(67)

where the constant c must vanish in the absence of mean stress. This
loading condition therefore induces the stress gradients R112 = �11,2
and R222 = �22,2.

5.2. Periodic body forces in a stress gradient medium

The two previous elementary problems are reconsidered for an
isotropic linear elastic two-dimensional stress gradient medium.

5.2.1. Horizontal body force
The balance of momentum equations still require that the shear

stress component takes the form

�12 = f1
ω

cos ωx2 (68)

It follows that the eligible stress gradient components are a
priori �12,2 and �11,2. According to the relations (14), the active
components of the deviatoric part of the stress gradient are

R111 = −2
3

�12,2, R122 = 2
3

�12,2, R112 = �11,2

These stress gradient components activate all micro-displacements
components that can be computed by means of Eq. (59):

3�111 = b11R111, �221 = b12R111 (69)

3�222 = b12R112, �112 = b22R112 (70)
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We  also have �122 = − �111 and �211 = − �222.
We look for a displacement field of the form u1 = u1(x2), u2 = 0.

The non-vanishing components of the generalized strain measure
e
∼

are then

e11 = �112,2, e22 = �222,2, e12 = u1,2

2
+ �122,2 (71)

The associated stress components are

�11 = (
 + 2�)e11 + 2�e11,

�22 = 
e11 + (
 + 2�)e22, �12 = 2�e12 (72)

The stress components �22 must vanish for equilibrium to be
fulfilled. This implies that

�222,2 = − 



 + 2�
�112,2 (73)

The first equation in (72) then leads to the differential equation

�11 = 4�(
 + 2�)

 + 2�

b22�11,22 (74)

Note that the coefficients � > 0, 
 + 2� > 0, 
 + � > 0 and b22 > 0. It
follows that the general solution is a combination of cosh and sinh
functions of the variable x2. Since these functions are not periodic
with respect to x2, the corresponding coefficients must vanish. As
a result, we get �11 = 0.

The last equation in (72) is now used in the form

�12 = �
(

u1,2 + 4
9

b11�12,22

)
(75)

from which the displacement is deduced as

u1 =
(

1
ω2�

+ 4
9

b11

)
f1 sin ωx2 (76)

As a result, the shear stress component induced by the body
force is the same for the Cauchy and stress gradient theories.
However, the corresponding displacements differ by a term pro-
portional to the generalized compliance b11.

The stress gradient medium degenerates into the classical con-
tinuum if the micro-displacements �ijk vanish which happens
when the generalized compliance bij tends to zero. In that case,
the previous solution (76) reduces to (64).

5.2.2. Vertical body force
The balance of momentum equation still implies that

�22 = (f2/ω) cos ωx2.
It follows that the eligible stress gradient components are a

priori �22,2 and �11,2. According to the relations (14), the active
components of the deviatoric part of the stress gradient are

R222 = 1
3

�22,2, R211 = −1
3

�22,2, R112 = �11,2

The inverse Hooke law (59) then provides the active micro-
displacements:

3�222 = b11R222 + b12R112, �112 = b12R222 + b22R112 (77)

We also have �211 = − �222. We  look for displacement com-
ponents u1 = 0, u2(x2). The non-vanishing components of the
generalized strain measure e

∼
are then

e11 = �112,2, e22 = u2,2 + �222,2 (78)

The associated stress components are

�11 = 
(u2,2 + �222,2 + �112,2) + 2��112,2,

�22 = 
(u2,2 + �222,2 + �112,2) + 2�(u2,2 + �222,2) (79)

from which the following relationship can be derived

�11



− �22


 + 2�
= �112,2

(

 + 2�



− 



 + 2�

)
(80)

This relation combined with the generalized elasticity law pro-
vides the following differential equation for the stress component
�11:

�11 − 4�(
 + �)

 + 2�

b22�11,22

=
(





 + 2�
− 4�(
 + �)

3(
  + 2�)
b12ω2

)
f2
ω

cos ωx2 (81)

Since �(
 + �)/(
 + 2�)b22 is positive due to the positivity of the
quadratic elastic potential, the general solution of the homoge-
neous part of the previous differential equation is a combination
of non periodic functions which coefficients must therefore vanish.
As a result, the solution reduces to the particular one of the form

�11 = ˛
f2
ω

cos ωx2 (82)

The coefficient  ̨ must take the following value:

˛(
 + 2� + 4�(
 + �)b22ω2) = 
 − 4
3

�(
 + �)b12ω2 (83)

The displacement field is finally obtained by integrating the
equation

u2,2 = �22


 + 2�
− �222,2 − 



 + 2�
�112,2 (84)

which delivers

u2 =
(

1
(
 + 2�)ω2

+ b11

9
+ ˛

b12

3

+ 



 + 2�
(
b12

3
+ ˛b22)

)
f2 sin ωx2 (85)

As a result, the stress component �22 is the same according to
both Cauchy and stress gradient theories. In contrast, the com-
ponent �11 and the displacement u2 differ by terms that involve
the generalized compliance bij. When the generalized compliance
tends to zero, ˛ tends toward the finite value 
/(
 + 2�) and the
Cauchy solution (66) is retrieved, as expected.

5.3. Solution for a strain gradient medium

The previous problems can also be considered for Mindlin’s
strain gradient medium.

5.3.1. Horizontal body force in a strain gradient medium
We search for periodic solutions in a bulk strain gradient mate-

rial subjected to the periodic horizontal body force f1 sin ωx2. The
single non-vanishing displacement component u1(x2) induces the
second gradient component u1,22. In the second gradient theory,
the isotropic linear elasticity law formally has the same form as
(53):⎡⎢⎣ S111

2S221

S122

⎤⎥⎦ =
[

A
]⎡⎢⎣ u1,11

u2,21

u1,22

⎤⎥⎦
⎡⎢⎣ S222

2S112

S211

⎤⎥⎦ =
[

A
]⎡⎢⎣ u2,22

u1,12

u2,11

⎤⎥⎦ (86)
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where

[
A
]

=

⎡⎢⎣ 2a a1 + 2a2 a1 + 2a3

a1 + 2a2 2a2 + 4a4 + 2a5 a1 + 2a5

a1 + 2a3 a1 + 2a5 2a3 + 2a4

⎤⎥⎦ (87)

has the same form as the matrix (53). The five higher order elas-
ticity moduli ai are independent. In the considered boundary value
problem, the following components of the hyper-stress tensor are
activated:

S111 = (a1 + 2a3)u1,22, S122 = 2(a3 + a4)u1,22,

2S221 = (a1 + 2a5)u1,22 (88)

Note that the physical dimensions of the moduli ai differ in the
stress and strain gradient theories (see Table 1) and that the hyper-
stress tensor is symmetric with respect to its two last indices. The
shear stress and the hyper-stress component S122 arise in the fol-
lowing balance of momentum equation

�12,2 − S122,22 + f1 sin ωx2 = 0 (89)

from which the following partial differential equation for the dis-
placement u2 is derived:

�u1,22 − 2(a3 + a4)u1,2222 + f1 sin ωx2 = 0 (90)

Since (a3 + a4)/� > 0 due to the positivity of the elasticity strain
gradient potential, the general solution of the homogeneous part
of the previous differential equation is not periodic. The hyperbolic
functions cosh , sinh characterize boundary layers effects that are
well-known in strain gradient elasticity and plasticity (Forest and
Sedláček, 2003). They are not relevant for the bulk behavior con-
sidered here, in the absence of applied load at infinity. The solution
of the boundary value problem therefore reduces to the particular
solution of (90) of the form

u1 = f1 sin ωx2

ω2(� + 2(a3 + a4)ω2)
(91)

and the associated shear stress

�12 = f1 cos ωx2

ω(1 + 2(a3 + a4)ω2/�)
(92)

It appears that both the shear stress and displacement fields
differ from the Cauchy solution. This is in contrast to the stress
gradient solution for which only the displacement is affected by
the generalized moduli.

The Cauchy solution is recovered for vanishingly small moduli
ai, as it should be.

5.3.2. Vertical body force in a strain gradient medium
We  search for periodic solutions in a bulk strain gradient mate-

rial subjected to the periodic vertical body force f2 sin ωx2. The
single non-vanishing displacement component u2(x2) induces the
second gradient component u2,22 which triggers the following com-
ponents of the hyper-stress tensor according to the isotropic linear
elasticity (87):

S222 = 2au2,22, 2S112 = (a1 + 2a2)u2,22, S211 = (a1 + 2a3)u2,22

(93)

The stress �22 and the hyper-stress S222 intervene in the follow-
ing balance of momentum equation

�22,2 − S222,22 + f2 sin ωx2 = 0 (94)

from which the following partial differential equation for the dis-
placement u2 is derived:

(
 + 2�)u2,22 − 2au2,2222 + f2 sin ωx2 = 0 (95)

Since a/(
 + 2�) > 0, the general solution of the homogeneous
part of the previous differential equation is not periodic. As a result,
the solution of the boundary value problem reduces to the partic-
ular solution of (95) of the form

u2 = f2
ω2(
 + 2� + 2aω2)

sin ωx2 (96)

and the associated stress components

�22 = f2
ω(1 + 2aω2/(
 + 2�))

cos ωx2,

�11 = 
f2
ω(
 + 2� + 2aω2)

cos ωx2 (97)

It appears that both the stress and displacement fields differ
from the Cauchy solution. This is in contrast to the stress gradient
solution for which only the displacement and the component �11
are affected by the generalized moduli.

The Cauchy solution (66) and (67) is recovered for vanishingly
small moduli ai, as expected.

6. Discussion and final remarks

A stress gradient continuum theory has been proposed in this
work, that incorporates the effect of the deviatoric part of the gra-
dient of the Cauchy stress tensor into the constitutive framework.
It requires the introduction of additional independent micro-
displacement degrees of freedom that are the dual quantities to
the deviatoric stress gradient in the generalized work of internal
forces. In that sense the theory is closer to Germain’s second order
micromorphic continuum that also includes a third rank tensor
as new degrees of freedom (Germain, 1973b),  than to Mindlin’s
strain gradient model, entirely based on the usual displacement
degrees of freedom. It has been explained how the strain and stress
gradient models arise as limit cases of Germain’s general micro-
morphic model. The strain gradient model can be regarded as a first
order micromorphic medium endowed with a kinematic internal
constraint. In contrast, the stress gradient model can be seen as
a second order micromorphic medium with a static constraint on
the higher order stresses. The fact that the strain and stress gra-
dient models correspond to different internal constraints shows
again that both theories are essentially distinct models. Balance and
boundary conditions have been shown to drastically differ accord-
ing to the strain and stress gradient theories. It was found that the
theory displays the unusual feature that the whole stress tensor can
be prescribed at a boundary and not only the traction vector. The
elasticity theory has been formulated for the stress gradient contin-
uum. In the purely two-dimensional case, isotropic linear elasticity
was shown to contain three new higher order moduli.

A generic boundary value problem involving periodic body
forces has been solved for both the stress and strain gradient linear
isotropic models. Solutions were found to differ significantly. The
size-dependence of the solutions is reflected by the fact that the
additional contributions to the classical Cauchy solutions involve
the ratio of the higher order moduli and of the square of the wave
length of the applied body force field.

The main finding of the present work is that the stress gra-
dient and strain gradient models represent two distinct theories
which can account for different features of size-dependent mate-
rial behavior. This has been shown by formulating rigorously the
stress gradient model, which had not been done before. The intro-
duction of higher order gradients breaks the usual duality between
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the classical stress based and strain based constitutive models.
In particular, the theory shows that Mindlin’s third order hyper-
stress tensor cannot be identified with the stress gradient tensor, as
assumed in a constitutive way in some published literature. A simi-
lar situation has been encountered by Forest and Amestoy (2008) to
develop generalized heat equations in rigid heat-conducting solids.
A gradient of entropy effect was introduced in the internal energy
density resulting in a higher order heat equation. It was shown
that, even though temperature and entropy are dual quantities in
classical thermodynamics, a gradient of temperature model and a
gradient of entropy model lead to different generalized heat equa-
tions and represent therefore different theories. In general, the use
of higher order gradient breaks the duality of the original primal
and conjugate variables.

Future work is also needed to assess the relevance of the new
theory to account for size effects in material behavior in a bet-
ter or complementary way than the strain gradient model. For
that purpose, we intend to show how the higher order mod-
uli of the stress gradient elasticity theory can be determined by
homogenization of composite materials. Such an approach already
exists for the derivation of strain gradient properties, as done by
Boutin (1996), Forest and Sab (1998), Geers et al. (2001),  and
Forest and Trinh (2011).  An alternative homogenization scheme
must be designed for the stress gradient model. We  will there-
fore have to address the following question: When is an overall
stress gradient medium preferable to an effective strain gradient
material? From the micromechanical point of view, there has been
a constant endeavour in the past 15 years to derive the proper-
ties of an effective higher order continuum from the knowledge
of the microstructure of composite materials subjected to non-
homogeneous boundary conditions (see Forest and Trinh, 2011).
Most attempts aimed at determining the higher order moduli of an
effective strain gradient medium by applying polynomial displace-
ment boundary conditions on a representative volume element.
These generalized homogenization procedures are recognized in
the literature to be still not completely satisfactory. In contrast,
some contributions by Rodin (2007) and Li (2011a,b);  Lebée and
Sab (2011a) suggest that static boundary conditions may  be better
suited to derive higher order overall properties. In the references by
Li, affine stress boundary conditions are prescribed at the bound-
aries of the unit cell. The affine conditions are related to the
macroscopic mean stress and its gradient. However, no comment is
made about the nature of the overall generalized continuum which
incorporates the stress gradient instead of the strain gradient. The
homogenization procedure proposed by Li (2011a,b) could be used
to identify the higher order elastic moduli introduced in our theory.

From the computational point of view, the stress gradient model
is easier to implement in a finite element program, especially
regarding the order of shape functions and the boundary condi-
tions that are significantly more simple than in the strain gradient
model. On the other hand, it has the disadvantage that it requires
the introduction of 15 additional degrees of freedom per node in
the three-dimensional case.

The dynamics of stress gradient media also is of interest because
of the new dispersion relations that the theory will deliver com-
pared to Mindlin’s existing ones (Mindlin and Eshel, 1968).
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