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Several extensions of standard homogenization methods for composite materials have been proposed in the literature that
rely on the use of polynomial boundary conditions enhancing the classical affine conditions on the unit cell. Depending
on the choice of the polynomial, overall Cosserat, second gradient, or micromorphic homogeneous substitution media are
obtained. They can be used to compute the response of the composite when the characteristic length associated with the
variation of the applied loading conditions becomes of the order of the size of the material inhomogeneities. A significant
difference between the available methods is the nature of the fluctuation field added to the polynomial expansion of the
displacement field in the unit cell, which results in different definitions of the overall stress and strain measures and
higher order elastic moduli. The overall higher order elastic moduli obtained from some of these methods are compared
in the present contribution in the case of a specific periodic two-phase composite material. The performance of the
obtained overall substitution media is evaluated for a chosen boundary value problem at the macroscopic scale for which
a reference finite element solution is available. Several unsatisfactory features of the available theories are pointed out,
even though some model predictions turn out to be highly relevant. Improvement of the prediction can be obtained by a
precise estimation of the fluctuation at the boundary of the unit cell.

KEY WORDS: higher order homogenization, composite materials, Cosserat, second gradient, micromor-
phic theory, polynomial boundary conditions, representative volume element, finite element

1. INTRODUCTION

Standard homogenization methods for composite materials are known to fail when the size of the constituents of
heterogeneous materials is not sufficiently small with respect to the size of the structure or the characteristic size of
variation of the macroscopic mechanical fields. Heuristic enhancements of the homogenization procedures have been
proposed to overcome this limitation, based on correctors from multiscale asymptotic expansion by Boutin (1996),
or on polynomial expansion of the microscopic field in Forest (1998), Gologanu et al. (1997), and Ostoja-Starzewski
et al. (1999). The multiscale asymptotic expansion approach has the merit to deliver a systematic method to compute
new correctors, even though there is no theoretical certitude that the use of the correctors will greatly improve the
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prediction. This is due to the fact that boundary layers effects play a significant role in the analysis of structures
containing a periodic distribution of heterogeneities with non-negligible size. Furthermore, the methodology can
hardly be extended to non-linear material behavior because of the complexity of the required incremental asymptotic
analysis. In contrast, the use of polynomial boundary conditions to be prescribed on a representative volume element
in order to determine higher order effective properties can be applied to non–linear material response as done in
Feyel (2003), Forest (1999), Geers et al. (2001), Kouznetsova et al. (2004b), and Trovalusci and Masiani (2003).
However, the polynomial expansion approach to higher order homogenization remains heuristic and no fully satisfying
procedure seems to emerge from the previous attempts (Forest and Trinh, 2011).

First, the polynomial approach relies on the choice of a well-suited higher order continuum theory at the macro-
level, as a homogeneous substitution medium. Multiscale asymptotic methods generally lead to the definition of an
overall second gradient model (Dell’Isola et al., 1998; Triantafyllidis and Bardenhagen, 1996). The second gradient
model has also been retained in the polynomial approach by Bacigalupo and Gambarotta (2010), Kaczmarczyk et al.
(2008), Kouznetsova et al. (2004b), and Mühlich et al. (2009). However, the homogeneous substitution medium can
also include additional degrees of freedom,such as micro-rotations in the Cosserat model or full microdeformation
according to the micromorphic approach. This is the three-dimensional counterpart of the choice of Bernoulli and
Timoshenko models for composite beams. These additional macroscopic kinematic quantities must be defined as
well-suited averages over the heterogeneous material unit cell. The Cosserat and closely related couple-stress mod-
els were used as homogeneous substitution media for various composite materials by Bigoni and Drugan (2007);
De Bellis and Addessi (2010); Forest and Sab (1998); Larsson and Diebels (2007); Masiani and Trovalusci (1996);
Trovalusci and Masiani (2003). In particular, foams or lattice structures have been modeled by means of such Cosserat
or micromorphic models Dillard et al. (2006); Ebinger et al. (2005); Tekoglu and Onck (2008). There is however no
systematic rule to select the proper generalized continuum theory at the macro-level when considering the polynomial
expansion method. The micromorphic model put forward in Jänicke et al. (2009) has the advantage that it encompasses
the Cosserat as well as the second gradient approach as limited cases corresponding to specific values of constitutive
properties.

Second, different ways of applying polynomial non-homogeneous boundary conditions to the material’s unit cell
have been explored in the literature, as extensions of the usual affine conditions of standard homogenization. Quadratic
or higher order polynomial conditions can be applied directly at the boundary of the representative volume element, as
done in Gologanu et al. (1997) and Jänicke et al. (2009). In that case, however, when considering quadratic conditions
for instance, the average second gradient cannot be strictly controlled (Forest and Trinh, 2011). Also, Dirichlet con-
ditions are known to lead to too stiff overall moduli. The introduction of a fluctuation displacement field is therefore
necessary. The fluctuation was chosen periodic in Forest and Sab (1998) and Kouznetsova et al. (2004b), as in stan-
dard homogenization of periodic composites, but this choice is not entirely satisfactory, as discussed in Bacigalupo
and Gambarotta (2010), Forest and Trinh (2011), Kaczmarczyk et al. (2008), and Yuan et al. (2008), where alternative
conditions of the fluctuation fields are also proposed.

Finally, homogenization methods rely on the definition of a representative volume element (RVE) for the compos-
ite material. The definition of a RVE for the higher order homogenization turns out to be a difficult task in contrast
to classical homogenization for which clear procedures exists for both periodic and random heterogeneous materials
Kanit et al. (2003). For periodic medium, the question of RVE size for the determination of generalized continuum
properties has hardly been undertaken. It was shown by Kouznetsova et al. (2004b) that the effective second gradient
moduli scale with a power law of the size of volume element (i.e., of the number of unit cells in the volume element).
In contrast, it seems that a satisfactory homogenization procedure should produce effective moduli that do not depend
on the size of the volume element as soon as the RVE size is reached (i.e., the unit cell size for a periodic media).
Such a procedure has been proposed in Forest and Trinh (2011) and will be used in the present contribution. Also the
higher order effective properties should not depend on the specific choice of the unit cell for a periodic medium, as
in the classical case. This required property is not met by the available higher order computational homogenization
techniques.

The present work addresses several questions still unsolved in the problem of generalized continuum homogeniza-
tion. The objective is to compare the values and the performance of the overall higher order elastic properties derived
from several of the available mentioned higher order homogenization techniques. This is done in the special case of a
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highly contrasted elastic two-phase periodic material with a given unit cell geometry. The overall moduli of Cosserat,
second gradient, and micromorphic substitution media will be determined for different hypotheses regarding the fluc-
tuation displacement field. The performance of the obtained substitution media is evaluated by considering a specific
boundary value problem on the heterogeneous material for which classical homogenization will be shown to fail.

Some available micro-macroscale transition rules for higher order continua are recalled in Section 2. The polyno-
mial boundary conditions are explicited in Section 3 where the question of RVE size for higher order homogenization
is also addressed. The overall higher order elastic properties are identified in Section 4 for three different fluctuation
conditions in the case of a given composite microstructure. In the final section, a reference computation is performed
on the fully discretized heterogeneous structure under specific loading conditions. This reference is compared to the
estimations of the overall Cosserat, second gradient, and micromorphic substitution media.

The analysis is restricted to linear elasticity within the small strain framework. All deformed states presented in
the figures are magnified for better illustration.

In this work, zeroth-, first-, second- and third-order tensors are denoted bya,a ,a∼,a∼, respectively. The simple,
double and triple contractions are written “. ”, “ : ”, and “

... ”, respectively. In index form with respect to an orthonormal
Cartesian basis, these notations correspond to

a .b = aibj , a∼ : b = aijbij , a
∼

...b
∼
= aijkbijk (1)

where repeated indices are summed up. The tensor product is denoted by⊗. For example, the component(a∼⊗b∼)ijkl is
aijbkl. The∇ operator is denoted by∇X (resp.∇x) when partial derivation is computed with respect to macroscopic
(resp. microscopic) coordinates. For example,σ∼.∇ is the divergence of the second-order tensorσ∼. The index form of
σ∼.∇ is σij,j . Similarly,u ⊗∇ meansui,j . The sign:= defines the quantity on the left-hand side.

2. DEFINITION OF GENERALIZED EFFECTIVE CONTINUUM

The extended homogenization procedures based on the use of non–homogeneous polynomial loading conditions of
the heterogeneous material’s unit cell generally rely on the a priori choice of a targeted generalized continuum. The
number of independent coefficients in the considered polynomial must increase if the kinematics of the overall gener-
alized continuum is enriched. The most general situation at the macroscopic scale considered in the literature yet is the
micromorphic continuum. We first recall the homogenization procedure for micromorphic overall continua according
to Forest (2002) and Jänicke et al. (2009). We then show how this general situation reduces to second gradient and
Cosserat overall continua as special cases that were independently proposed in Forest and Sab (1998) and Gologanu
et al. (1997) respectively.

2.1 Micromorphic Overall Continuum

The micromorphic theory first proposed by Eringen and Suhubi (1964) and Mindlin (1964) introduces microdeforma-
tion degrees of freedom represented by the generally non-symmetric second-order tensor field,χ

∼
(X ), in addition to

the displacement degrees of freedom,U (X ). It is assumed that the development of microdeformation gradient

K
∼
(X ) := χ

∼
(X )⊗∇X (2)

is associated with internal work and energy storage. There is also an energetic price to pay for the microdeformation
to depart from the macrodeformation, characterized by the relative deformation measure

e∼(X ) := U (X )⊗∇X − χ
∼
(X ) (3)

The substitution of a heterogeneous Cauchy material by a homogeneous micromorphic medium requires the definition
of the additional degrees of freedom as functions of the micro-fields. For a given local displacement fieldu (x ) in the
volume elementV , it has been proposed in Forest (2002); Forest and Sab (1998); Forest and Trinh (2011); Jänicke
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and Diebels (2009) and Jänicke et al. (2009) to determine the homogeneous deformation field that is the closest to the
actual displacement field, in the sense of the following minimization problem:

min
U (X ),χ

∼
(X )

∫
V

∣∣∣∣∣∣u (x )−U (X )− χ
∼
(X ) · (x −X )

∣∣∣∣∣∣2 dV (4)

for a given material pointX . The minimization procedure is straightforward and delivers, takingX as the center of
V (X )

U (X ) = ⟨u (x )⟩V , A∼ = ⟨(x −X )⊗ (x −X )⟩V (5)

χ
∼
(X ) = ⟨[u (x )−U (X )]⊗ (x −X )⟩V .A∼

−1 = ⟨u (x )⊗ (x −X )⟩V .A∼
−1 (6)

where the quadratic momentA∼ is introduced and assumed to be macroscopically uniform in the sequel. The definition
of the overall continuum then requires the evaluation of the macroscopic gradients of the degrees of freedom. The
macroscopic gradient of the displacement field is still given by the average (12). The gradient of the microdeformation
(2) is computed using the definition (6) as follows (Forest and Trinh, 2011):

K∼
T (X ) = ⟨[u (x )⊗∇x]⊗ (x −X )⟩ ·A∼

−1, Kijk = ⟨ui,k(xl −Xl)⟩A−1
lj (7)

where transposition of the third rank tensor is applied to the last two indices. Accordingly, the microdeformation
gradient can be interpreted as the first moment of the distribution of the local displacement gradient. The relative
deformation must also be evaluated and takes the form of the difference

e∼(X ) = ⟨u (x )⊗∇x⟩V − ⟨u (x )⊗ (x −X )⟩V ·A∼
−1 (8)

When the displacement fieldu is an affine transformation, including a rigid-body motion, both the relative deforma-
tion and the microdeformation gradient vanish, as it should be.

The overall micromorphic continuum is characterized by the form of the power density of internal forces, which
involves three stress tensors, the dual quantities of the previous three kinds of strain measures

p(i)(U ,χ
∼
) := Σ∼ : U ⊗∇X + S∼ : e∼ +M∼

...χ
∼
⊗∇X = ⟨σ∼ : ε∼⟩ (9)

The simple force stress tensorΣ∼ is taken symmetric, whereas the relative stress tensorS∼ is generally not symmetric.
The double stress tensorM∼ does not display in general any symmetry property with respect to its three indices.

2.2 Second Gradient Overall Continuum

The second gradient model relies on the introduction of the first and second gradients of the displacement field,
U (X ), in the continuum model. In particular, the work density of internal forces takes the following form:

p(i)(U ) := Σ∼ : U ⊗∇X +M∼
...U ⊗∇X ⊗∇X (10)

whereΣ∼ is the symmetric simple stress tensor andM∼ the hyperstress or double stress tensor, which is symmetric with
respect to its two last indices. Note that there is a strict equivalence between the strain gradient and the second gradient
of displacement models (Mindlin and Eshel, 1968). The stress tensors fulfill the following balance of momentum
equation:

τ∼ ·∇X = 0, with τ∼ = Σ∼ −M∼ ·∇X (11)

in the absence of volume forces nor acceleration. Constitutive relationships relate the first and second gradient of
displacement to both stress tensors.

The macroscopic displacements, strain, and strain gradients are the mean values of the local strain and strain
gradient over a material volume element,V , made of a Cauchy heterogeneous material (Forest and Trinh, 2011)

U (X ) = ⟨u (x )⟩V , U ⊗∇X = ⟨u ⊗∇x⟩V (12)
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K∼ := U ⊗∇X ⊗∇X = ⟨u (x )⊗∇x ⊗∇x⟩V (13)

The main difference between the strain measuresK∼ in the second gradient and micromorphic models is thatK∼ is
symmetric with respect to the last two indices in the former case.

The identification of the micromorphic substitution medium properties proceeds through the identification of the
macro-energy density and the averaged energy inV

⟨σ∼ : ε∼⟩V = Σ∼ (X ) : E∼ (X ) +M
∼
(X )

...K
∼
(X ) (14)

whereE∼ is the symmetric part of the displacement gradient. The micromorphic model encompasses the strain gradient
theory as a limit case if the internal constraint

χ
∼
≡ U ⊗∇X ⇐⇒ e∼ ≡ 0 (15)

is enforced (Forest, 2009).

2.3 Cosserat Overall Continuum

The Cosserat model is a special case of the micromorphic theory for which the microdeformation reduces to a pure
microrotation, meaning that microstrains are considered to be inactive. It amounts to limiting the minimization (4) to
skew-symmetricχ

∼
or, equivalently, to axial vectorsΦ , as proposed in Forest and Sab (1998)

min
U (X ),Φ (X )

∫
V

||u (x )−U (X )−Φ (X )× (x −X )||2 dV (16)

where× denotes the vector product. The same definition (5) follows for the macroscopic displacement. The macro-
scopic Cosserat rotation vector is solution of

(traceA∼ )Φ +

∫
V

Φ · (x −X )(x −X ) dV =

∫
V

(x −X )× (u −U ) dV (17)

where the geometric tensorA∼ has already been defined. The Cosserat deformation and curvature tensors are then
defined as

e∼ := U ⊗∇X + ϵ
∼
·Φ , K∼ := Φ ⊗∇X (18)

The identification of the Cosserat substitution medium properties proceeds through the identification of the macro-
energy density and the averaged energy inV

⟨σ∼ : ε∼⟩V = Σ∼ : e∼
sym + S∼ : e∼

skew +M∼
...K∼ (19)

whereΣ∼ is the symmetric stress tensor,S∼ is the skew-symmetric stress tensor, that work with the symmetric and
skew-symmetric parts of the relative deformation, respectively, andM∼ the couple-stress tensor.

In the two-dimensional case for a square unit cell with edge lengthl and withX at the center, we derive from
(17) the following formula:

Φ =
6

l2
⟨(x −X )× (u −U )⟩V (20)

which was given in Forest and Sab (1998) and is used in the present work. If the deformation plane is(e 1, e 2) then
Φ = Φ3e 3. As a result, only two components of the curvature tensor do not vanish, namelyK31,K32:

K31 =
6

l2
⟨x1u2,1 − x2u1,1⟩V , K32 =

6

l2
⟨x1u2,2 − x2u1,2⟩V (21)
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3. POLYNOMIAL LOADING CONDITIONS OF THE UNIT CELL

Polynomial loading conditions have been extensively used recently to develop generalized homogenization schemes.
Various orders are considered depending on the chosen overall generalized continuum theory. We recall here three
cases that are evaluated in Section 5 and we discuss the essential question of the existence of a RVE for such boundary
conditions.

3.1 Selection of Polynomial Coefficients

The local displacement inside a volume elementV of heterogeneous material can be expanded in the polynomial form

u (x ) = E∼ · x +
1

2
D∼ : (x ⊗ x ) +

1

3
D
≈

... (x ⊗ x ⊗ x ) +
1

4
D∼∼

:: (x ⊗ x ⊗ x ⊗ x ) + v (x ), ∀x ∈ V (22)

The coefficients of the polynomials are constant and exhibit the following symmetry properties: the components
Dijk, Dijkl andDijklm are symmetric with respect to their two, three and four last indices, respectively. A fluctuation
fieldv (x ) must be added for such an expansion to exist in general. Such polynomials can be used to inhomogeneously
deform the material elementV and therefore explore the heterogeneous material’s response to various inhomogeneous
deformation modes. How this polynomial loading is prescribed to the volume elements depends on the choice of the
fluctuation fieldv at the boundary∂V of the volume elements. Some possible choices are discussed in Section 3.2.

The order of the polynomials to be retained in the expansion is directly related to the order of the overall general-
ized continuum theory as follows:

1. The quadratic contributionDijk is required for the identification of an overall second gradient medium (Forest
and Trinh, 2011; Geers et al., 2001; Gologanu et al., 1997). Some components of the quadratic term correspond-
ing to bending modes are sufficient for the construction of an overall couple-stress medium in Ostoja-Starzewski
et al. (1999) and Bouyge et al. (2001).

2. Some components of the quadratic termDijk and of the third-order polynomialDijkl are involved in the
construction of an effective Cosserat medium (Forest and Sab, 1998). The selection of the relevant coefficients
was made by keeping only the ones that contribute to the overall microrotation and curvature of the unit cell as
defined by (20) and (21), respectively.

3. Some components of the fourth-order polynomialDijkm are needed for a 3D Cosserat continuum (Forest,
2002) and for an overall micromorphic medium (Jänicke et al., 2009). The selection of the relevant coefficients
is discussed in these contributions.

3.2 Role of Fluctuation Field

Imposing a mean curvature or mean strain gradient to a volume element can be done in various ways related to the
choice of the fluctuationv in (22). The procedures presented in the literature are not completely satisfactory yet, as
discussed in Forest and Trinh (2011). Three main possibilities have been exploited:

1. v (x ) = 0, ∀x ∈ ∂V . The fluctuation is set to zero at the boundary of the volume elements. As a result,
the displacement is polynomial at the boundary ofV . This is a straightforward method that has been shown
to deliver reasonable estimates of effective properties for generalized substitution medium. However, it suffers
from two limitations. First it cannot be used to impose strictly a given mean strain gradient because strain cannot
be prescribed at the boundary. Let us illustrate this point in a simple case where only the coefficientD111 is
considered

u1 =
1

2
D111x

2
1, u2 = 0, ∀x ∈ ∂V (23)

We compute the average second gradient component

⟨u1,11⟩ =
1

V

∫
V

u1,11 dV =
1

V

∫
∂V

u1,1n1 dS (24)
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This expression cannot be further exploited because the strain componentε11 = u1,1 is not known on the
whole boundary∂V , even thoughu1 is known. The strain cannot be prescribed at the boundary in a Cauchy
continuum. In contrast, Eq. (7) can be used and delivers

K111 =
12

l2V

∫
V

u1,1x1 dV =
12

l2V

∫
V

(u1x1),1 dV − 12

l2
⟨u1⟩ =

12

l2V

∫
∂V

u1x1n1 dS − 12

l2
⟨u1⟩

=
12

l2V

∫
∂V

1

2
D111x

3
1n1dS − 12

l2
⟨u1⟩ =

12

l2V

3

2
D111

∫
V

x2
1 dV − 12

l2
⟨u1⟩ =

3

2
D111 −

12

l2
⟨u1⟩

(25)

This expression shows thatK111 is indeed related to the coefficientD111 but the second contribution is a priori
unknown and can be obtained from a post-processing of the solution of the boundary value problem on the
volumeV . Second, as in classical homogenization (see section 4.2), prescribing Dirichlet conditions at the
boundary of the volume element generally delivers too stiff effective moduli.

2. v (x ) is periodic at homologous points of a periodic unit cell. The periodicity constraint was imposed in Forest
and Sab (1998) and Kouznetsova et al. (2004b). The periodicity constraint also requires the anti-periodicity
of the stress vector at boundaries. The latter conditions enable simple definitions for the overall stress tensors
based on Hill–Mandel conditions. However there is in general no reason for assuming such a periodicity re-
quirement in the presence of overall strain gradient loading, as pointed out by Bacigalupo and Gambarotta
(2010); Kaczmarczyk et al. (2008) and Yuan et al. (2008).

3. No constraint onv , as obtained at the boundary of a unit cell if the Dirichlet polynomial conditions are pre-
scribed at the boundary of a periodic heterogeneous material far away from the considered unit cell, as proposed
in Forest and Trinh (2011). This procedure is related to the concept of RVE for polynomial conditions discussed
in Section 3.3. The convergence study with respect to the number of considered unit cells also confirmed in a
special numerical case that the fluctuationv is not periodic.

These various assumptions will be used in Section 4 to identify overall generalized elasticity moduli.

3.3 Existence of a RVE for Polynomial Boundary Conditions

The question of the existence of a representative volume element is essential for establishing a solid foundation for
homogenization procedures. Let us consider a periodic microstructure with a unit cellV0. In a three-dimensional space,
a material volume elementV can be built by tessellation ofN3 translated volumesV0. The authors in Kouznetsova
et al. (2004a) investigated the overall second gradient elastic moduli based on quadratic Dirichlet conditions for
increasing values ofN . They found that these moduli, as derived from the mean energy density computed inV for
each loading, increase withN and do not converge towards unique effective properties. In Pham (2010), the author
claims that this is a fundamental weakness of the method and proposes an alternative way of defining the effective
moduli that do not depend onN . This is a significant step toward establishing solid foundations for the homogenization
model. A different perspective is proposed in Forest and Trinh (2011). Instead of computing the overall energy density
onV when increasingN , it is proposed to compute it on one single central unit cell. This energy level was found to
converge for the loading conditions and the special unit cell geometry considered in Forest and Trinh (2011). As a
result, the fluctuation fieldv at the boundary ofV0 was determined exactly. It did not display the usual periodicity
properties. This technique is used in Section 4 to check whether such a convergence exists for the considered test
material and whether effective moduli can be determined in that way.

In particular, the analysis of the fluctuation field after convergence of the RVE size in Forest and Trinh (2011)
shows that the fluctuation generally contributes to the mean second gradient of the displacement field so that the latter
differs from the coefficients of the quadratic term in the polynomial expansion. In contrast, the boundary conditions
proposed in Kaczmarczyk et al. (2008) assume that the mean average second gradient of the fluctuation vanishes. The
fluctuation field obtained from convergence analysis in Forest and Trinh (2011) should be compared to the fluctuation
field proposed in Bacigalupo and Gambarotta (2010) and Yuan et al. (2008).
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4. IDENTIFICATION OF GENERALIZED EFFECTIVE ELASTIC MODULI

4.1 Definition of the Chosen Composite Material

The chosen periodic composite material for the evaluation of the extended homogenization methods is made of a hard
isotropic linear elastic phase(h) and a soft isotropic linear elastic phase(s)

Eh = 100 000MPa, νh = 0.3, Es = 500MPa, νs = 0.3

The two phases display a contrast of 200 in their Young’s modulus. The retained two-dimensional geometry of the
unit cellV0 of the periodic composite is shown in Fig. 1(a). It exhibits orthotropic symmetry. The volume fraction of
the hard phase isfh = 0.424. The whole microstructure is obtained by plane tessellation in the defined directions 1
and 2. A second possible unit cell leading to the same material by tessellation is given in Fig. 1(b). It will be used to
test the influence of the choice of the unit cell on the predicted generalized effective properties.

4.2 Identification of Classical Elastic Moduli

Classical periodic homogenization is used to compute the orthotropic elastic properties of the effective Cauchy ma-
terial. A constant mean deformation gradientEij is applied to the unit cell in which the displacement field is of the
form :

u (x ) = E∼ · x + v (x ) (26)

wherev is the periodic displacement fluctuation taking identical values at homologous points of the boundary∂V0 of
the unit cell. The effective moduli are determined from the mean elastic energy density induced by three successive
independent loading conditions, as illustrated in Fig. 2. Finite element simulations are performed under plane strain
conditions. The found moduli are provided in Table 1. They are defined in the following matrix formΣ11

Σ22

Σ12

 =

C11 C12 0
C12 C22 0
0 0 C44

 E11

E22

2E12

 (27)

(a) (b)

FIG. 1: Unit cell V0 of the periodic composite material:(a) geometry of the unit cell and(b) second equivalent unit
cell. The hard phase is red, and the soft phase is blue. The orthotropy axes 1 and 2 are respectively horizontal and
vertical (See pdf version for color figures).
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FIG. 2: Loading conditions applied to the unit cell for the determination of the effective properties of the homoge-
neous equivalent Cauchy material. The first, second, and third rows correspond to:E11 = 1, E22 = 1, E12 = E21 =
0.25, respectively. In each case, the remaining components ofEij vanish.

TABLE 1: Elastic properties of the effective Cauchy material

C11 (MPa) C12 (MPa) C22 (MPa) C44 (MPa)
Periodic 44748 1579 7163 372

KUBC 45707 3181 9920 6186

As a comparison, we have also computed the apparent effective moduli when homogeneous deformation boundary
conditions are applied to the unit cell, i.e., when the fluctuation is taken to vanish :v = 0, ∀x ∈ ∂V0. These boundary
conditions are referred to as, kinematic uniform boundary conditions (KUBC). The corresponding apparent moduli,
also given in Table 1, are significantly stiffer than effective moduli from periodic homogenization, as expected (Kanit
et al., 2003).

4.3 Identification of Cosserat Effective Elastic Moduli

The effective moduli of the overall Cosserat continuum are obtained by prescribing successively a mean curvatureK∼
and a mean relative deformatione∼ through polynomial conditions of the form

u∗
1 = D222x

2
2 − 2D111x1x2 +D3(x

3
2 − 3x2

1x2) + v1(x1, x2) (28)

u∗
2 = D111x

2
2 − 2D111x1x2 −D3(x

3
1 − 3x1x

2
2) + v2(x1, x2) (29)

which represent a special case of (22) as proposed in Forest and Sab (1998). The mean curvature componentsK31

andK32 are directly related to the prescribed coefficientsD111 andD222 by means of Eq. (21). The relative rotation
e12 − e21 is dictated by the valueD3 through Eq. (5), (18), and (20). The symmetric parte12 + e21 corresponds to the
classical engineering shear strain component2E12 in Eq. (27).

The deformed states of the unit cell are shown in Fig. 3 where curvaturesK31 andK32 are prescribed for three
choices of the fluctuation fields, periodic, vanishing at the boundary or converged. This third type of fluctuation will
be detailed in Section 4.4. The impact of the fluctuation is visible mainly for the curvatureK32 due to the strong
anisotropy of the chosen composite. The two deformed states corresponding to a prescribed relative rotation with
periodic or vanishing fluctuations are shown in Fig. 4 (a) and 4(b).
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FIG. 3: Loading conditions applied to the unit cell for the determination of the effective bending properties of
the homogeneous equivalent Cosserat medium. The three lines correspond respectively to periodic, vanishing, and
converged fluctuation fields. The first and second columns are associated with prescribed curvatureK31 andK32,
respectively.

(a) (b) (c)

FIG. 4: Deformed state of the unit cell when a relative deformation is applied to the unit cell:(a) periodic boundary
conditions,(b) no fluctuation, and(c) converged state.

Journal for Multiscale Computational Engineering



Evaluation of Generalized Continuum Substitution Models 537

The energy associated with each non-homogeneous deformation mode is used to identify the overall elastic moduli
based on generalized Hill–Mandel condition (19). The skew-symmetric Cosserat stress component and the couple-
stress component are linked to the relative deformation and curvature through the linear relationship

Σ12

Σ21

M31

M32

 =


Y1212 Y1221 0 0
Y1221 Y2121 0 0
0 0 C3131 0
0 0 0 C3232



e12
e21
K31

K32

 (30)

Orthotropic symmetry has been taken into account to write this matrix form. The corresponding moduli are deter-
mined from the energy contained in the presented deformed states and from the evaluation of Cosserat overall strain
measures, all computed by means of a suited post-processing of the FE computations. The values of the found moduli
are given in Table 2. The moduliC3131 andC3232 are obtained by applyingD111 = 1 mm−1 andD222 = 1 mm−1 in
(29), respectively. The corresponding curvatures are computed from the post-processing formula (21). They are found
to differ depending on the fluctuation type. The found bending moduli are close. In contrast, the moduli controlling
the skew-symmetric part of the overall stress significantly differ when the fluctuation is assumed to be periodic or
taken to be zero.

The bending moduliC3131 andC3232 are also valid for an overall couple-stress medium for which the microro-
tationΦ is constrained to coincide with material rotation (Bouyge et al., 2001). Then, the combination of moduli
intervening in the expression of the skew–symmetric part of the overall stress becomes a Lagrange multiplier.

The overall Cosserat and couple–stress properties can also be determined in the case of the alternative unit cell of
Fig. 1(b), following the same procedure. The values put in Table 3 show a significant dependence of the generalized
moduli, the cross morphology leading to significantly softer moduli.

4.4 RVE Size for Cosserat and Strain Gradient Overall Properties

The influence of the fluctuation type introduced in the boundary conditions in the computations of the previous section
clearly shows that there is undoubtedly a boundary layer effect due to the polynomial boundary conditions. To get rid
of the boundary layer effect, it is proposed to consider volume elements containing an increasing number of unit cells,
typically a collection of N×N unit cells, withN = 1,3,5... up toN = 27 in the following simulations. We look for the
sizeN for which the energy distribution in the bulk of the sample, defined as a zone of fixed size M×M, does not vary

TABLE 2: Elastic properties of the effective Cosserat material obtained for the unit cell of Fig. 1(a)

Y1212 Y1221 Y2121 C3131 (K31) C3232 K32)
(MPa) (MPa) (MPa) [MPa mm2 (mm−1)] [MPa mm2 (mm−1)]

Periodic 241250 –128383 69188 6788 (1.03) 2091 (0.9)

No fluctuation 976970 –616255 402759 5401 (1.17) 1502 (1.15)

Converged field – – – 6004 (1.07) 878 (1.33)

TABLE 3: Elastic properties of the effective Cosserat material obtained for the unit cell of Fig. 1(b)

Y1212 Y1221 Y2121 C3131 (K31) C3232 (K32)
(MPa) (MPa) (MPa) [MPa mm2 (mm−1)] [MPa mm2 (mm−1)]

Periodic 2383 –3270 6966 630.4 (1.01) 930.7 (0.994)

No fluctuation 3695941 –5472478 8109835 651.1 (1.01) 955.6 (1.08)

Converged field – – – 713 (1.07) 330 (0.58)
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any more when the polynomial boundary conditions are applied at the remote boundary with the same given values of
the polynomial coefficients. The obtained size will be called the RVE size for the considered polynomial conditions.
In particular, the attention is focused on the energy density distribution inside the central unit cell (M = 1).

In the case of affine boundary conditions used for classical homogenization, such a procedure is known to lead to
a stabilized periodic stress-strain field in the bulk of the volume element. In particular, the fluctuation at the boundary
of a unit cell, defined as the difference between the displacement field and the affine contribution, is then found to be
periodic.

For more general polynomial Dirichlet conditions prescribed at the outer, we can investigate the convergence of
the mechanical fields for an increasing window size. We also define, in a similar way, the fluctuationv and examine
its properties at the boundary of the central unit cell. This program has been performed in Forest and Trinh (2011) for
a cubic grid-like composite material for quadratic polynomials. We apply it to the orthotropic microstructure of Fig. 1
considered in this work. We use it also to determine the corresponding overall Cosserat and second gradient properties
and compare them to the estimations based on an a priori choice of the fluctuation.

The Cosserat polynomial conditions (29), withv = 0, are prescribed at the outer boundary of a 15×15 cell
volume element in Fig. 5. Clear bending can be seen in Figs. 5(a) and 5(b), whereas only a boundary layer seems to
be affected by the third-order polynomial in Fig. 5(c) leaving the central cells rather undeformed. These computations
have been performed from 1×1 up to 27×27 to check if a converged deformed state of the central cell is reached.
These converged states are shown in the bottom of Fig. 3 for bending and Fig. 4(a). The converged bending modes are
clearly identified, whereas the deformation of the central unit cell is close to a rigid-body rotation, when the third-order
polynomial is applied.

The same strategy has been carried out in the case of the six 2D deformation modes corresponding to a full
quadratic polynomial in Eq. (22):D111, D222, D122, D211, D212, andD112. The associated deformed 15×15–cell
volume elements are shown in Fig. 6. The converged shapes of the central unit cell extracted from the previous
volume elements are given in Fig. 7, for the same magnification. The modesD111, D222, andD122 induce only
limited deformation in the central unit cell whereasD211, D212, andD112 involve significant straining. The elastic
energy density levels⟨σ∼ : ε∼⟩V0 over the central unit cellV0 associated with these six modes are given in Table 4
depending on the sizeN of the volume element. Convergence to finite energy values is obtained for the modes
D211, D212, andD112 whereas the material turns out to be insensitive to the modesD111, D222, andD122.

The displayed convergence for the considered collection of cells ensures that a representative size has been
reached. However, quite a large number of cells is necessary to detect the energy-free modes. Detailed analysis con-
firms that the fluctuation corresponding to the central unit cell response is not periodic, as pointed out in Forest and
Trinh (2011).

(a) (b) (c)

FIG. 5: Deformed states of a composite volume element containing 15×15 cells subjected to the polynomial condi-
tions (29) with(a) D111 = 1 mm−1, (b) D222 = 1 mm−1 and(c) D3 = 1, the remaining coefficients being set to
zero.
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(a) (b)

(c) (d)

(e) (f)

FIG. 6: Deformation of a 15×15–cell volume elements corresponding to the following Dirichlet conditions at the
outer boundary:(a) D111 : u = 1/2x2

1e 1, (b) D222 : u = 1/2x2
2e 2, (c) D122 : u = 1/2x2

2e 1, (d) D211 : u =
1/2x2

1e 2, (e)D212 : u = x1x2e 2, and(f) D112 : u = x1x2e 1.

TABLE 4: Average elastic energy density in the central unit of N×N–cell volume elements submitted to
quadratic Dirichlet boundary conditions. The componentsDijk are given in mm−1 and the elastic energy
values are in Mpa

N×N-cell D111 = 1 D122 = 1 D212 = 1 D112 = 1 D211 = 1 D222 = 1

3x3 3 19 1033 527 368 324
7x7 2 0.12 789 6176 660 227
9x9 1.3 0.3 761 6079 565 89

11x11 0.9 0.4 759 5930 474 27
15x15 0.5 0.33 770 5714 371 1.8
21x21 0.4 0.32 776 5587 325 0.2
27x27 0.33 0.32 777 5548 315 0.2
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(a) (b)

(c) (d)

(e) (f)

FIG. 7: Shape of the central cell of a 15×15 volume element subjected to the following Dirichlet boundary conditions:
(a) D111 : u = 1/2x2

1e 1, (b) D222 : u = 1/2x2
2 e 2, (c) D122 : u = 1/2x2

2 e 1, (d) D211 : u = 1/2x2
1 e 2,

(e)D212 : u = x1x2 e 2, and(f) D112 : u = x1x2 e 1.

4.5 Identification of Second Gradient Effective Elastic Moduli

The quadratic polynomial loading conditionsDijk can be used to identify the elastic properties of an overall second
gradient medium. The simple force stress tensorΣ∼ is still related to the strain tensorE∼ by the moduli (27). In a
medium exhibiting point symmetry, the double stress tensorMijk = Mikj is linearly related to the second gradient
of displacementKijk = Kikj by the matrix of double elasticity moduli. The structure of anisotropic six rank tensors
of strain gradient elasticity was analyzed by Auffray et al. (2009, 2010). In the most general situation, the associated
matricial representation is written as follows:

M111

M122√
2M212

M222

M211√
2M121

=


A111111 A111122

√
2A111212 A111222 A111211

√
2A111121

A122111 A122122

√
2A122212 A122222 A122211

√
2A122121√

2A212111

√
2A212122 2A212122

√
2A212222

√
2A212211 2A212121

A222111 A222122

√
2A222212 A222222 A222211

√
2A222121

A211111 A211122

√
2A211212 A211222 A211211

√
2A211121√

2A121111

√
2A121122 2A121212

√
2A121222

√
2A121211 2A121121





K111

K122√
2K212

K222

K211√
2K121

 (31)
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This notation, using square root of 2 beforeK212 andM212, defines a true second-order tensorial representation of the
sixth-order tensor of double elasticity. Ranking the components of the second gradient of displacement as proposed
in the former matricial representation, leads, in the orthotropic case, to the uncoupled system

M1

M2

M3

M4

M5

M6

 =


A11 A12 A13 0 0 0
A12 A22 A23 0 0 0
A13 A23 A33 0 0 0
0 0 0 A44 A45 A46

0 0 0 A45 A55 A56

0 0 0 A46 A56 A66




K1

K2

K3

K4

K5

K6

 (32)

with the simplified notations

[K1 K2 K3 K4 K5 K6] =
[
K111 K122

√
2K212 K222 K211

√
2K121

]
(33)

[M1 M2 M3 M4 M5 M6] =
[
M111 M122

√
2M212 M222 M211

√
2M121

]
(34)

and

[A11 A12 A13 A22 A23 A33] =
[
A111111 A111122

√
2A111212 A122122

√
2A122212 2A212212

]
(35)

[A44 A45 A46 A55 A56 A66] =
[
A222222 A222211

√
2A222121 A211211

√
2K211121 2K121121

]
(36)

This makes 12 independent double elasticity moduli to be identified from the analysis of the response of the unit
cell to nonhomogeneous loading conditions. Twelve loading conditions are needed to identify them corresponding to
12 sets of the values of the coefficientsDijk. The six selected loading conditions are labeled(a, b, c, d, e, f) for the
identification of the first block of six constants in the matrix (32), taking advantage of the orthotropic symmetry of the
material. Six additional ones are needed for the second block. For each loading, the post-processing procedure yields
the mean energy density2ϵ = ⟨σ∼ : ε∼⟩V0 in the unit cell and the overall curvatureK1,K2, andK3. The mean energy
density is related to the overall energy density in the form

2ϵ =
[
K1 K2 K3 K4 K5 K6

]

A11 A12 A13 0 0 0
A12 A22 A23 0 0 0
A13 A23 A33 0 0 0
0 0 0 A44 A45 A46

0 0 0 A45 A55 A56

0 0 0 A46 A56 A66




K1

K2

K3

K4

K5

K6

 (37)

The six energy levels yield the following system of equations to solve for the higher order elastic moduli:
2ϵa
2ϵb
2ϵc
2ϵd
2ϵe
2ϵf

 =


K2

1a K2
2a K2

3a 2K1a K2a 2K2a K3a 2K1a K3a

K2
1b K2

2b K2
3b 2K1b K2b 2K2b K3b 2K1b K3b

K2
1c K2

2c K2
3c 2K1c K2c 2K2c K3c 2K1c K3c

K2
1d K2

2d K2
3d 2K1d K2d 2K2d K3d 2K1d K3d

K2
1e K2

2e K2
3e 2K1e K2e 2K2e K3e 2K1e K3e

K2
1f K2

2f K2
3f 2K1f K2f 2K2f K3f 2K1f K3f




A11

A22

A33

A12

A23

A13

 (38)

A similar system exists whenK4,K5, andK6 are activated.
The found higher order moduli are listed in Table 5 for a vanishing fluctuationv in Eq. (22) at the boundary

of the unit cellV0. We have not determined the effective moduli corresponding to the converged states of the unit
cell embedded in a N×N–cell volume element in the sense of Section 4.4, because zero-energy modes were detected
as discussed above, so that the previous system of equations is undetermined. A specific procedure is necessary to
determine the vanishing terms of the overall matrix, which has been addressed in Bacigalupo and Gambarotta (2010).

The higher order moduli obtained from the previous procedure are found to be very high in comparison to the
Cosserat bending moduli.
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TABLE 5: Higher order elastic properties of the overall second-gradient material for the unit cell of Fig. 1(a).
The fluctuation is taken to vanish at the cell boundary

A11 A22 A33 A12 A23 A13

(MPa mm2) (MPa mm2) (MPa mm2) (MPa mm2) (MPa mm2) (MPa mm2)
No fluctuation 134601 37436 124 548 68706 67368 127 213

A44 A55 A66 A45 A46 A56

No fluctuation 69445 2801 32 175 40762 11 094 7 548

4.6 Identification of Micromorphic Effective Elastic Moduli

In order to obtain the effective moduli of the overall micromorphic medium a cubic polynomial of the form

u∗
i =

(
Ui,1 −

5

2
ei1

)
x1 +

(
Ui,2 −

5

2
ei2

)
x2 +

10

l2
ei1 x

3
1 +

10

l2
x3
2

+
1

2
Di11 x

2
1 +

1

2
(Di12 +Di21)x1x2 +

1

2
Di22 x

2
2 −

l2

24
(Di11 +Di22)

(39)

is introduced with the length of the unit celll = 1 mm. This is in analogy to Jänicke (2010), where this type of poly-
nomial has been applied to cellular periodic unit cells. We distinguish on the one hand between the even polynomial
links (i.e., constant and quadratic ones), driven by the coefficientsDijk and the odd polynomial links, controlled by
the displacement gradient and the relative deformation, on the other. The constant part of the polynomial represents
a rigid-body translation of the volume element and ensures the volume centroid to stay at a fixed position during de-
formation due toDijk. The coefficients of the quadratic part are assumed to be symmetric with respect to the last two
indicesDijk = Dikj . By assumption, the cubic polynomial link has been restricted to the components depending on
x3
i . Hence, no mixed cubic terms are taken into account. Identification of the polynomial coefficients by means of the

averaging rules (2) and (3) leads to the result that the cubic polynomial link is stimulated by the relative deformation,
where the linear part depends on both, the relative deformation as well as the overall displacement gradient. We now
make the simplification that the local fieldu inside the unit cell is entirely given by Eq. (39), thus neglecting the
fluctuation in Eq. (22). In that case, we find

Kijk = Dijk (40)

Following this approximation, the Hill–Mandel identification (9) provides the explicit definition of the higher order
stresses:

Mijk = ⟨σi(jxk)⟩ (41)

where the parentheses in the indices denote symmetrization with respect to the corresponding indices. Note that the
chosen polynomial (39) does not allow to distinguishKijk from Kikj although this should be necessary for the
identification of a full micromorphic continuum. This is however not attempted here for the sake of brevity.

Several representative deformed states of the unit cell depending onUi,j andeij are given in Fig. 8. Evaluation of
the generalized Hill-Mandel condition (9) allows for identification of the overall elastic moduli. Taking into account
orthotropic symmetry, the components of the symmetric force stress tensorΣ∼ and the relative stress tensorS∼ are
calculated as follows: 

Σ11

Σ22

S11

S22

 =


Y1111 Y1122 Z1111 Z1122

Y1122 Y2222 Z2211 Z2222

η1111 η1122 ζ1111 ζ1122
η2211 η2222 ζ1122 ζ2222




u1,1

u2,2

e11
e22

 , (42)

 Σ12

S12

S21

 =

 Y1212 Y1212 Z1212 Z1221

η1212 η1212 ζ1212 ζ1221
η2112 η2112 ζ1221 ζ2121




u1,2

u2,1

e12
e21

 . (43)
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(a) (b)

(c) (d)

FIG. 8: Loading conditions applied to the different unit cell for the determination of the effective properties of the
homogeneous equivalent micromorphic medium:(a) and(c) u = (−5/2x1 + 10/l2 x3

1) e12 e 1, (b) and(d) u =
(−5/2x2 + 10/l2 x3

2) e21 e 2.

The matrix of higher order moduli for the calculation of double stresses is identical to relation (32) when the skew–
symmetric part ofKijk with respect to its two last indices is overlooked. The particular elastic moduli are given
explicitely in Table 6 for both configurations of the unit-cell 1(a) and (b).

The found higher order moduli determined from this simplified scheme are found to be significantly smaller than
those in Table 5. Their magnitude is comparable to the Cosserat bending moduli. As it has been observed for the
Cosserat overall continuum, the cross morphology of Fig. 1(b) leads to elastic moduli significantly softer compared
to the first morphology Fig. 1(a).

5. VALIDATION OF EXTENDED HOMOGENIZATION METHOD

The performance of the various generalized overall properties determined in Section 4 is evaluated by considering a
reference problem for a structure made of a small number of unit cells of the type of Fig. 1(a). The limitation of the
Cauchy continuum is first illustrated, and improvements by means of Cosserat, second gradient, and micromorphic
substitution media are presented.

5.1 Reference Structural Computation and Limitations of the Cauchy Approach

We consider the composite structure made of 10×5 cells of Fig. 9(a). The following boundary value problem is
considered on this structure. The left side of the structure is clamped, meaning thatU1 = U2 = 0. The horizontal lower
and upper sides are free of forces. The vertical displacement componentU2 = 1 mm is prescribed on the right side,
the componentU1 being left free. The corresponding deformed shape of structure is shown in Fig. 9(b). It displays a
combination of pure shear and bending modes in a boundary layer on the left side.

The same boundary value problem is considered for a homogeneous substitution Cauchy medium endowed with
the elastic properties of Table 1. The same clamping boundary conditionsU1 = U2 = 0 are prescribed on the left side.
The corresponding deformed shape is shown in Fig. 10(a). It shows that the Cauchy medium does not capture the
bending mode of the composite structure and only provide the shearing mode. Quantitative comparison is possible in
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TABLE 6: Higher order elastic properties of the overall micromorphic material for the unit cell of Figs. 1(a)
and 1(b), no fluctuations

Z1111 (MPa) Z1122 (MPa) Z2211 (MPa) Z2222 (MPa) Z1212 (MPa) Z1221 (MPa)
(a) 2425 7001 5616 12064 16619 7166
(b) –168 –4557 –101 –10717 –10492 –118

η1111 (MPa) η1122 (MPa) η2211 (MPa) η2222 (MPa) η1212 (MPa) η2112 (MPa)
(a) 2426 5616 7001 12064 16620 7165
(b) –168 –101 –4557 –10716 –10490 –118

ζ1111 (MPa) ζ1122 (MPa) ζ2222 (MPa) ζ1212 (MPa) ζ1221 (MPa) ζ2121 (MPa)
(a) 92751 17508 57280 51441 19806 47275
(b) 848 98 24119 23964 47275 733

A11 A22 A33 A12 A23 A13

(MPa mm2) (MPa mm2) (MPa mm2) (MPa mm2) (MPa mm2) (MPa mm2)
(a) 2733 1051 1122 –1233 333 –469
(b) 28.0 52.7 623 –20.7 52.9 –285

A66 A55 A44 A56 A45 A46

(MPa mm2) (MPa mm2) (MPa mm2) (MPa mm2) (MPa mm2) (MPa mm2)
(a) 3892 865 1138 315 –541 –42.0
(b) 438 271 288 121 –258 –106

(a) (b)

FIG. 9: (a) Reference composite structure made of 10×5 cells and(b) reference deformed shape of the structure.
Two horizontal lines are shown on the structure for post-processing purposes.

Fig. 11(a), where the displacement profileU2(x1) is given along the horizontal line close to the mid-section of the
structure, as drawn in Fig. 9. The bending induced by clamping is clearly visible on the reference curve and is absent
from the Cauchy prediction. This fact was already noticed for laminates in Bacigalupo and Gambarotta (2010) and
Forest and Sab (1998).

5.2 Computation with Three Different Generalized Homogeneous Substitution Media

The Cosserat and couple-stress media possess a bending stiffness that can improve the homogeneous description of
the composite structure. The boundary value problem is again considered for such a Cosserat substitution medium
endowed with the properties of Tables 2 and 3. Additional boundary conditions are necessary for such an enhanced
continuum. Clamping is accounted for by the conditionΦ3 = 0 on the left side of the structure, as is done in similar
composite beam and plate problems. Figure 11(a) gives the displacement along the mid-line predicted by the Cosserat
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(a) (b)

FIG. 10: Deformed state of the structure made of a homogeneous substitution medium and subjected to the same
displacement boundary conditions as in Fig. 9(b):(a) Cauchy substitution medium and(b) micromorphic substitution
medium.
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FIG. 11: Vertical displacement componentU2 along the mid-line visible in Fig. 9 as computed for the reference
structure and three different substitution media:(a) Cauchy continuum and Cosserat models with the coefficients
of Table 2 (periodic fluctuation) for the two unit cells of Figs. 1(a) and 1(b) (labeled 2),(b) Cosserat model for a
vanishing fluctuation and both unit cells.

continuum using the effective moduli derived from periodic boundary conditions on the two unit cells of Fig. 1. The
predictions are very close to the reference result. The moduli based on the unit cell containing a hard cross deliver
a slightly too soft response, whereas the moduli based on the unit cell of Fig. 1(a) are slightly too stiff. The predic-
tions incorporating the effect of a periodic fluctuation are however better than the response of a Cosserat continuum
endowed with moduli obtained without considering any fluctuation at the boundary of the unit cell. This is shown in
Fig. 11(b). Note the compensating effect of “stiff” boundary conditions and “soft” unit cell, which eventually provides
a good estimate. Almost perfect agreement between reference and homogeneous substitution media is obtained when
the converged bending moduli are used, according to Table 2.

When the structure is made of a homogeneous second gradient medium endowed with the properties of Table 5,
the deformed state of Fig. 10(a) and quantitative comparison in Fig. 12(a) show that no significant improvement is
brought, probably due to the fact that we use moduli determined for a vanishing fluctuation. Converged moduli could
not be determined because of zero–energy modes associated with some coefficient of the polynomial. A more spe-
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FIG. 12: Vertical displacement componentU2 along the mid-line visible in Fig. 9 as computed for the reference
structure and three different substitution media:(a) Cosserat (converged bending moduli and periodic shear moduli)
and second gradient models with the coefficients of Tables 2 and 5 for the unit cell of Fig. 1(a), and(b) micromorphic
model with the two sets of coefficients of Table 6 corresponding to the unit cells of Figs. 1(a) and 1(b).

cific strategy should be developed to identify the relevant converged moduli. Also, the result obtained with the second
gradient model shows that our example is not discriminant for selecting the best-suited generalized homogeneous sub-
stitution medium. More elaborate boundary value problems should be considered. The simulation for second gradient
elasticity is made by means of a micromorphic formulation for which penalty terms ensure that the microdeformation
coincide with the gradient of the displacement field. Clamping was imposed through the prescription of vanishing
microdeformation on the left side. Note that the choice of the additional boundary conditions on the left side is quite
heuristic, as it is the case in most beam and plate models.

The same simulation has been performed with the homogeneous micromorphic medium using the effective moduli
of Table 6. The prediction of the deflection is also given in Fig. 12(b). It is in rather good agreement with the reference
computation. The two considered unit cells deliver a slightly harder and softer response than the reference one.

The somewhat less good prediction of the micromorphic model compared to the Cosserat predictions of Figs. 11(a)
and 12(b) may be due to the fact that the fluctuation was not considered in the identification.

An exact fit would be possible by significantly increasing the bending moduli of the Cosserat and second gradient
moduli, but this is not done here because this would not correspond to a homogenization prediction. The better
prediction of the micromorphic model is probably not due to the real need for a full micromorphic medium, because
the Cosserat approach could be successful with different values of the effective moduli, but rather to the specific
identification method for effective moduli.

It is remarkable that significantly different values of higher order moduli can lead to very close results. The
response is to a certain extent not so sensitive to variations of higher order moduli. It means that the order of magnitude
only of the bending moduli is essential to capture the bending effect in the proposed example. More discriminating
tests are needed in future validations.

6. CONCLUSIONS

Cosserat, second gradient and micromorphic overall properties have been determined for a given highly contrasted
two-phase elastic composite. The attention has been focused on the impact of the choice of the fluctuation displace-
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ment on the derived effective higher order properties. Three possibilities were investigated: vanishing, periodic, or
converged fluctuation field. The periodic and vanishing fluctuation deliver very close bending moduli, whereas the
converged bending moduli are smaller. This shows that the application of non-homogeneous conditions at the bound-
ary of the unit cell induce significant boundary layer effects even if periodicity is assumed. In contrast, when the
curvature is applied remotely, we have found a converged curved state of a central unit cell embedded in a collection
of N×N cells. In this way, we have defined a representative volume element size, here of about 9×9 cells, for which
an exact fluctuation field was determined. This convergence analysis was also performed for the six coefficients of the
quadratic polynomial. Because of the specific laminate microstructure, some loading conditions were found to cor-
respond to zero–energy modes when applied sufficiently far from the boundaries. This fact has also been recognized
by Bacigalupo and Gambarotta (2010) based on a different choice of the fluctuation displacement condition. These
vanishing energy modes prevented us from determining a full matrix of higher moduli associated with the converged
state.

A crucial point in the discussion is that, for the various considered fluctuation conditions, the average second
gradient does not coincide with the coefficientDijk of the quadratic potential. That is why the post-processing formula
(7), applicable to second gradient and micromorphic overall media, was put forward. On the basis of this expression,
overall second gradient moduli were determined for a single unit cell with vanishing fluctuation. Additional work is
needed to find out the moduli in the converged state at RVE size. An approximate scheme, taken from Jänicke (2010)
and J̈anicke et al. (2009), was then used for the determination of all micromorphic moduli, that amounts to assuming
thatKijk coincides with the coefficient of the polynomial.

The periodic fluctuation assumption was found to be rather bad-suited for third-order polynomials required in the
Cosserat analysis. Indeed, the found Cosserat moduli associated with the skew-symmetric part of the stress, strongly
differ whether the fluctuation is assumed to vanish or to be periodic. Also, in the micromorphic scheme, a special
choice of the third-order polynomial was necessary in Jänicke (2010) to provide more satisfying effective moduli with
regard to the validation problem. In fact, a precise selection of appropriate coefficients in the polynomials of orders
larger that 2 remains to be done. At least third- and fourth-order polynomial are required for the identification of the
full 3D micromorphic substitution medium.

A dependence on the choice of the unit cell was found for all approaches regarding the higher order moduli, the
cross unit cell delivering the softest ones. The reference problem was satisfactorily described by all the presented sub-
stitution media. Improvement of the prediction was obtained when the moduli were obtained by taking the fluctuation
conditions at the boundary. The test was not discriminating enough to conclude on the better quality of moduli based
on converged fluctuation fields. Remarkably, even though some higher order moduli can be strongly different from
one scheme to another, the predicted responses of the considered structural problem can remain very close.

The evaluation of the different methods suggests that the extended homogenization theory is still not in a fully
satisfying state and raises several questions. Can we find an objective way to determine higher order moduli from
computation on a single unit cell? The potential of the approach is high, as proved by the quality and reliability of
the presented predictions. Accordingly, we propose a list of further steps in the development of a more systematic
methodology for higher order homogenization:

1. Separate zero-energy modes in the polynomial development to derive overall moduli based on a converged
fluctuation field

2. Find well-suited boundary conditions to derive these moduli from computations on a single unit cell

3. Get rid of the dependence on the choice of the unit cell or bring convincing arguments to select the best-suited
one

4. Define complete boundary conditions to determine the overall properties of a full micromorphic medium (es-
pecially with respect to the non-symmetric parts of the micro-deformation gradient, which was not done in the
present work)

5. Derive rules to determine the additional boundary conditions for the overall homogeneous substitution medium
from the exact boundary conditions of the heterogeneous Cauchy structure
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6. Design more discriminating examples to distinguish the best–suited substitution media

7. Extend the methodology to random media

Recent analytical results show that effective properties can indeed be determined independently of the the number of
unit cells in a N×N unit cell (Bigoni and Drugan, 2007; Pham, 2010). However the dependence on the choice of the
representative unit cell remains without solution. Are alternative approaches like multifield methods (Sansalone et al.,
2005) and computational continua (Fish and Kuznetsov, 2010) more appropriate than the polynomial approach?
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