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The role of the fluctuation field in higher order homogenization
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Homogenization methods aim at replacing a composite material by a homogeneous equivalent medium endowed by effec-
tive properties [1]. When the size of the heterogeneities (inclusions, grains...) is much smaller than the wave length of the
variation of the macroscopic stress and strain fields, i.e. under the assumption of separation of scales, the effective proper-
ties of a composite with periodic microstructures can be determined by considering a unit cell V and applying the following
loading conditions:

ui = Eijxj + vi, ∀x ∈ V with vi(x+) = vi(x−), t(x+) = −t(x−) (1)

The displacement vector inside V is u. The constant tensor Eij is the average strain applied to the unit cell and v is a periodic
fluctuation, meaning that it takes the same value at homologous points (x−,x+) of the boundary ∂V of the unit cell. The
traction vector t = σ · n takes opposite values at homologous points of the boundary with normal vector n.

When the macroscopic medium is subjected to slowly–varying mean fields so that strain gradients may influence the
material response, the previous homogenization scheme must be extended. For that purpose, several authors have proposed to
replace the composite material by a generalized continuum, like a Cosserat medium in [2], a couple stress continuum in [3], a
strain gradient model in [4] and a micromorphic model in [5].

1 Non–homogeneous loading conditions of the unit cell

The identification of the generalized continuum model in the mentioned contributions goes through the extension of the
classical loading conditions (1) to non–homogeneous conditions:

ui = Eij +Dijkxjxk + vi, ∀x ∈ V (2)

where Dijk is a constant third rank tensor, symmetric with respect to the two last indices. The coefficients of the quadratic
polynomial can be related to the generalized strain measures of the effective continuum but, in this note, the attention is
focused on the properties of the fluctuation v. In [5], the fluctuation is assumed to vanish, which may lead to the prediction of
too stiff effective elastic properties. In [2], the fluctuation was considered periodic as in Eq. (1), which is generally not a valid
assumption for such quadratic boundary conditions as discussed in [6]. In [4], the periodicity requirement for v is relaxed by
an heuristic integral condition but the traction vector is still assumed to be anti–periodic, which cannot be expected in general
because of the existence of stress gradient induced by the quadratic conditions.

The objective of this note is to provide a precise characterization of the real fluctuation field under quadratic boundary
conditions by means of a computational homogenization approach.

2 Determination of the fluctuation field

For that purpose, numerical simulations have been performed for a composite material made of an elastic grid with soft square
inclusions under plane strain conditions, see the unit cell of figure 1(a). The elastic properties of the grid and inclusion
materials respectively are (E = 200000 MPa, ν = 0.3) and (E = 20000 MPa, ν = 0.3). The edge length of the unit cell is
1 mm. The quadratic boundary conditions (2) where applied to the boundary of one single unit cell, but also to on ensemble of
cells containing 3×3 (see 1(b)), 5×5, up to 9× 9 cells. Fixed values of the coefficients Dijk were chosen and the fluctuation
v was set to zero at the outer boundary of the N ×N ensemble of cells.

The normalized elastic energy fields σ(x) : ε(x)/W with W =< σ : ε >V9×9 are drawn in figure 1, where < · >VN×N

denotes spatial averaging over the central unit cell of the N × N set of cells. The only non–vanishing component of the
polynomial was D112 = 1 mm−1. Strong boundary layer effects arise close to the outer boundary where the Dirichlet
conditions are applied. In the central cell a deviation from the polynomial field appears that is such that its boundaries do
not remain straight lines during deformation. We find that the elastic energy distribution in the central unit cell and the
fluctuation v at its boundary converge toward fixed fields when the number of cellsN increases. This means that there exists a
representative volume element size for quadratic boundary conditions. For the considered material, convergence was reached
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432 Section 8: Multiscales and Homogenization
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Fig. 1 Unit cell of a composite material (a, left) and 3×3 ensemble of cells (b, right, the central cell is coloured). Both meshes were
subjected to the quadratic Dirichlet boundary conditions D112 = 1 mm−1. The normalized energy field is displayed for the unit cell (a,
right) and for the central cell (b, right).

vle f t
1 (x)

vright
1 (x)

The fluctuation on opposite edges

cell edge

F
lu

ct
u

at
io

n

0.40.20-0.2-0.4

9.57

9.56

9.55

9.54

9.53

9.52

9.51
vle f t

2 (x)

vright
2 (x)

The fluctuation on opposite edges

cell edge

F
lu

ct
u

at
io

n

0.40.20-0.2-0.4

0.05
0.04
0.03
0.02
0.01

0
-0.01
-0.02
-0.03
-0.04
-0.05

σbottom
12 (x)

σtop
12 (x)

Stress on opposite edges

x1
l

σ 1
2

W

0.40.20-0.2-0.4

25
20
15
10

5
0

-5
-10
-15
-20
-25

σbottom
22 (x)

σtop
22 (x)

Stress on opposite edges

x1
l

σ 2
2

W

0.40.20-0.2-0.4

15

10

5

0

-5

-10

-15

Fig. 2 Fuctuation v and normalized stress components on opposite edges of the central unit cell of a 9 × 9 assembly for prescribed
D111 = 1 mm−1. Top: v1 and v2 on the left and right edges. Bottom: σ12 and σ22 on the top and bottom edges.

with the 5 × 5 cell assembly. The figure 1(b,right) shows that the loading D112 corresponds to a sort of bending. All other
quadratic terms were tested but they cannot be presented in this note.

From these converged results, the actual fluctuation field vi(x) can be computed as the difference between the actual
displacement field ui(x) provided by the Finite Element analysis and the polynomial function Dijkxjxk. The found values
of v1 and v2 are compared on the right and left sides of the central unit cell in figure 2. The component v1 is found to be
periodic whereas v2 turns out to be anti–periodic for the considered loading condition. Similarly some of the traction vector
components on the top and bottom edges of the central unit cell are compared in figure 2. The stress component σ22 is found
to be periodic whereas σ12 is anti-periodic.

As a conclusion, the fluctuation field in the central unit cell under quadratic conditions prescribed on a remote boundary is
generally not symmetric as anticipated in [6]. Similarly, the traction vector is generally not anti–periodic. We propose to use
the elastic energy on the central unit cell to derive the effective higher order elastic properties.
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