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Abstract
In polycrystals, stress-driven vacancy diffusion at high homologous 
temperatures leads to inelastic deformation. In this work, a novel continuum 
mechanics framework is proposed to describe the strain fields resulting from 
such a diffusion-driven process in a polycrystalline aggregate where grains 
and grain boundaries are explicitly considered. The choice of an anisotropic 
eigenstrain in the grain boundary region provides the driving force for the 
diffusive creep processes. The corresponding inelastic strain rate is shown to 
be related to the gradient of the vacancy flux. Dislocation driven deformation 
is then introduced as an additional mechanism, through standard crystal 
plasticity constitutive equations. The fully coupled diffusion-mechanical 
model is implemented into the finite element method and then used to 
describe the biaxial creep behaviour of FCC polycrystalline aggregates. The 
corresponding results revealed for the first time that such a coupled diffusion-
stress approach, involving the gradient of the vacancy flux, can accurately 
predict the well-known macroscopic strain rate dependency on stress and grain 
size in the diffusion creep regime. They also predict strongly heterogeneous 
viscoplastic strain fields, especially close to grain boundaries triple junctions. 
Finally, a smooth transition from Herring and Coble to dislocation creep 
behaviour is predicted and compared to experimental results for copper.

Keywords: stress-diffusion coupling, vacancy diffusion, creep, polycrystal, 
crystal plasticity, finite element simulations, Nabarro-Herring

(Some figures may appear in colour only in the online journal)

1.  Introduction

In crystalline metallic materials, the two main elementary creep mechanisms are crystal-
lographic slip produced by dislocation glide and the deformation associated with vacancy 
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diffusion. As far as vacancies are concerned, two mechanisms are known: Coble creep, where 
vacancies diffuse along grain boundaries, and Herring-Nabarro creep [1], where vacancies 
diffuse through the bulk material. They operate, respectively, at low and high homologous 
temperatures. Vacancy diffusion can induce permanent deformations in the material, which 
raises the question as to how the corresponding strain rate can be related to the vacancy flux 
at the scale of individual grains.

Continuum mechanics is embodied by the deformation of material lines drawn on a 
deforming specimen. When such lines are too blurred due to severe diffusion processes, 
standard continuum mechanics fails as it is unable to describe such material behaviour. In 
this work, it will be shown that continuum mechanics can still be used as a compromise 
between detailed atomistic analysis and field theory when the blurring of material lines 
is not too severe, as mentioned by Berdichevsky and coworkers [2]. In addition to these 
material point considerations, polycrystal modelling poses several challenges. In particular, 
grain boundaries introduce a geometrical discontinuity, and provide the main driving force 
for diffusive creep processes.

In the literature, two classes of models can generally be found for diffusion creep: marker 
based models [3] and lattice based models [4, 5]. In the first class, the existence of indestruct-
ible entities is assumed, which are tied to the material and convect with it, such that the defini-
tion of strain remains possible. In lattice based models, the creep deformation is assumed to be 
linked to lattice based mechanisms, such as site creation/annihilation and diffusion of species 
in the lattice. In [5], the authors develop a model that accounts for the plastic deformation in 
grain boundary zones of finite width, but not in the bulk. In their work, the plastic deforma-
tion rate is assumed to be proportional to a sink term in the vacancy diffusion equation, and 
to be only active in the grain boundary region. Their model was later extended to account 
for grain boundary migration, using a level-set method [6]. To our knowledge, Berdichevsky  
et al [2] were the first to relate the viscoplastic deformation rate to the gradient of the vacancy 
flux, see equations (60) and (62) in [2]. In [7 and 8], the plastic strain rate is postulated as the 
symmetric part of the vacancy flux gradient, and the driving force arises from stress dependent 
boundary conditions imposed for the vacancy concentration. This formulation has also been 
used in [9], and is generally not applicable to a generic polycrystalline simulation. It is only 
recently that Mishin and coworkers [10] combined the two models and adopted a non-classi-
cal approach to account for grain boundaries migration. The authors identified three minimum 
ingredients required for creep modelling: a thermodynamic framework accounting for lattice 
site evolution, a model of microstructure evolution and an appropriate set of kinetics equa-
tions. Their model was applied to an elementary bicrystal with a symmetrical grain boundary. 
Other important contributions made on diffusion creep are those from [11–14], in which creep 
equations for a solid are derived with a continuous distribution of vacancy sinks and sources, 
associated, for instance, with dislocation climb mechanisms.

Classically, mechanical models are built using representative volume elements (RVE), 
whereby stress or strain heterogeneities are ignored or averaged. However, these heterogenei-
ties contribute strongly to the behavior of the material, and polycrystalline aggregates simula-
tions are now relied upon in order to obtain intragranular stress and deformation fields. It is 
known that heterogeneities originate from elastic anisotropy, crystallographic slip [15], and 
play a major role in crack nucleation [16, 17]. In [18], the transport equations for dislocations 
are complemented to account for climb mediated by diffusion processes, at the scale of pre-
cipitates. In turn, the plastic strain rate tensor is extended to incorporate this climb kinematics. 
However, in these works, the heterogeneities arising from the gradient of the vacancy flux are 
not accounted for.
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The objective of the present work is to describe strain fields inside the grains arising from 
both diffusion processes and dislocation slip in a polycrystal subject to constant applied stress. 
In the present paper, the set of processes and associated equations necessary for a field theory 
of diffusional creep, where the diffusion creep viscoplastic deformation rate is related to the 
gradient of the vacancy flux, will be presented. This work is conducted at the meso-scale, 
with a detailed description of concentration and displacement fields inside a polycrystalline 
element, and with an explicit geometrical description of grains and grain boundaries. Fully 
coupled diffusion creep-crystal plasticity simulations of polycrystalline aggregates, including 
the effects of the vacancy flux gradient, are presented for the first time. The proposed frame-
work encompasses Herring, Coble and dislocation creep mechanisms at the local intergranular 
and intragranular levels.

The first section  is dedicated to the formulation of the creep kinetics in the spirit of 
Berdichevsky’s work, and the diffusion induced creep strain-rate tensor is identified as the 
deviatoric and symmetric part of the gradient of the vacancy flux. Then, a chemical-mechan-
ical coupled framework is developed from which Herring’s diffusion relation [1] is naturally 
recovered, thus yielding the correct overall creep driving forces. In the proposed formulation, 
creep processes start naturally by applying mechanical boundary conditions on a polycrystal. 
It is assumed for simplicity that any grain boundary motion can be neglected.

In the second part, finite element (FE) creep simulations of polycrystalline copper are 
conducted using diffusion data available in the literature to predict the average creep strain 
rates. Then, the FE results are compared to classic analytical solutions [19], and the numerical 
treatment of a grain boundary is emphasized and compared to the literature [5, 8]. In the pre-
sent work, grain boundaries are first treated with Dirichlet conditions; then, grains and grain 
boundaries are described by phase-field like variables [20]. Finally, crystal plasticity [21] is 
introduced as an additional deformation mechanism: incompatibilities arising close to grain 
boundaries modify the stress state which, in turn, influences the vacancy flux.

Cartesian coordinates will be used throughout the paper. Vectors will be denoted by v, sec-
ond order tensors by σ∼, and fourth order tensors by Λ≈

.

2.  Kinetics of vacancy diffusion induced creep in crystals

2.1.  Definition of a material point in the presence of diffusion

The pioneering work carried out by Cahn and Larché in the 70's and 80's [4, 22] introduced 
the notion of network to deal with some of the problems mentioned in the introduction. One 
would then think of a material point as a collection of lattice sites. A second possible defini-
tion would be to consider the material point as a collection of atoms. Indeed, the material lines 
of continuum mechanics, used for instance for strain field measurements, will not be drawn 
on the lattice in such case but rather on the atoms themselves. The two distinct notions are 
illustrated in figure 1. A material point based on the lattice definition would be, for instance, 
that represented by the black square in the figure. It is clear that the black square would distort 
(i.e. deform) in an irreversible manner if the number of lattice sites it contains would change. 
This would only occur if vacancies could either be generated or annihilated within the square.  
In contrast, a material point definition based on a group of atoms, such as those shown in red in 
figure 1, implies that an inhomogeneous diffusion of vacancies would be sufficient to produce 
a permanent deformation without the need to either generate or annihilate vacancies. Such is 
the case for the permanent shear deformation experienced by the material point (or element) 
defined by the red atoms in figure 1. In this work, the definition of the material point as a 
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collection of atoms will be adopted. The motivation for choosing the marker-based definition 
of a material point is the increasing use of strain field measurement methods in experimental 
mechanics based on deposited grids or patterns. In the fiducial grid sketched in figure 2, the 
measured strains do not refer to lattice based volume elements but rather to a collection of 
atoms coinciding, at least partially, with the deposited lines or points of the grid. Simulations 
of the type presented in the present work will be necessary for a quantitative interpretation 
of high resolution strain field measurements at high temperature and high in metallic poly-
crystals. This implies that the analysis presented in this work will be based on the following 
hypotheses:

	 •	The positions of the atoms and vacancies are constrained by the lattice of the crystalline 
solid, i.e. they can only occupy substitutional sites in the crystalline lattice. Also, the crea-
tion and annihilation of lattice sites associated with defects like climbing dislocations are 
not considered for simplicity. The coupling between vacancy diffusion and a continuum 
description of dislocation climb was addressed in the references [14, 18].

	 •	The volume element associated with the material point, V, is a bounding box encom-
passing this collection of atoms and any vacancies which may be trapped inside. This is 
the so—called marker—based definition of the material volume element.

	 •	The diffusion processes should not be too severe for the material lines to keep their 
identity (see figure 2). Copper is well–suited for the present treatment. For instance in 
[23], experiments show a transition in creep behaviour from diffusion creep to dislocation 
creep at half the melting temperature (that is, as low as  ∼700 K), for a grain size of a few 
tens of microns.

	 •	Direct exchange between atoms does not occur. Any atom motion is accompanied by 
an opposite motion of a vacancy. This is a frequent assumption, and its justification lies 
on the fact that a direct exchange between substitutional atoms is energetically more 
expensive than when involving vacancies [24].

The latter assumption applies mainly to material volume elements in the grain’s interior. The 
hypothesis of absence of site sources and sinks will be relaxed in the case of grain boundary 
regions.

Figure 1.  In this schematic illustration, the atoms of a material point at t  =  0 are 

represented by red dots. Due to an imposed gradient of the vacancy flux, 
∂
∂

≠
J

x
0

v
1

2
, the 

vacancies move from right to left, accompanied by an opposite motion of atoms. Here, 
the material element is sheared whereas the lattice volume element denoted by the box 
remains unchanged. In reality, the picture is only correct at a much larger scale than that 
of the present figure where just a few atoms are represented. Larger volume elements 
must be considered than that represented here.
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2.2.  Coupling creep deformation and the gradient of the vacancy flux

In the following section, the considered species are atoms and vacancies, denoted with 
a superscript, k, equal to either a (atoms), or, v (vacancies). The reference configuration 
of the body is denoted by B0, made of material points M, occupying the initial spatial  
position, X. In the current configuration at time, t, the body is denoted by B, and its mate-
rial points are located at, x. The function χ=x X t( , )u  maps the material points to the  
current configuration at time t. The following quantities are defined at each material  
point, M :

	 •	 xn t( , )#  is the mole number of substitutional sites per unit volume [mol.m−3] in the current 
state.

	 •	 XN ( )#  is the mole number of substitutional sites per unit volume [mol.m−3] in the refer-
ence state.

	 •	 xn t( , )k  is the mole number of substitutional species k per unit volume [mol.m−3] in the 
current state.

	 •	 XN ( )k  is the mole number of substitutional species k per unit volume [mol.m−3] in the 
reference state.

	 •	 =xc t( , )k n

n

k

# is the fraction of sites occupied by species k in the current state. 

Furthermore, the network constraint imposes that

∑ =n n .
k

k #
� (2.1)

In this subsection, the crystalline lattice is supposed fixed in space with respect to 
the observer and rigid [25]. Elastic straining of the lattice will be added later on. In 
the proposed analysis, interaction between vacancy and defects like dislocations is 
not considered for the sake of simplicity. Coupling between diffusion and climb was 
explicitely investigated in the reference [18]. By definition, the material point velocity 
is the average velocity of the atoms in the material volume element, V, here expressed in 
the referential of the lattice as:

∑=
=

v x v xt
n V

t( , )
1

( , ) ,
a

n

n V
a n

1

,

a

� (2.2)

Figure 2.  Dissolution of the reference lines in case of diffusion, drawn on a deforming 
body. From left to right, both straining and diffusion take place. Blurring occurs, but 
the lines keep their identity, thus allowing for the definition of a strain field to be made.
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where v x t( , )a n,  is the velocity of the nth atom in V, and na V the number of moles of atoms in 
V. Similarly for the vacancies:

∑=
=

v x v xt
n V

t( , )
1

( , ) .v
v

n

n V
v n

1

,

v

� (2.3)

Since the nth atom is either immobile =v( 0)a n,  or exchanging position with the mth vacancy 
= −v v( )a n v m, , ,

∑ ∑+ =
= =

v v 0 .
n

n V
a n

m

n V
v m

1

,

1

,

a v

� (2.4)

Using the network constraint, (2.1), and the definitions of the mean velocities given by (2.2) 
and (2.3), in (2.4), the following relation is obtained:

+ =v vn n 0 .a v v� (2.5)

The definition of the vacancy flux in m−2s−1 is defined as:

=j vn ,n v v v� (2.6)

where the left upperscript, n, reminds us that this definition is valid for molar concentrations. 
Substituting (2.6) into (2.5), a relation between the velocity of the atoms and the vacancy flux 
is obtained,

= −v j
n

1
.

a
n v� (2.7)

The motion of the atoms described by (2.7) gives rise to a deformation rate, defined as the 
symmetric part of the velocity gradient. Then,

⎛

⎝
⎜

⎞

⎠
⎟= ∂

∂
+

∂
∂

D
v

x

v

x

1

2
.ij

i

j

j

i
� (2.8)

Using (2.7), the deformation rate can be finally related to the gradient of the vacancy flux, as,

⎜ ⎟ ⎜ ⎟
⎛

⎝
⎜ ⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠
⎞

⎠
⎟= − ∂

∂
+ ∂

∂
D

x n
j

x n
j

1

2

1 1
.ij

j
a

n
i
v

i
a

n
j
v� (2.9)

The equations (2.8) and (2.9), respectively, correspond to equations (1) and (2) in [2], where 
the same notion of a material point defined by a group of atoms was employed in a continuum 
mechanics based coupled stress-diffusion formulation. In that work, the simplifying assump-
tion that vacancies are neither created nor annihilated was made. The equation (2.9) from the 
present work shows a direct link between the inelastic strain rate tensor and the vacancy flux 
gradient. It is believed that the atom/marker based definition of a material point used here 
is the best suited to compare computational results with strain field measurements based on 
fiducial grids in polycrystalline aggregates.

2.3.  Balance of species

Consider the material domains, D and D0, as material subdomains of B and B0, respectively. In 
this section, it is assumed that the number of substitutional sites remains practically constant. 
Hence,
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D D
∫ ∫=X xN V n t v( )d ( , )d .# #

0
� (2.10)

Differentiating (2.10) with respect to time and using Reynold’s transport equation yields,

⎛
⎝
⎜

⎞
⎠
⎟

D D
∫ ∫= ∂

∂
= ∂

∂
+ ∂

∂
x

t
n t v

n

t
n

v

x
v0 ( , )d d ,i

i

#
#

#� (2.11)

which leads to the local form of the sites balance equation:

∂
∂

+ =vn

t
n div  0 .

#
#� (2.12)

The balance law for vacancies, is then expressed in terms of cv, the lattice site fraction of 
vacancies, as,

∫ ∫

∫ ∫

∫ ∫

= − ⋅

+ ∂
∂

+ = − ⋅

= − ⋅

∂

∂

∂

⎛
⎝
⎜

⎞
⎠
⎟

j n

v j n

j n

t
n c v

n c c
n

t
n v

n c v

d

d
d ,

˙ div ( ) d ,

˙ d ,

v n v

v v n v

v n v

#

#
#

#

#

D D

D D

D D

� (2.13)

where the Reynolds transport theorem and the conservation of sites, (2.12), has been used. 
Since n# is practically constant, the local form of (2.14) can be divided by n# to obtain new 
definitions in terms of cv instead of nv. Hence, a new definition of the vacancy flux having units 
of [m s−1] will be henceforth used [25],

=j vc ,v v v� (2.14)

which satisfies the field equation,

= − jċ div ( ) .v v� (2.15)

It is recalled that the balance equation  (2.15) is valid for the bulk grain behaviour in the 
absence of sources and sinks, thus the interaction of vacancies with crystal defects is excluded 
for simplicity.

2.4.  Linearized theory

It is here assumed that cv  ≪  1. The components of the strain rate equation, (2.9), is now 
expressed as:

⎛

⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟
⎞

⎠
⎟= − ∂

∂ −
+ ∂

∂ −
D

x c
j

x c
j

1

2

1

(1 )

1

(1 )
.ij

j
v i

v

i
v j

v� (2.16)

The linearized strain rate components are finally given by,

⎛

⎝
⎜

⎞

⎠
⎟= −

∂
∂

+
∂
∂

D
j

x

j

x

1

2
.ij

i
v

j

j
v

i
� (2.17)
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The strain rate can be split into two parts, as follows,

∼ = ∼
∼ + ∼D

D
D1

trace ( )

3
.dev� (2.18)

The volumetric part corresponds to an accumulation or loss of vacancies and is associated with an 

eigenstrain proportional to the vacancy concentration, since ∼ = − = = −D j c ctrace ( ) div  ˙ ˙v v a. 

The deviatoric part, ∼D
dev, can be defined as the inelastic creep strain rate. Its integrated form 

leads to the sheared deformation illustrated in figure 1. Finally, an elastic deformation can be 
superimposed on the previous contributions. Note that Berdichevsky [2] introduces elastic and 
plastic velocities. However, there is generally not such a thing like an elastic or plastic veloc-
ity, since elastic and plastic strain tensors are generally incompatible.

3.  Balance laws and constitutive equations in elasto-viscoplasticity

3.1.  Balance laws

The balance law for vacancies, (2.15), has already been derived on the volume B with bound-
ary B∂  of normal n :

B

B

= − +

= ⋅ ∂

j

j n

c s

j

˙ div  on

on

v v v

v v� (3.1)

Note that a source/sink term sv has been added to equation (2.15). This term is taken to be 
zero in the grain’s interior, as already stated, but can be active in the grain boundary region, 
as explained in section 4.1. The mechanical static equilibrium in the absence of volume forces 
is governed by:

σ

σ
∼ =

= ∼ ⋅ ∂

B

Bt n

div  0 on

on
� (3.2)

where σ∼ is the stress tensor and t the traction vector on B∂ .

3.2.  Constitutive equations

The small strain tensor, ε∼, is partitioned into four contributions

ε ε ε ε ε∼ = ∼ + ∼ + ∼ + ∼
⋆ − −c( ) ,e v in diff in disl� (3.3)

where

	 •	 ε∼
e is the elastic strain tensor,

	 •	 ε∼
⋆ c( )v  is the eigenstrain tensor due to the relaxation of the lattice around vacancies,

	 •	 ε∼
−in diff is the inelastic strain tensor due to inhomogeneous vacancy motion,

	 •	 ε∼
−in disl is the inelastic strain tensor due to dislocation motion.

The eigenstrain typically depends on the concentration, cv, as [4]

ε η ε∼ = ∼ − + ∼
⋆ ⋆c c c( ) ( )v v v v

ref ref� (3.4)
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Here, ε∼
⋆
ref is the eigenstrain tensor corresponding to the equilibrium concentration, c v

ref, and η∼
v 

defines the direction and magnitude of the surrounding atomic relaxation. The diffusion creep 

term, ε∼
−in diff, is the deviatoric part of (2.17)

⎛

⎝
⎜⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟⎟ε δ= −

∂
∂

+
∂
∂

−
∂
∂

− j

x

j

x

j

x
˙

1

2

1

3
.ij

i
v

j

j
v

i

k
v

k
v ij

in diff� (3.5)

Note that in previous work (e.g. [21, 26]), the diffusion-induced inelastic creep strain was 

accounted for using a power or exponential viscous flow rule, directly relating ε∼
−˙in diff to the 

deviatoric stress. In contrast, here, it is computed from the gradient of the diffusion flux. The 

inelastic strain rate tensor due to dislocation motion, ε∼
−˙in disl, can be expressed using the crys-

tal plasticity framework as,

∑ε γ∼ = ⊗ + ⊗
α

α α α α α− m n n m˙
1

2
˙ ( ) ,in disl

� (3.6)

where the superscript, α, denotes the slip system, γα˙  the crystallographic slip rate, αn  the slip 
system plane normal, and αm  the slip direction. The kinetic equation for the crystallographic 
slip rate, γα˙ , is expressed using a power law relation,

γ
τ

τ
τ=

−α
α α

αS
˙ sign( ) ,T

n

0
� (3.7)

where, τα, is the resolved shear stress, τ0 and n are material viscosity parameters, and αST  is the 
overall slip resistance. The latter is given by [21] :

∑λ ρ=α α

β
αβ

βS Gb h ,T� (3.8)

in which, λ, is a coefficient, G the shear modulus, bα the magnitude of the Burgers vector, ρα 
the overall dislocation density, and hαβ a dislocation interaction matrix expressed in terms of 
two coefficients, ω1 and ω2, as

ω ω δ= + −αβ αβh (1 ) .1 2� (3.9)

Note that, for simplicity, no direct coupling of diffusion with dislocation multiplication and 
annihilation is introduced in this work. The power law expression, (3.7), indirectly accounts 
for vacancy diffusion mediated climb processes. A more direct coupling was recently pro-
posed in [18] at a lower scale. A dependence of the diffusion coefficient on dislocation density 
could be introduced following, for instance, [27]. Finally, the evolutionary equation for the 
dislocation density reads [21]

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑ρ ρ ρ γ= −α

α
β

β α αC

b
K d˙ 2 | ˙ | ,p� (3.10)

where C, K and dp are material hardening parameters. The Helmholtz free energy density is 
assumed to be composed of a mechanical and a chemical part:

ε εψ ψ ψ∼ = ∼ +c c( , ) ( ) ( ) .v e e vmech chem� (3.11)
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The mechanical part of the free energy is defined as,

ε ε εψ Λ∼ = ∼ ≈ ∼( )
1

2
: : ,e e emech� (3.12)

where, Λ
≈

, is the fourth order elasticity tensor, taken independent of cv for simplicity. The 
chemical free energy density is expressed in a standard form as [28],

ψ = + + − −c
E

c
RT

c c c c( )
Ω Ω

( log( ) (1 ) log(1 ))v f v v v v vchem

0 0
� (32)

where, T, is the absolute temperature, R the ideal gas constant, E f  the vacancy formation 
energy, and Ω0 the volume per mole of atoms. The state laws are given according to [29] :

σ
ε

εψ Λ∼ = ∂
∂∼

= ≈ ∼: ,
e

e� (3.14)

η σμ ψ= ∂
∂

− ∼ ∼c
: ,

v
v� (3.15)

where μ is the diffusion potential. The vacancy flux is defined as

μ∇= −∼ ⋅j L c( ) ,v v� (3.16)

with the mobility, ∼L
v, expressed as

∼ = − ∼L D
RT

c c
Ω

(1 ) .v v v v0
� (3.17)

Here, ∼D
v, is the generally anisotropic diffusivity tensor [25].

4.  Simulation of diffusional creep in a polycrystalline aggregates

4.1.  Grain boundary description

The driving force for diffusion is the gradient of diffusion potential, defined by (3.15). 
According to Herring’s theory, the inhomogeneity in the diffusion potential is introduced 
by the grain boundaries, and thus here they will be modeled explicitly. In 2D, the simplifica-
tion is made that each grain can be described by a single orientation, θ, defined with respect 
to an arbitrary reference configuration [30]. A stationary phase-field, ϕGB, is introduced to 
interpolate physical properties between their bulk and grain boundary values. It is arbitrarily 
expressed as the following explicit function,

⎛

⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟
⎞

⎠
⎟ϕ

δ
= ×

−

d
r d

( ) cosh
2

,GB
GB

GB

1

� (4.1)

where, δGB, is the grain diffuse boundary thickness and, d, the distance from any 
point to the closest grain boundary. Also, the coefficient rGB  =  5.3 is chosen so that 

ϕ ϕ= =δ δ−( ) ( ) 0.01GB
2

GB
2

GB GB

, thus defining the diffuse interface thickness. Furthermore, 

a second stationary phase-field function, θ, is relied upon in order to represent the grain 
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orientation to be used in the crystal plasticity model. This orientation field function varies 
smoothly between two grains of orientation θ1 and θ2, and is described by the following 
function,

⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥θ θ θ

δ
θ= − − − +d

d
( ¯)

1

2
( )  1 tanh

2.94 ¯
,1 2 GB 2� (4.2)

where, d̄, is the algebraic distance to the grain boundary, negative in the grain oriented along 

θ1 and positive in the grain with orientation θ2, such that θ = θ θ+(0)
2

1 2, θ (−∞)  =  θ1 and θ 

(+∞)  =  θ2. Both ϕGB and θ fields are shown in figure 3. Note that the interpolation equa-
tion (4.2) induces discontinuities in the θ field within the grains if more than two grains are 
considered. An equilibrium orientation field generated by a phase field type model, as done 
in [20, 31], would be preferable. We have verified that this choice (4.2) does not significantly 
affect the crystal plasticity results presented in section 4.3.3 by comparison with computa-
tions based on a uniform lattice orientation in each grain as done usually in standard crystal 
plasticity simulations.

The value of θ within each grain has been generated randomly. The diffusivity tensors are 
expressed as:

ϕ ϕ∼ = − ∼ + ∼

∼ = ∼

∼ = ∼ − ⊗

D D D

D I

D I n n

D

D

(1 )

( )

v v v

v v

v v

GB
bulk

GB
GB

bulk bulk

GB GB

� (4.3)

In the above relation, the grain boundary normal is computed numerically using = θ
θ

∇
∇n . 

Furthermore, the parameter η∼
v is chosen such that the Herring diffusion potential formula is 

recovered,

η ϕ η ϕ η∼ = − ∼ + ⊗I n n(1 ) .v v vGB ,bulk GB ,GB� (4.4)

Figure 3.  Periodic 2D polycrystal aggregate used in the simulations. The window 
size varies in the simulations from 20 to 200 µm. The edges of the Voronoi cells are 
superimposed to the fields. (a) Grain orientation field θ, generated randomly. (b) Grain 
boundary field ϕGB.

(a) (b)
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The coefficients ηv,bulk and ηv,GB are expressed as:

η η= Δ = Δv v

3Ω
,

3Ω
,v

v
v

v
,bulk

,bulk

0

,GB
,GB

0
� (4.5)

where, Δvv,bulk and Δvv,GB are, respectively, the bulk and grain boundary relaxed volume 
around a vacancy, and Ω0 is the atomic volume. With this definition, the diffusion potential, 
(3.15), becomes:

⎜ ⎟
⎛
⎝

⎞
⎠ σμ η ϕ η σ ϕ= +

−
− ∼ − −

E RT c

cΩ Ω
log

1
trace ( )(1 )   ,v f

v

v
v v

n
0 0

,bulk GB ,GB GB
�

(4.6)

where, σσ = ∼ ⊗n n:n  is the normal GB traction. The above expression for the diffusion 
potential, μv, can be compared to the formula derived by Herring in [1]:

μ μ μ− = − p Ω ,h zz0 0� (4.7)

where (μ  −  μh) is the diffusion potential, μ0 is defined by Herring as ‘the chemical potential 
of [ … ] the same substance in equilibrium at the same temperature and at zero stress’, pzz 

the normal surface traction, and = δ
δ

Ω v

N0  the atomic volume corresponding to the addition/

removal of δN atoms causing a change in volume, δv. Albeit the physical unit difference 
(Herring used a flux in atoms per unit area per unit time), one can observe that the diffusion 
potential derived in (4.6) contains the same terms. Using (3.15), the gradient of the diffusion 
potential becomes:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟

η
σ

ε ε
η εμ ψ

ϕ
ψ
ϕ

ϕ ψ∇ ∇ ∇ ∇= ∂
∂

+ −
∂∼

∂ ∼ + ∂
∂ ∂

+ − ∂
∂∼ ∂∼ ∼ ∼c

c
c

  : : : ,v
v

e e
v

2

2 GB

2

GB
GB

2

�

(4.8)

and it is readily seen that any mechanical loading of the grain boundaries will give a non-zero 
diffusion potential gradient, leading in turn to a creep deformation via (2.17).

It is commonly accepted that grain boundaries, and interfaces in general, act as sources and 
sinks for point defects [19, 32, 33]. Grain boundaries are also known to interact with disloca-
tions [34, 35], but this coupling is not taken into account in the present work. In what follows, 
two modelling options will be explored. First, a Dirichlet boundary condition imposing the 
equilibrium concentration of vacancies in the grain boundary region will be used, as done in 
[8]. Second, an additional source term in the diffusion equation (2.15) needs to be defined 
such that the grain boundary vacancy concentration is always close to its equilibrium value, 
as per [5, 36]. Then,

ϕ= − − −jc K c c V˙ div  ( ) on ,v v v v
sv
GB

eq
,GB GB� (4.9)

= ⋅ ∂j nj Von .v v� (4.10)

Even though conservation of lattice sites has been assumed in the bulk material, this does not 
hold in the grain boundary regions, which act as preferential location for vacancy creation and 
annihilation [32]. It is supposed that the site creation/destruction rate, ṅ#, see equation (2.11), 
is related to the vacancy source term, nsv, as illustrated in figure 4.

As an example, first consider the case of a grain boundary acting as a sink for vacancies. 
Vacancies that migrate toward this grain boundary will eventually reach the last lattice sites 
located on the grain boundary surface itself. In a random grain boundary region, this row of 
lattice sites simply vanishes, thus producing a deformation at this grain boundary. Second, the 
exact inverse process happens at grain boundaries acting as sources: atoms at the surface will 
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create a hump and leave a vacancy in the sites that they previously occupied. This process is 
repeated until a whole new row of lattice sites is created. Hence, matter is transported from 
the GB that acts as a vacancy source, and which thickens in the process, toward the one acting 
as a sink, which shrinks. In [10] section 7.1, Mishin and co-workers comments their model, 
stating that ‘Vacancies can be generated only within the GB region and only by the growth or 
dissolution of lattice planes parallel to the GB’. Due to the fact that the molar quantity being 
absorbed or emitted by the grain boundary is known from (4.9), it is possible to take into 
account this additional phenomenon by completing the creep rate (3.5) in the grain boundary 
region, to distinguish between bulk processes and grain boundary processes, as:

ε δ ϕ η ϕ= −
∂
∂

+
∂
∂

−
∂
∂

− + −−
⎛

⎝
⎜⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟⎟

j

x

j

x

j

x
K c c n n˙

1

2

1

3
(1 ) ( ) .ij

in diff i
v

j

j
v

i

k
v

k
v ij

v v v
i j

GB ,GB
sv eq

GB
�

(4.11)

In [5], the same boundary process has been proposed and derived. However, as emphasised by 
the authors, this leads to creep strain accumulation only in the grain boundary regions. In the 
present work, viscoplastic strain is also introduced in the bulk part of the grain.

Grain boundary sliding and opening are additional important deformation modes when 
considering creep deformation and damage. However, they are not incorporated in the 
presented simulations for the sake of simplicity. They can be added in the finite element  
simulations using the theoretical and computational methodologies such as those described in 
the references [37–39]. However, these processes involve strongly non-linear local material 
responses and lead to high computational costs.

4.2.  Problem description

To illustrate the proposed theory, a simplified copper polycrystal made up of periodic 2D 
hexagonal grains is constructed, see figure 3. Creep simulations are conducted at 830 K, and 
compared with experimental data from [23, 40], and to the well known analytical solution for 
Herring-Nabarro creep [19], namely

ε σ= BD c

d kT
˙

Ω
,

v v L

g

0
2� (4.12)

where, dg, is the grain size, B, a geometrical factor (here taken equal to 2), σL, the applied 
stress, and k the Boltzmann constant.

Figure 4.  Mechanism for vacancy diffusion creep in a grain boundary region: (a) 
vacancies diffuse in the grain boundary vicinity, (b) when they reach the grain boundary 
surface, they destroy lattice sites, and (c) the grain boundary region shrinks as a result.

(a) (b) (c)
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The material parameters for copper are given in tables  1 and 2. The self-diffusion 

coefficient is expressed classically as = = −( )D D c D expv v v Q

RT0
a
v

. An equi-axial stress 

σ σ= ⊗ − ⊗
∼

e e e e( )L
y y x x  is applied, of magnitudes ranging from 1 to 160 MPa, and for 

10–100 µm grain sizes. The model is implemented into the finite element method, using the 
methodology described in [41 and 29]. The numerical implementation was carried out in the 
Z-set code [41], using a Newton resolution implicit scheme of the balance equations and a 
fourth order Runge-Kutta method with automatic time-stepping for the time integration of 
constitutive equations. In the calculation of the diffusion potential gradient, (4.8), the gradient 
of the total strain tensor is needed. Therefore, the total strain is interpolated from the Gauss 
points to the nodes using the shape functions, and its gradient computed via the derivatives of 
the shape functions. The same technique is used to compute the gradient of the vacancy flux 
vector. It should be noted that this method is identical to the one used by Thomas and Chopin 
[42], Abrivard et al [20], and Villani et al [29].

4.3.  Results

Three cases are presented, where the proposed deformation mechanisms are progressively 
incorporated in the simulations. Two different boundary conditions in the GB region, either 
Dirichlet or Ksv sink term, are used. The GB is hence modelled as a perfect or potentially 
imperfect sink, respectively. While the Dirichlet condition is straightforward to use, the sink 
term formulation offers more flexibility in the modelling, provided the sink parameter Ksv is 
carefully chosen.

In the first case, Dirichlet boundary conditions are used, and the only viscoplastic contribu-
tion is the inelastic diffusional one, (3.5). In the second case, grain boundary deformation is 
accounted for, by mean of the constitutive equation, (4.11), and the extended vacancy balance 
law, (4.10). Finally, the two inelastic deformation mechanisms, (3.5) and (3.6), are taken into 
account in order to compare the numerical predictions with experimental data available in [23] 
for pure copper. Dirichlet boundary conditions are used in this last case.

All simulations have been carried out on the same polycrystalline aggregate, see figure 3. 
Periodic boundary conditions are imposed on the vacancy concentration field cv, and the 
four external surfaces are constrained to remain flat. In all plots, the x and y coordinates are 
given in µm.

Table 1.  Material parameters for copper.

C11 [GPa] C12 [GPa] C44 [GPa] Tm [K] D v
0 [m2.s−1]

179.5 126.4 82.5 1360. 3.4  × 10−5

Qa
v [J.mol−1] Ef

v [J.mol−1] ηv,GB ηv,bulk

2.0  × 105 1.225  × 105   −  0.05 0

Note: The properties are supposed to be the same in the grain boundaries as in the bulk for 
simplicity, except for the coefficient ηv, see (4.4).

Table 2.  Parameters of the crystal plasticity model for pure copper.

τ0 [MPa] n λ [21] G [MPa] [21] bα [nm] [21] ρα
=t 0 [μ m−2]

200 4 0.3 45 000 0.257 3.2  × 104

ω1 [21] ω2 [21] C [21] K [21] dp [µm] [21]
1.5 1.2 0.5 1.4135  × 10−2 10−3
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4.3.1.  Case study one: Dirichlet conditions at the grain boundaries.  In this case, cv  =  cv
eq 

is imposed on the FE node lines corresponding to the grain boundaries, where ϕGB  =  1. In 

(4.11), Ksv is taken to be equal to 0 and, except for η∼
, the bulk and grain boundary properties 

are chosen to be the same in this section. For this first case, a first simulation is performed 
using isotropic elasticity: the symmetry in the geometry is visible in the resulting fields shown 
in figure 5. When the stress is applied, the diffusion potential value is modified depending on 
the grain boundary orientation. It reaches an extremum when the GB surface normal is paral-
lel to one of the principal stress directions, according to (3.15), see figure 5(a). The equiva-

lent inelastic strain, defined as ε εε = ∼ ∼
− − −:eq

in diff 2

3
in diff in diff , is shown on figure 5(c). Stress 

concentration effects are observed close to the grain boundary triple junctions in the case of 
elastic isotropy. Elastic anisotropy, shown in figure 6, leads to stronger heterogeneities, greater 

Figure 5.  (a) Diffusion potential, (b) vacancy distribution, (c) inelastic strain and (d) 
equivalent Mises stress in the case of Dirichlet boundary conditions, with an applied 
stress of 80 MPa and a 25 µm grain size, and for isotropic elasticity. The mechanical 
effect on the diffusion potential is clearly visible in (a): the location of each grain 
boundary is revealed by a different diffusion potential value, depending on the GB 
orientation. (a) Diffusion potential μ immediately after the application of the stress. 
(b) Vacancy distribution normalised by cv

eq at steady state. (c) Equivalent diffusional 
inelastic strain (t  =  5  × 103 s). (d) Equivalent Mises stress in MPa (t  =  5  × 103 s).
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values of peak stresses, and breaks the hexagonal symmetry observed in the isotropic case. 
The strong stress and strain concentrations occuring at the triple junctions are due to increas-
ing strain incompatibilities. Stress concentration regions lead generally to numerical conver-
gence problems. Introduction of grain boundary sliding and opening, not done in the present 
modelling approach, would relax such stresses. Triple junctions are known to be responsible 
for cavity nucleation and subsequent damage, see [19].

The average macroscopic strain rate versus stress, and versus grain size on the other hand, 
are reported on figures 8(a) and (b), respectively. The model correctly predicts the strain rate 
scaling with respect to stress and grain size, i.e. ε σ= −f d˙ ( , )g

2 , and the overall strain rate is of 
the same order of magnitude as the one given by the analytical expression, (4.12). In order for 
the simulations to coincide with the analytical solution, the vacancy diffusivity coefficient has 
to be scaled up by a factor 7, which seems reasonable, since it is well within the experimental 
uncertainty. Finally, it should be pointed out that the simulations were carried out using two 

Figure 6.  (a) Diffusion potential, (b) vacancy distribution, (c) inelastic strain and (d) 
equivalent Mises stress in the case of Dirichlet boundary conditions, with an applied 
stress of 80 MPa and a 25 µm grain size, and for anisotropic elasticity. (a) Diffusion 
potential μ immediately after the application of the stress. (b) Vacancy distribution 
normalised by cv

eq at steady state. (c) Equivalent diffusional inelastic strain (t  =  5  × 103 
s). (d) Equivalent Mises stress in MPa (t  =  5  × 103 s).
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different meshes, one with 10 000 quadrangular quadratic elements, and the other with 98 000 
triangular linear elements. No significant mesh sensitivity was found in the results.

4.3.2.  Case study two: Source term in the grain boundaries.  In this case, the Dirichlet bound-
ary condition is dropped, and instead, the source strength parameter Ksv in (4.9) is set to a non-
zero value and isotropic elasticity is used. In order to determine Ksv, a 1D case of two grains 
separated by a grain boundary is studied. First, a Dirichlet boundary condition on the grain 
boundary FE nodes is applied, as in the previous case. Then, the same problem is solved again, 
removing the Dirichlet condition and setting Ksv to be non zero at the grain boundary. The 
parameter Ksv is then chosen such that the concentration profiles given by both approaches are 
matched. For the range of grain sizes considered in this work, Ksv was found to be of the order 
of twice the vacancy diffusivity, Dv,bulk.

The grain boundary thickness, δGB, was kept constant and equal to 4 µm across the range 
of simulated grain sizes, and the mesh was constructed in such a way that there were always 

Figure 7.  (a) Inelastic equivalent strain, (b) inelastic equivalent strain rate, (c) vacancy 
distribution and (d) diffusion potential μ in the case of a source term at the grain 
boundary, with an applied stress of 80 MPa and a 25 µm grain size, and for isotropic 
elasticity. (a) Equivalent diffusional inelastic strain (t  =  5  × 103 s). (b) Equivalent 
diffusional inelastic strain rate at steady state. (c) Vacancy distribution normalised by 
cv

eq at steady state. (d) Diffusion potential μ(t  =  5  × 103 s).
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at least 5 elements in the grain boundary region. The grain boundary thickness was chosen 
as a compromise between reality (a dozen Burgers vectors) and tractable computations. The 
grain boundary volume fraction was hence taken to vary between 0.2 and 2.2  × 10−2 for the 
considered range of grain sizes.

The simulated fields are shown in figure 7 for the case of a 25 µm grain size and a 80 MPa 
applied stress. One can notice that in figure 7(a) deformation also accumulates in the grain 
boundary regions, minimizing the triple junction effect. Furthermore, despite the fact that the 
parameter Ksv was fitted with a 1D case, the steady state vacancy concentration in the grain 
boundary region in figure 7(c) is not exactly equal to cv

eq. Instead, grain boundaries with σn  >  0 
have a lower vacancy concentration, and those with σn  <  0, a higher one. However, the strain 
rate dependence on grain size is more strongly impacted when a source term is considered in 
the grain boundary, as it can be seen from figure 8(b).

4.3.3.  Case study three: Dirichlet conditions at the grain boundary and crystal plasticity.  In 
this last case, both inelastic deformations arising from vacancies diffusion, (3.5), and disloca-
tion slip, (3.6), are taken into account. Dirichlet boundary conditions are used on the grain 
boundary nodes, and a value of Ksv  =  0 is assumed. Anisotropic elasticity is used, and the 
parameters of the crystal plasticity model are given in table 2 for copper. Some are taken from 
the literature, as indicated in the table, and the other ones have been chosen so that the transi-
tion between the dislocation and diffusion regimes matches the experimental results presented 
in [23]. Hence, here the imposed stress is made to vary between 1 and 20 MPa.

The resulting strain and strain rate fields are shown on figure 9 for the 20 MPa case. Here, 
the dislocation regime is predominant, and the diffusional inelastic strain is strongly impacted 
by the slip activity. There are several differences to be observed between the purely diffusional 
case (figure 5) and the coupled case (figure 9), while bearing in mind that the stress level is 
different. Even though the vacancy distribution is similar, the maximum values are greater 
when crystal plasticity is considered. The same trend is observed for the diffusional field: 
the overall field is similar, but the strain rate is accelerated by dislocation induced plasticity 
despite the fact that the applied stress is four times smaller. Indeed, the inhomogeneities in the 
stress field arising from dislocation plasticity promote diffusion, and hence, diffusional creep. 

Figure 8.  Comparison between the macroscopic Herring-Nabarro creep law and 
finite element simulations results using Dirichlet boundary conditions and sink term. 
According to the analytical solution, (4.12), the slopes in figures (a) and (b) should be 
1 and  −2, respectively. (a) Strain rate dependence on stress. (b) Strain rate dependence 
on grain size.

(a) (b)
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Stress concentration is observed at some grain boundaries in figure 9(f), which is known from 
results of crystal plasticity finite element simulations [15].

Finally, the strain rate dependence on the applied stress is reported in figure  10. There 
are two visible regimes in this figure. At lower stress, diffusional deformation mechanisms 
dominate over slip activity, whereas the latter dominates for high applied stresses. This is in 
relatively good agreement with [23], albeit the value of the slope in the dislocation regime, 
which is greater in the simulations.

4.3.4.  Discussion.  The model predicts one order of magnitude lower strain rate in the diffu-
sion regime, which can be explained by the fact that at low homologous temperature (≃ 0.6 
Tm), grain boundary diffusion plays an important role. The grain boundary and bulk diffusion 
coefficients were assumed equal in the simulations, which is not necessarily the case in fcc 
materials. This may explain the lower average strain rate obtained numerically, compared to 
experimental data.

The value of the sink parameter, Ksv, was found to strongly influence the strain rate as 
well as the strain rate sensitivity to grain size. The value of this parameter, although critical, 

is not given in [5] (where it is actually called 
τ )1 . In this work, the sink parameter, Ksv, has 

been fitted from the results of a 1D simulation using Dirichlet boundary conditions. This 
approach, although very sensitive to the value of this parameter Ksv, is also capable of describ-
ing Herring-Nabarro creep. Furthermore, if one were to extend the proposed formalism to 
include migrating grain boundaries or void nucleation and growth, using for instance a phase-
field approach [10, 36], the Dirichlet formulation would not be applicable. Indeed, some nodes 
that were once in a grain boundary region could, after grain boundary migration, be located 
in the bulk. In addition, voids, where cv  =  1, would be impossible to model, since a Dirichlet 
boundary condition would impose = ≪c c 1v v

eq .
As pointed out above, the parameter Ksv has a significant influence on the strain rate and on 

the strain rate dependence on grain size, as shown in figure 8(b). Keeping the grain boundary 
width fixed, for an increasing value of Ksv, the overall strain rate increases since the contribu-
tion of the grain boundary increases as per (4.11), but the log(grain size)-log(strain rate) slope 
decreases. In contrast, for a decreasing Ksv, so does the macroscopic overall strain rate, but 
the slope increases.

Finally, the grain boundary width was reduced to 2 µm, as the GB region is expected to be 
of notable influence on the mechanical behavior [35]. Note that, in order to obtain realistic 
results, Ksv had to be multiplied by a factor ten compared to the 4 µm case. The dependence on 
the grain size is shown on figure 11, for the case of a 2 µm grain boundary width.

In the Case Study 3, a slip rate exponent, n  =  4 in equation (3.7), was used, as it is a reason-
able value for dislocation creep and close to that of 4.5 found experimentally in [23]. When 
there is no hardening, no slip threshold and no diffusion creep, the macroscopic response of 
the simulated polycrystal exhibits a slope of 4. In the present case, as a consequence of work 
hardening, the global response is more complex and different apparent exponent values are 
obtained, as it is well known when modelling creep in metals [41, 43].

5.  Conclusions

A framework to model diffusion creep in polycrystals has been proposed, where individual 
grains and grain boundaries are explicitly modelled. It has been pointed out that, in the pres-
ence of diffusion, the material point definition should be handled with care, as material lines 
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drawn on the solid become blurred as diffusion occurs. Nevertheless, it is still possible to 
define and quantify a strain field in such cases, as long as moderate diffusion and relatively 
small concentration of vacancies are considered. It has been demonstrated that:

Figure 9.  Inelastic (a) diffusional strain, (b) diffusional strain-rate, (c) dislocation 
strain, and (d) dislocation strain-rate, and (e) vacancy concentration and (f) equivalent 
Mises stress (applied stress of 20 MPa, 25 µm grain size and at t  =  103 s). (a) Equivalent 
diffusional inelastic strain. (b) Equivalent diffusional inelastic strain rate. (c) Equivalent 
dislocation inelastic strain. (d) Equivalent dislocation inelastic strain rate. (e) Vacancy 
concentration normalised by cv

eq. (f) Equivalent Mises stress in MPa.
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	 •	Simple considerations of atom and vacancy motion have led to the definition of an 
inelastic diffusional strain rate on a perfect lattice, which has been related to the gradient 
of the vacancy flux.

	 •	In order to retrieve the well known Herring diffusion potential formula, one has to define 
an anisotropic eigenstrain within the grain boundary regions, related to the normal of the 
grain boundary surface. Hence, any mechanical loading applied to the polycrystal directly 
induces vacancy motion, which, in turn, leads to creep strain.

The proposed diffusion induced deformation mechanism has been enriched by a classical 
crystal plasticity constitutive framework to account for the effects of dislocation creep. The 
framework has been implemented in a finite element model, with a detailed description of 
grain boundaries geometry and properties. The simulations that have been carried out show 
that:

Figure 10.  Strain rate dependence on stress. Data taken from [23].

Figure 11.  Comparison between the macroscopic Herring-Nabarro creep law and the 
finite element simulations results using a source term in the grain boundary of width 2 
µm. According to (4.12), the slopes predicted analytically have a value of  −2. (a) Strain 
rate dependence on grain size. (b) Strain rate dependence on grain size, ignoring grain 
boundary deformation process.
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	 •	Strong heterogeneities are obtained at the intragranular level, especially at triple junc-
tions.

	 •	Anisotropic elasticity and dislocation induced plasticity promote the diffusion of vacan-
cies and lead to higher diffusional strain rates, by developing stress gradients in the 
polycrystal.

	 •	Classical macroscopic strain rate dependence on stress and grain size, that is ε σ= −f d˙ ( , )g
2 , 

are obtained, when using Dirichlet boundary conditions in the GB region. The use of a 
sink term also leads to a consistent macroscopic trend.

	 •	The model predicts a smooth transition from diffusion dominated to dislocation dominated 
regime, depending on the applied stress level, as observed experimentally for copper [23].

Direct coupling between vacancy diffusion and dislocation climb was recently introduced 
in [18]. The continuum model presented therein could be complemented by the effect of the 
vacancy flux gradient in a straightforward manner. The proposed modelling framework is 
capable of reproducing Coble creep by properly choosing the diffusion parameters in the bulk 
and in the grain boundary regions. Furthermore, grain boundary sliding and damage are nec-
essary mechanisms to be added to the present model to obtain a realistic description of creep 
mechanisms at the continuum polycrystalline level. The complete approach, incorporating the 
competing mechanisms of bulk and grain boundary diffusion, remains a challenging task and 
should be the objective of future work.
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