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a b s t r a c t

Two recently proposed Helmholtz free energy potentials including the full dislocation
density tensor as an argument within the framework of strain gradient plasticity are used
to predict the cyclic elastoplastic response of periodic laminate microstructures. First, a
rank-one defect energy is considered, allowing for a size-effect on the overall yield
strength of micro-heterogeneous materials. As a second candidate, a logarithmic defect
energy is investigated, which is motivated by the work of Groma et al. (2003). The
properties of the back-stress arising from both energies are investigated in the case of a
laminate microstructure for which analytical as well as numerical solutions are derived. In
this context, a new regularization technique for the numerical treatment of the rank-one
potential is presented based on an incremental potential involving Lagrange multipliers.
The results illustrate the effect of the two energies on the macroscopic size-dependent
stress–strain response in monotonic and cyclic shear loading, as well as the arising pile-up
distributions. Under cyclic loading, stress–strain hysteresis loops with inflections are
predicted by both models. The logarithmic potential is shown to provide a continuum
formulation of Asaro's type III kinematic hardening model. Experimental evidence in the
literature of such loops with inflections in two-phased FFC alloys is provided, showing
that the proposed strain gradient models reflect the occurrence of reversible plasticity
phenomena under reverse loading.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Many industrial projects require systematic and efficient methods in order to miniaturize systems and design new
material micro-structures successfully. Therefore, there is an increasing need for micro-mechanical material models. In this
context, size effects are of particular importance. These are not captured by classical plasticity theories which do not possess
an internal length scale.

This deficiency has motivated the mechanical community to enhance the classical constitutive equations. In particular,
additional microstructural information is taken into account. In most cases, the kinematical framework is extended by
plastic strain gradients. This choice is motivated by the correlation between size effects and plastic inhomogeneity, ex-
perimentally observed and predicted by dislocation mechanics (Hall, 1951; Petch, 1953; Stölken and Evans, 1998; Xiang and
Vlassak, 2006; Gruber et al., 2008; Groma et al., 2003; Mesarovic et al., 2010, 2015).
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Plastic deformation gradients can be interpreted physically because they define geometrically necessary dislocations
(GNDs, see Ashby, 1970). GNDs represent the effective (or net) Burgers vector of the underlying dislocation network. In other
words, the presence of GNDs is associated with the incompatibility of the mesoscopic plastic distorsion.

Extending the kinematical plasticity framework by GNDs has a major advantage: it renders the introduction of additional
field variables obsolete.1 However, the geometrical description of GNDs is not unique. For example, they may be represented
by scalar edge and screw densities. These are defined for each slip system and interact through constitutive models (e.g.
Gurtin et al., 2007).

Alternatively, the kinematical extension may be based on the full dislocation density tensor (Nye, 1953; Kröner, 1958). In
this case, the interaction is implicitly defined (although little is known about the accuracy of this approach). The advantage
of this pragmatic approach is to limit the number of additional degrees of freedom introduced in the theory and in its
computational treatment. The present contribution is based on formulations involving the full dislocation density tensor
because they are amenable to intensive 3D finite element simulations, in contrast to GND density based models which are
much more demanding in terms of degrees of freedom and specific interface conditions at grain boundaries. This is a
restrictive approach from the physical point of view but it already contains essential physical features of strain gradient
crystal plasticity as demonstrated for instance in the works by Cordero et al. (2012) and Wulfinghoff et al. (2013a). However
several aspects of the proposed analysis are applicable to GND density based theories. Phenomenological formulations
based on the introduction of the dislocation density tensor are known to give rise to a backstress associated with kinematic
hardening, as derived from continuum thermodynamics (Steinmann, 1996; Forest, 2008).

The extension of the kinematical framework allows for the desired modification of the constitutive model. Often, new
generalized stresses are introduced, which are conjugate to the additional kinematical quantities (i.e. the gradients) in the
power of internal forces. This usually implies extra balance equations (and associated boundary conditions) in addition to
the linear momentum balance.

The system of equations must be closed by new constitutive bulk and interface models. This may be achieved by
modeling the impact of strain gradients on the bulk energy density, for example. Usually, this is related to a backstress,
which appears as an additional term in the flow rule.

Physically, the introduction of additional energy density terms may be motivated by the incompleteness of the con-
tinuum theory. Clearly, the continuum description does not contain the full information on the discrete dislocation mi-
crostructure. In particular, single dislocations are not resolved. Instead, the continuum representation may be interpreted as
a smoothed version of the real system, where information is lost deliberately. Clearly, there is no reason to assume that the
total elastic energy of the continuum representation coincides with the elastic energy of the real system including discrete
dislocations. This is due to the loss of information as a result of the smoothing procedure (Mesarovic et al., 2010). Additional
energy terms in gradient plasticity may therefore be interpreted as an attempt to partially compensate the error in the
continuum elastic energy. This is done by taking into account available kinematical information on the dislocation micro-
structure as additional argument of the energy.

The optimal form of the energy is subject of current research. Typical models often involve internal length scale para-
meters. These are normally assumed to be additional material constants (usually without further physical interpretation).
Most applications are based on a pragmatic quadratic approach (e.g. Cordero et al., 2012; Reddy et al., 2012; Wulfinghoff and
Böhlke, 2012; Miehe et al., 2013 Wulfinghoff et al., 2013a,b).

However, the microstructure of a crystal is essentially determined by dislocations. Consequently, no microstructural
feature justifies the internal length scale to be fixed. Instead, a more reasonable approach seems to be based on a variable
internal length scale as a function of the dislocation state (Groma et al., 2003; Mesarovic et al., 2010).

The quadratic form was recently shown to provide physically unrealistic scaling in the size-dependent response of la-
minate microstructures under shear (Cordero et al., 2010; Forest and Guéninchault, 2013). Since quadratic forms are unusual
in classical dislocation theory, alternative free energy potentials were proposed in the past ten years. Rank-one energies that
are linear with respect to the GND densities have been shown to lead to a size-dependent yield stress in certain situations.
Additionally motivated by line tension (and more elaborate) arguments, they are used by several authors (Ortiz and Repetto,
1999; Conti and Ortiz, 2005; Ohno and Okumura, 2007; Kametani et al., 2012; Hurtado and Ortiz, 2013).

Asymptotic methods can be used to derive alternative effective potentials for distributions of edge dislocations. The
asymptotic derivation of a logarithmic potential by De Luca et al. (2012) accounts for line tension effects at the macroscopic
scale. Systematic derivations of backstress distributions were derived in Geers et al. (2013) by means of asymptotic methods.

The choice of a logarithmic energy is inspired by the statistical theory of dislocations of Groma et al. (2003, 2007) and
Berdichevsky (2006). Here, the internal length scale of the backstress is determined by the dislocation microstructure (see
also Svendsen and Bargmann, 2010; Forest and Guéninchault, 2013). In the latter reference, the rank one and logarithmic
formulations were applied to strain gradient plasticity theories involving the full dislocation density tensor instead of the
individual GND densities. The constitutive equations were derived and specified in the case of laminate microstructures.
However, no analytical or numerical results were provided to solve the laminate problem.
1 It should be noted that this framework does not fully represent the dislocation-microstructure (like any continuum theory). Additional sources of size
effects are not included (e.g. lack of sources, dislocation line curvature effects). Moreover, the application of continuum theories in the micro-regime is
often questionable, when the number of dislocations is limited.
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The objective of the present work is to investigate the mechanical response of ideal laminate microstructures endowed
with strain gradient plasticity properties involving rank one or logarithmic energies. New analytical and numerical solutions
are provided in the case of cyclic shear of the periodic laminate. Unusual Bausching effects are predicted that are confronted
to experimental evidence from the literature.

The analysis is limited to a laminate material with a single slip system in Section 3, subsequent to the discussion of the
general model in Section 2. Analytical and numerical solutions of the laminate shear response are evaluated in order to
understand the size-dependence of the overall hardening and yield stress. In addition, the scaling behavior, the form of the
dislocation pile-ups and the cyclic loading response are discussed.

The logarithmic energy has irregular properties (non-convexity, non-differentiability). Therefore, a regularized energy is
proposed that allows for an interesting physical interpretation. For a long time, it is known that nonconvex potential
functions favor the coexistence of different material states or phases in equilibrium. The coexistence ensures minimization
of the total potential. Prominent examples in classical thermodynamics and solid mechanics are droplets in vapor, bubbles
in a fluid and twinning. For single crystals, it has been shown by Ortiz and Repetto (1999) that the nonconvexity induced by
latent hardening with an off-diagonal dominant hardening matrix can imply a non-convexity favoring the development of
fine microstructures (see also, Ortiz et al., 2000). The approach by Ortiz and Repetto (1999) is in contrast to the classical
plasticity theory based on Drucker's postulate but preferable in the context of micromechanics. Here we prefer, however,
working with a convex energy density in order to analyze in a first step the overall composite behavior without additional
substructures in the ductile parts of the laminate.

The implicit numerical solution of the rank-one problem is non-trivial, since it is non-smooth and involves sub-differ-
entials. A new regularization technique for the algorithmic treatment of such non-smooth energies is proposed in Section 4.
The technique is based on an analogy of the numerical solution of standard plasticity (which is also based on sub-differ-
entials). It is formulated within a potential framework close to the one of Miehe (2011). Moreover, the numerical framework
uses features of the micromorphic theory of Forest (2009).

The dislocation density tensor is chosen as additional kinematical quantity. It does not necessitate dislocation density
interaction laws, requires less degrees of freedom and is equally defined for all crystal structures. The work is formulated in
the small deformation framework. It can be extended to finite deformation in a rather straightforward manner following
Aslan et al. (2011).

Notation: A direct tensor notation is preferred throughout the text. Vectors and 2nd-order tensors are denoted by bold
letters, e.g. a or A. The symmetric part of a 2nd-order tensor A is designated by Asym( ). A linear mapping of 2nd-order
tensors by a 4th-order tensor is written as A B[ ]= . The scalar product and the dyadic product of 2nd-order tensors are
denoted, e.g. by A B A Btr( )T· = and A B⊗ , respectively.
2. Two gradient plasticity models

The deformation of a body is subsequently described by the displacement field u and the displacement gradient

u e e H H Hu (1)x i i j
e p

j∇ = ∂ ⊗ = = +

with respect to an orthonormal basis e e e{ , , }1 2 3 . Here, He and Hp represent the elastic and plastic distorsions, respectively.
Analogously, the strain Hsym( ) e pε ε ε= = + is decomposed.

Additionally, the dislocation density tensor is introduced (Nye, 1953; Kröner, 1958):

H e eHcurl ( ) . (2)ijk x lj
p

l k
T p

iα = = ϵ ∂ ⊗

Here, ijkϵ denotes the permutation symbol.
The dislocation density tensor determines the net Burgers vector per unit area

b n ad , (3)A
∫ α=

where n represents the outer normal at the infinitesimal area element ad . Besides the Cauchy stress σ , additional gen-
eralized stresses s and M are introduced, which are in general nonsymmetric. These are second-order tensors being work-
conjugate to Hṗ and α̇ , respectively. The virtual power of this internal force system is assumed to be given by

⎜ ⎟⎛
⎝

⎞
⎠s H Mp v vd d ,

(4)int int
p∫ ∫ σ ε αδ δ δ δ δ= = · ̇ + · ̇ + · ̇

with usym( )εδ δ̇ = ∇ ̇ and Hcurl ( )T pαδ δ̇ = ̇ .
In the absence of volume forces, the virtual power of the external forces is given by

t u m Ha ad d ,
(5)ext

p

t m
∫ ∫δ δ δ= ¯· ̇ + ¯ · ̇

∂ ∂

where the integration domains represent Neumann-type boundaries with prescribed tractions t̄ and microtractions m̄. The
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evaluation of the principle of virtual power under static conditions,

, (6)int extδ δ=

gives, in combination with the chain rule and Gauss' theorem, the field equations at regular points

( ) s M0 0div , curl ( ) . (7)
Tσ = + =

In addition, the principle yields the following Neumann-type boundary conditions on t∂ and m∂

t n m Mn, , (8)σ¯ = ¯ = ^

with

n n e e e e e en n( )( ) . (9)ijk i j k l l ijk k i jϵ^ = − = − ϵ ⊗ ⊗ = − ϵ ⊗

The power density of the internal forces reads

s H Mp . (10)int
pσ ε α= · ̇ + · ̇ + · ̇

Up to this point, the theory is quite general, since it may be applied to single as well as polycrystal plasticity. In the following,
the work will focus on single crystal plasticity, where the plastic distorsion is given by the additional kinematical relation

H d n ,
(11)

p ∑ γ= ⊗
α

α α α

where dα and nα denote the slip directions and slip plane normals, respectively. The index α runs over all slip systems.
The equivalent plastic strain is defined by

td .
(12)

t

eq
0

∫ ∑γ γ= | ̇ | ˜
α

α

It is assumed that the volumetric stored energy density has the form

W W W W , (13)e g h= + +

with W ( ) [ ]/2e
p pε ε ε ε= − · − . The expressions Wh and Wg are assumed to be functions of ν̂ and α, respectively. Here,

( , , , )N1 2ν ν ν ν^ = … ν denotes a vector of internal history variables. The functions are assumed normalized, i.e., W (0) 0h
^ = and

W 0 0( )g = . Isotropic hardening is accounted for byWh, whileWg models size effects. The evolution of ν̂ is assumed to be given
by the rate-independent approach

f f( ) with ( ) 0.
(14)

∑ν ν γ ν̇ = ^ | ̇ | ^ ≥α
β

αβ β αβ

The functions fαβ determine which specific hardening model is applied. For example, if ( )eqν γ^ = , it follows that f 11 =β .
The work at hand investigates the following defect energies-

W cGb W c, ln ,
(15)g

1
g
ln

0
0

α α α
α

= ∥ ∥ = ∥ ∥ ∥ ∥

where c is a constant of order unity, G is the macroscopic shear modulus, b is the Burgers vector, 0α is a constant and c0 is
given by

c
Gb

2 (1 )
,

(16)
0

β
π ν

=
−

where ν is Poisson's ratio and β is of order unity (in this work 1β = ). The Euclidean norm of the dislocation density tensor is
defined as α α α∥ ∥ = · . More general isotropic approaches of the energy Wg may be represented in an irreducible manner in
terms of invariants of the dislocation density tensor, as discussed by Boehler (1977).

The rank-one energy Wg
1 can be motivated by simple line tension arguments as follows. In many situations, the total

elastic energy of a real crystal is well represented by We. However, the stored elastic energy around dislocations seems to be
partially missing in We, since the regions close to the dislocation cores are not explicitly resolved in the continuum model. In
addition, one might assume that the respective energies of a set of statistically stored dislocations (SSDs) may be negligible,
since SSDs tend to form di- and multipoles. This implies a mutual screening of the individual stress fields and lower en-
ergies. Finally, it may be assumed that all other dislocation interactions are accounted for in We. Then, the remaining energy
that needs to be accounted for is the stored elastic energy around geometrically necessary dislocations. The associated
energy density is proportional to the amount of GNDs, since the interactions are assumed to be already represented by We.
This explains the form of Wg

1 in Eq. (15). For additional arguments see Ortiz and Repetto (1999) and Hurtado and Ortiz (2012,
2013).
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The logarithmic energy Wg
ln (Eq. (15)) is motivated by the form of the associated backstress (Forest and Guéninchault,

2013). It turns out that the approach Wg
ln leads to a backstress which is formally close to the one derived in the statistical

theory of Groma et al. (2003),2 given by

Gc
2 (1 ) (17)x

1 2
1π υ ρ
γ−

−
∂

for a single slip situation with slip direction e1. Here, ρ denotes the total dislocation density. In the two-dimensional single
slip regime, the backstress involves the Laplacian of the plastic slip, as postulated by Aifantis (1987). However, the internal
length scale is not interpreted as a material constant but determined by the dislocation microstructure, if Wg

ln is applied.
This point is discussed in detail in Section 3.2.1.

The subsequent sections investigate the features of the rank-one and logarithmic energies Wg
1 and Wg

ln , respectively.
Since the logarithmic energy is neither smooth nor convex, a regularization will also be discussed.

The stresses σ and M are assumed to be energetic, i.e.

MW W, . (18)σ = ∂ = ∂ε α

The dissipation inequality can be shown to be given by

p W q( sgn ( )) 0
(19)

int
eff∑ τ γ γ= − ̇ = − ̇ ̇ ≥

α
α α α α

with s d n( ) ( )eff στ = + · ⊗α α α and q f Wh= ∑ ∂α β αβ νβ . A possible flow rule, satisfying the dissipation inequality (19), is given by
the following power law:

q
sgn ( )

( )
.

(20)

p

eff
0

eff C

D
γ τ γ

τ τ

τ
̇ = ̇

| | − +
α α

α α

Here, Cτ is the initial yield stress, 0γ ̇ is a reference shear rate, p is the strain rate sensitivity and Dτ is a drag stress.
If the stored energy is not differentiable at 0α = , the symbol ∂ in Eq. (18)2 is interpreted as a sub-differential operator

(see, e.g., Han and Reddy, 2013), i.e.

M M MW{ : ( ) 0 }. (21)0 g α α α∈ − · ≥ ∀α=

This can be interpreted as follows. If the stress M is applied at a material point, α will take a value which minimizes the
expression MW ( )g α α− · . For small values of M , the minimum is given by 0α = . However, for sufficiently large values of M ,
the value of α can be determined from the stationarity condition M Wg= ∂α .

Example. If Wg is given by W cGbg
1 α= ∥ ∥, it follows that 0α = if

M W cGb( ) (22)g
1α α α α· ˜ ≤ ˜ = ∥ ˜ ∥ ∀ ˜

M M cGb . (23)α α α α⇔ · ˜ ≤ ∥ ∥∥ ˜ ∥ ≤ ∥ ˜ ∥ ∀ ˜

Hence, it is found that

⎧
⎨⎪
⎩⎪

M M M

M cGb

0{ : ( ) 0}, if

, else.
(24)

α
α
α

φ∈ ≤ =

=
∥ ∥

with M M cGb( )φ = ∥ ∥ − .

Remark. Note that the generalized stress M can be computed uniquely from α only if 0α ≠ . This makes analytical solutions
as well as the numerical implementation difficult. The same problem arises in rate-independent rigid plasticity, where the
stress can only be computed from the plastic slip rate if this is non-vanishing. Possible regularization techniques include the
introduction of small elastic strains or the approximation of the rate-independent model by, e.g., a power law with a large
rate-sensitivity. The introduction of elastic strains usually implies better convergence properties. Therefore, the work at
hand introduces an analogue regularization technique which will be discussed later.

Possible other numerical strategies concerning this problem are discussed in Kametani et al. (2012) as well as Hurtado
and Ortiz (2013).
2 Since Groma's work represents a two-dimensional single slip theory, this comparison is made for that situation.
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3. Shearing of a periodic laminate

In this section, the theory introduced in Section 2 is applied to an elasto-plastic laminate microstructure exposed to plane
strain (Fig. 1). Similar problems have been investigated by Cordero et al. (2010), Aslan et al. (2011) as well as Forest and
Guéninchault (2013). The laminate consists of periodic elastic (hard) and elasto-plastic (soft) layers. The widths of the hard
and soft layers are given by h and s, respectively. It is assumed that the plastic layer deforms in single slip with horizontal
slip direction d e1= and vertical slip plane normal n e2= , i.e. H e ep

1 2γ= ⊗ . Per definition, the plastic shear strain in the hard
phase is set to zero, 0γ = .

The dislocation density tensor (2) can be expressed in terms of the edge density x1ρ γ= − ∂⊢

e e . (25)1 3α ρ= − ⊗⊢

The quantity ρ⊢ represents the total Burgers vector amount per unit area of edge dislocations. Note that its unit (μm�1)
differs from the unit of the total line length per unit volume ρ, given by μm�2.

Subsequently, the unit cell in Fig. 1 (right) is considered. The origin of the coordinate system is located in the center of the
soft phase.

The shear deformation is assumed to be given by the following displacement field:

u e ex u x( ) . (26)2 1 1 2γ= ¯ + ˜

The deformation is driven by the macroscopic shear strain γ̄ (not to be confused with the average of γ).3

Since u x( )1˜ is a periodic fluctuation, the following relations have to be satisfied:

u x u xd 0, d 0.
(27)s

s h

s

s h

/2

/2
1

/2

/2
1∫ ∫˜ = ˜′ =

−

+

−

+

Henceforth, ( )• ′ denotes the derivative with respect to x1. From Eq. (26) and the definition of Hp, the displacement gradient
and elastic strain are found to be

H e e e eu x( ) (28)1 2 1 2 1γ= ¯ ⊗ + ˜′ ⊗

and

e eu( )sym( ), (29)e
1 2ε γ γ= ¯ + ˜′ − ⊗

respectively. The material is taken to be elastically isotropic and homogeneous, for the sake of simplicity. Therefore, Eq. (29)
implies that all stress components vanish, except for 12 21σ σ= . From the linear momentum balance x( ) 012 1σ ′ = (see Eq. (7)1),
it follows that the stress and the elastic strain are homogeneous
Fig. 1. Undeformed laminate material and deformed unit cell. The dark elastic phase is hard (h) and the light elasto-plastic phase is soft (s).

3 Assuming isotropic elastic properties, it can be shown that the fluctuation in e1-direction vanishes using the linear momentum balance (7)1.
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u
G

1
2

( )
2

const. (30)12
e 12ε γ γ

σ
= ¯ + ˜′ − = =

Assuming the defect energy Wg to be a function of α∥ ∥, the generalized stress M reads

M e e e eW W W M xsgn ( ) ( ) .
(31)g g g 1 3 1 1 3

α
α

ρ= ∂ = ∂
∥ ∥

= − ∂ ⊗ = ⊗α α ρ∥ ∥ ⊢ | |⊢

All other components of M are assumed to vanish.4 From the balance equation (7)2, it follows that

s M 0. (32)12 − ′ =

Throughout this section, the isotropic hardening contribution will be neglected, i.e. W 0h = .
3.1. Rank-one defect energy

3.1.1. Analytical solution
For the laminate, the following energy is adopted:

W cGb cGb , (33)g
1 α ρ= ∥ ∥ = | |⊢

where c is of order unity (Ortiz and Repetto, 1999). According to Eq. (31), the generalized stress M reads

M cGb cGb

M cGb

sgn ( ) if 0

if 0. (34)

ρ
ρ

ρ ρ

ρ

= −
| |

= − | | >

| | ≤ | | =

⊢

⊢
⊢ ⊢

⊢

where the second line follows from Eq. (24).
Subsequently, a monotonous shear deformation in the positive direction is prescribed such that the following relations

hold in the soft phase:

, 0. (35)eff Cτ τ γ≥ ̇ ≥

In a first step of the analysis, the flow rule (20) is assumed to be given by a linear visco-plastic relation, i.e.

.
(36)

0

eff C

D
eff C D

0
γ γ τ τ

τ
τ τ τ γ

γ
̇ = ̇ − ⇔ = + ̇

̇

Note that the analysis is finally aiming at a rate-independent formulation. At the present stage, the viscous term is still kept
to prove that the model leads to a size effect in the model response. Afterwards, viscous terms will be neglected. With
Eq. (36), the dissipation (19) reads

.
(37)

eff C D
2

0
τ γ τ γ τ γ

γ
= ̇ = ̇ + ̇

̇

A symmetric slip profile is expected with

x x s x x s( ) 0 ( /2, 0), ( ) 0 (0, /2). (38)1 1 1 1γ γ′ ≥ ∀ ∈ − ′ ≤ ∀ ∈

A cuboid-shaped volume Δ is considered, as illustrated in Fig. 2. For this volume, the equality of external and internal
powers is evaluated in the following.
Fig. 2. Illustration of the integration volume Δ .

4 Note that this is a quite strong assumption, if 0α = and a non-smooth energy are considered. For 0α ≠ , this is a mere consequence of the constitutive
equation for M .
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The power of the external forces reads

t u m Ha a( ) d d .
(39)ext

( ) ( )

p∫ ∫Δ = · ̇ + · ̇
∂ Δ ∂ Δ

The second integral vanishes, as shown in Appendix A.
From Gauss' theorem as well as the linear momentum balance 0div ( )σ = and the boundary condition t nσ= (Eqs. (7)1

and (8)1), it follows that

t u a v( ) d d .
(40)ext

( )
∫ ∫ σ εΔ = · ̇ = · ̇

∂ Δ Δ

On the contrary, the power of internal forces is given by

p v W v( ) d ( ) d . (41)int int
(19)∫ ∫Δ = = ̇ +

Δ Δ

Finally, the equality ( ) ( )ext intΔ = Δ can be represented as follows (after some rearrangements, see Eq. (36) and Ap-
pendix B):

cGb x x2 (0) ( ) d d 0.
(42)s

s

s

s
C

12
/2

/2
1

D

0 /2

/2
2

1∫ ∫γ τ σ γ τ
γ

γ̇ + − ̇ +
̇

̇ =
− − ϵ

+ ϵ

− − ϵ

+ ϵ

This relation allows to show that there is a size effect on the overall strength of the laminate. In order to prove this, assume
that there was no size effect. Then, the solution would be the classical one with constγ ̇ = . in the soft phase. In this case, Eq.
(42) would reduce to

cGb
s

2
,

(43)
12

C D

0
σ τ τ γ

γ
= + ̇

̇
+

after division by γ '̇s. Since the last term scales like s1/ , the assumption that there is no size effect must be wrong.
The rate-independent limit can be considered by setting 0γ ̇ → ∞. In this case, the last integral in Eq. (42) vanishes. As

before, a fully plastic situation is considered, i.e., the yield condition seff
12 12

Cτ σ τ= + = is assumed to hold everywhere in
the soft phase. Then,

M s ( ) const. (44)
(32)

12 12
Cσ τ′ = = − − =

M x( ) , (45)12
C

1σ τ⇒ = − −

where the constant of integration vanishes due to the symmetry requirement M s M s( /2) ( /2)| − | = | |. Since M x( )1| | is not
constant, the dislocation density ρ γ= − ′⊢ must vanish (comp. Eq. (34)). Therefore, γ¼ const. and from Eq. (42) it follows
that

cGb
s

2
. (46)12

Cσ τ= +

This equation holds in the plastic regime. Clearly, the application of the rank-one energy increases the macroscopic yield
stress by cGb s2 / , i.e., the increase scales inversely with the size of the soft phase (see Fig. 3). The same scaling behavior has
been found by Ohno and Okumura (2007) for a spherical grain, also using a rank-one energy. The authors concentrated on
the overall mechanical response without having to compute the fields inside of the grains. As illustrated in Fig. 3, the
dislocations localize in dislocation walls at the elasto-plastic interface.

In the plastic regime, the plastic shear strain follows from Eqs. (30) and (46) and the constraint (27)2
Fig. 3. Macroscopic shear stress strain curve for the rank-one energy. The increase of the overall yield point scales inversely with the size of the soft phase.
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⎛
⎝⎜

⎞
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s h
s

cGb s
G
2 /

.
(47)

C
γ γ τ= +

¯ − +

In addition to these results, the system behavior can be characterized as follows:
�
 For the material parameters of aluminum (G 26.12 GPa= and b¼0.286 nm) and c 1= , the size effect becomes important
when the system size is below ∼ 10 μm.
�
 The plastic shear strain is constant in the bulk, i.e., the dislocations form singularities (walls) at the boundaries.

�
 The backstress is constant (w.r.t. space) in the bulk. During the first period, it increases and thereby impedes any plastic

deformation. Therefore, the overall deformation is purely elastic during this period. At a certain point, the plastic de-
formation starts and the backstress remains constant afterwards. Its value is given by cGb s2 / .

3.2. Logarithmic energy

3.2.1. Motivation
This section investigates the following defect energy:

W c ln ,
(48)g

ln
0

0
α α

α
= ∥ ∥ ∥ ∥

with the constant c0 as defined in Eq. (16). The energy is motivated by the statistical theory of dislocations by Groma et al.
(2003). The authors derive a backstress term which involves the second gradient of slip as postulated by Aifantis (1987).
However, their theory involves an internal length scale which is given by 1/ ρ , where ρ denotes the total dislocation
density.

In pure metals, the geometrical characteristics of the microstructure are essentially determined by the dislocation ar-
rangement. This is a strong argument for a (variable) internal length scale, which is determined by the available dislocation
field variables (instead of a constant length scale parameter, see also Forest and Sedláček, 2003 where this dependency is
derived from a dislocation line tension model).

It is demonstrated subsequently that the approach (48) leads to a backstress which is similar to that of Groma et al.
(2003). However, it should be mentioned that this energy is neither convex nor smooth with respect to the dislocation
density tensor (a regularization will be discussed at a later stage).

For the laminate problem, the generalized stress M reads (see Eq. (31))

⎛
⎝⎜

⎞
⎠⎟M csgn ( ) ln 1 .

(49)
0

0
ρ

ρ
α

= −
| |

+⊢
⊢

In this section, rate-independent plasticity will be considered based on the yield criterion

f 0. (50)eff Cτ τ= | | − ≤

Here, the effective stress reads

s d n s M( ) ( ) . (51)eff
12 12

(32)
12στ σ σ= + · ⊗ = + = + ′

With Eq. (49) and M M( )( )x1ρ′ = ∂ ∂ρ ⊢⊢ , it follows that

c G b
2 (1 )

.
(52)

x x
eff 0 2

1 1τ τ
ρ

ρ τ β
π ν ρ

γ= −
| |

∂ = +
− | |

∂
⊢

⊢
⊢

Here, the second term can be interpreted as a backstress. Note that the backstress involves no internal length scale para-
meter. Instead, the internal length scale, b/ρ⊢ , is determined by the dislocation microstructure. In contrast to the backstress
of Groma et al. (2003), the internal length scale is determined by the GND-density ρ⊢ instead of the total density ρ. Hence,
the influence of statistically stored dislocations (SSDs) is ignored. This question will be addressed at a later point. For the
moment, GND-dominated problems will be focused on. Therefore, a homogeneous initial GND-density 0ρ α| | =⊢ will be
assumed to be given. In addition, it is assumed that the SSD-density is equal to or less than 0α .

3.2.2. Analytical solution
The soft phase is assumed to be under plastic loading, with eff Cτ τ= in the soft phase. In this case,

M s ( ) const. (53)
(32)

12 12
Cσ τ′ = = − − =

M x( ) , (54)12
C

1σ τ⇒ = − −
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where, again, the constant of integration vanishes due to the symmetry requirement M s M s( /2) ( /2)| − | = | |. The plastic slip γ
can be derived from the equality of Eqs. (49) and (54), which yields a differential equation for γ. The solution reads

⎜ ⎟ ⎜ ⎟
⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟L

e
s
L

a
x
L

L
c

exp
2

exp with ,
(55)

0 1 0

12
C

γ
α

σ τ
= − − =

−

where the matching conditions s s( /2) ( /2) 0γ γ− = = have been exploited and where e exp(1)= . The variable a is defined by
a sgn ( )γ= ′ and is assumed positive in s( /2, 0)− and negative in s(0, /2).5

From Eqs. (27)2 and (30) the macroscopic stress strain relation follows:

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

L
e s h

s
L

s L L
G( )

exp
2

( 2 ) 2 .
(56)

0 12γ
α σ

¯ =
+

− + +

The solution is evaluated for the following material parameters.
Fig. 4. Macroscopic stress–str
potential.

5 It is noteworthy that the
matching condition s( /2)γ ± =
ain diagram for three dif

solution depends on 0α ,
0.
ferent sizes. Analytical (lines)

although this constant does n
and regularized, numerical

either appear in the field eq
(triangles) solution fo

uation c x
C 12 0 1

2τ σ= + ∂
E (GPa)
 ν
 Cτ (MPa)
 b (nm)
 β
 b/0α [(μm�2)
70
 0.34
 10
 0.286
 1
 1
Here, E and ν denote Young's modulus and Poisson's ratio. A very thin hard phase with negligible width h is considered
(h s/ 10 6= − for the analytical solution).

The macroscopic stress–strain curve (56) is illustrated in Fig. 4. A clear size effect is visible. Apparently, mainly the overall
r the logarithmic
yield stress is affected. The hardening shows less size dependence. It is remarkable that the model provides a size-de-
pendent yield stress and non-linear kinematic hardening.

The microscopic plastic shear strain γ and dislocation density are shown in Fig. 5. Dislocation pile-ups are observed at the
boundaries of the soft phase.

Since there is no distinct yield stress, the evaluation of the scaling behavior is based on the offset yield stress at 0.2%
plastic strain. Fig. 6 shows the offset yield stress as a function of the inverse of the size s1/ . For comparison, the results
obtained from the rank-one energy are illustrated, in addition. For c 1.2= , the scaling behavior of both energies is similar in
the considered range.
3.2.3. Regularization of the logarithmic energy
The length scale b/ρ⊢ of the backstress in Eq. (52) is determined by the GNDs. This was the main motivation of the

logarithmic energy (Eq. (48)). In the following, the theory is extended to problems which are not fully GND-dominated.
For that purpose, the following regularization is introduced (see Fig. 7).
/ x1γ γ|∂ | nor in the



Fig. 6. Scaling-comparison of the two energies for c 1.2= . The shear stress values of the logarithmic energy correspond to 0.2% plastic shear strain.

Fig. 5. Plastic slip γ and dislocation density b/ρ⊢ for the smallest size (s 1 m= μ ), according to the logarithmic model. Left: plastic slip at 0.3, 1.1 and 5%
macroscopic strain (triangles: regularized, numerical solution). Right: corresponding GND-densities.
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In the region of small GND-densities, the energy is replaced by a quadratic potential. The internal length scale l, the
transition density Lα and the offset energy W0 are chosen such that Wg, Wg∂ α∥ ∥ and W2

g∂ α∥ ∥ are continuous at the transition
point Lα α∥ ∥ = . As a result

l
b

W
c

, ,
2

.
(58)

L 0
2

0
0

0 0α α
α

α
= = =

The regularized energy (57) is convex, normalized and twice differentiable. The backstress for the laminate problem reads

⎧
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x

x

0

0

2
0
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γ ρ α
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=
− ∂ | | <
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∂
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The solution based on the regularized model has been obtained numerically by finite elements. Figs. 4 and 5 compare the
analytical and numerical solution. It should be noted that for 0α → ∞ a quadratic energy is recovered, as has been used by
Fig. 7. Regularization of the logarithmic energy.
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numerous authors. For this case, the solution for the laminate problem has been investigated by Forest and Guéninchault
(2013). In contrast to Fig. 4 the overall stress–strain response is characterized by a linear kinematic hardening response (see
Forest and Guéninchault, 2013, Fig. 3).
3.2.4. Interpretation of the regularization
If the dislocation microstructure is GND-dominated, the internal length scale of the laminate model is supposed to be

b/ρ⊢ , i.e., determined by the GND-density. Therefore, the threshold 0α in Eq. (59) should be chosen such that it clearly
indicates whether the microstructure at a given point is GND- or SSD-dominated. If the SSD-density is nearly homogeneous,
a reasonable choice of 0α is the SSD-density itself. If the SSD-density is not constant, 0α might be interpreted as a char-
acteristic SSD-density. In this case, the logarithmic energy is applied, if 0ρ α| | >⊢ , i.e., if the problem is GND-dominated.

However, the quadratic energy is applied if 0ρ α| | <⊢ , i.e., when the SSDs dominate. As an interesting feature, the internal
length scale b/ 0α of the backstress (59) is then determined by the SSD-density.

In both cases, the backstress (59) is approximately given by

x
c b/

.
(60)x

0 2
1ρ
γ≈ − ∂

This backstress coincides with Groma's representation. In this sense, the energy approach (57) reduces to a gradient
plasticity approximation of Groma's theory. Eq. (60) is valid except the case SSD GNDρ ρ≈ . In this case, the backstress is
overestimated by a factor of two.

Fig. 8 shows the influence of the parameter 0α on the size effect. The parameter 0α has been varied within three orders of
magnitude ( b/ 0.10α = , 1 and 10 μm�2). Obviously, a variation of 0α within orders of magnitude is indeed necessary in order
Fig. 8. Influence of 0α on the overall size effect, according to the regularized logarithmic model.
to significantly influence the results. Hence, the model sensitivity with respect to changes of 0α is smaller than might have
been expected.

One might hope that a rough estimate of the SSD-density could be sufficient to achieve a reasonable guess of the
parameter 0α . In particular, the overestimation of the backstress in the case GND SSDρ ρ= by a factor of two has less con-
sequences than expected, since a multiplication of 0α by two has a minor influence on the results.

Here, the sensitivity of 12σ with respect to changes of 0α has been investigated for a specific set of material parameters. A
more general sensitivity analysis, as given in Appendix C, leads to similar results.

3.3. Cyclic behavior of the laminate

The laminate is now submitted to one full cycle 0.05γ̄ = ± . The hysteresis loops s12 vs. γ̄ for both rank one and loga-
rithmic potentials are represented in Fig. 9 for s 3 m= μ . In the absence of isotropic hardening, the loops are stabilized after
one full cycle. They are characterized by pure kinematic hardening. The influence of the backstress is clearly observable. The
curves in Fig. 9 have been obtained numerically. Therefore, both models are regularized as explained in the previous sec-
tions. One striking feature of the results is that the obtained loops have inflection points. According to the rank one model
the first unloading stage is characterized by reverse plasticity at a constant negative shear stress. When γ̄ goes through zero
again, the overall shear stress experiences a jump of the same magnitude as computed analytically for monotonic loading in
Sections 3.1 and 3.2. The loop with inflections obtained for the logarithmic potential is similar but smoother and displays
smooth nonlinear kinematic hardening. A similar hysteresis loop was obtained by Ohno and Okumura (2008) for the rank
one model.

The type of non-linear kinematic hardening observed for both models corresponds to Asaro's type KIII model, corre-
sponding to a first in/last out sequence of dislocation motion (Asaro, 1975). It is considered by Asaro as the most perfect form



Fig. 9. Cyclic loading for s¼3 μm.
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of recovery of plastic memory. Such stress–strain loops display inflection points that are observed in some materials, see
Asaro (1975) for a Nimonic alloy, but such observations have also been made in several Nickel based superalloys. It is usually
attributed to substructural recovery on the microscale, for instance pile-up formation and destruction at γ′ precipitates. In
the present simple single crystal model, it is the single active hardening mechanism induced by strain gradient plasticity
and the presence of the hard phase in the laminate. It represents an accurate continuum description of dislocation piling-up
and unpiling-up phenomena.

The experimental evidence of such loops with inflections is illustrated in Figs. 10 and 11 in the case of polycrystalline
Fe–Cr and Al–Cu–Mg alloys, respectively. The first loop in Fig. 10 (left) exhibits two inflection points which vanish after a few
Fig. 10. Shape of the stress–strain hysteresis loop as a function of the number N of cycles for a Fe–19 wt% Cr alloy aged at 923 K for 72 h and mechanically
tested at room temperature: N¼1 (left), N¼48 (right, Nf indicates the number of cycles to failure), after Taillard and Pineau (1982).
cycles and the usual shape with still a strong Bauschinger effect is retrieved in Fig. 10 (right). Fig. 11 shows that the amount
of plastic reversibility is controlled by the annealing degree of the dislocation microstructure. Further evidence of loops with
inflections in the cyclic behavior of FCC alloys can be found in the recent contribution by Proudhon et al. (2008) dealing with
aluminium alloys. The common characteristics of these FCC alloys are that they all contain a population of nonshearable
intragranular precipitates. This distribution of particles represents the first series of obstacles to be overcome by dislocations
for the plasticity to start. The distance between precipitates presents a small scatter and the average value is the char-
acteristic length responsible for the size-dependent yield limit. This distance is comparable to the width s in our ideal
laminate model. As illustrated by the TEM observations by Stoltz and Pelloux (1974, 1976), Taillard and Pineau (1982) and
Proudhon et al. (2008), dislocation loops multiply around precipitates and can be destroyed after reverse loading unless the
material is annealed before reversing the load, see Fig. 11, or unless the multiplication of forest dislocations or cross-slip
effects limit the reversibility of cyclic plasticity. The simulations based on the logarithmic potential provide smooth loops
that are closer to the experimental shapes. The present authors have not found experimental evidence of such effects in
single crystals in the literature. This is probably due to the fact that the effect is observed in alloys that are difficult to
produce as single crystals because of the intrinsic processing difficulty but also to the lack of industrial interest. Our si-
mulations deal with ideal single crystal laminates and simulations for polycrystals remain to be done. However, as shown by
the two-dimensional strain gradient plasticity simulations performed by Ohno and Okumura (2008) based on the rank-one
potential the effect pertains for polycrystals. However these authors did not recognize the physical reality of the simulated
phenomena. Instead they further developed the model to replace the rank one energy potential by a dissipative formulation
which leads to fatigue loops without inflection points.



Fig. 11. Interrupted annealing hysteresis curves for an Al–Cu–Mg–T6 alloy tested at room temperature: A—continuously reverse load (no anneal), B—
annealed 1 h/25 °C and C—annealed 5 min/120 °C, after Stoltz and Pelloux (1976).
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4. Numerical solution aspects

The numerical solution strategy is formulated for the general three-dimensional case. For the laminate problem, the
implementation can be simplified in a straightforward way.

4.1. Incremental potential

It is convenient to introduce slip parameters ( , , , )N1 2 2
Tλ λ λ λ^ = … for the numerical implementation, where N is the

number of slip systems. Two slip parameters per slip system are introduced which account for positive and negative slip
increments separately. These are associated to the positive and negative slip directions dα and d− α, i.e., the total slip γα of a
given slip system is represented by the difference of the associated two slip parameters. As a consequence, the flow rule (20)
is replaced by

q( )
,

(61)

p

0

eff C

D
λ γ

τ τ
τ

̇ = ̇
− +

α
α

where, for simplicity, it is assumed that eqγ is the only history variable, i.e. ( )eqν γ^ = .
The numerical solution is based on the implicit Euler scheme. This means that the time is discretized into steps.

Quantities of the preceding time step are marked by an index “n”. For convenience, the index “n 1+ “ is dropped. Increments
are marked by the symbol “Δ”.

Subsequently, it will be discussed that the overall problem can be reformulated as the stationarity conditions of the
following potential:

, (62)W L extΠ Π Π Π Π= + + +

with a contribution from the free energy
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and an external force contribution
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The stationarity conditions associated to the potential Π with respect to the (a priori independent) arguments
u H s M{ , , , , , , }p dαλ τ^ ^ yield the system equations. Here ( , , , )N

d
1
d

2
d

2
d Tτ τ τ τ^ = … can be interpreted as dissipative shear stresses.

The principle of virtual power (Eq. (6)) is recovered by the conditions 0uδ Π = and 0H pδ Π = . Note that the relations Weσ = ∂ε
with usym( )ε = ∇ are implicitly accounted for. Eqs. (2) and (11) are obtained by 0Mδ Π = and 0sδ Π = , respectively. These
relations illustrate the interpretation of the stresses M and s as Lagrange multipliers which enforce the kinematic relations
(2) and (11).

Evaluation of the condition 0δ Π =α yields the relation M Wg= ∂α . Finally, the conditions 0δ Π =λα and 0dδ Π =τα yield in
combination the implicit Euler scheme associated to the flow rule

t
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,
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τ

Δ
Δ

= ̇
− +α α

with s d nW( ) ( )effτ = ∂ + · ⊗εα α α and usym( )ε = ∇ .

4.2. Augmented Lagrange multiplier and penalty method

The augmented Lagrange multiplier method is based on the replacement of the Lagrange multipliers M and s in Eq. (64)
by

M M HH (curl ( ) ), (68)old M T p α= + −χ

⎛
⎝
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⎞
⎠
⎟⎟s s H d nH .

(69)
old s p ∑ λ= + − ⊗χ

α
α α α

Here, HM
χ and Hs

χ are penalty parameters and Mold as well as sold are approximations of the actual Lagrange multipliers. As a
consequence of the replacements (68) and (69), the set of arguments of the potential Π (Eq. (62)) reduces to u H{ , , , , }p dαλ τ^ ^ .
Once a converged solution has been obtained (i.e. the stationarity conditions are satisfied), the following update is
effectuated:

M M HH (curl ( ) ), (70)old old M T p α← + −χ
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⎝
⎜⎜

⎞
⎠
⎟⎟s s H d nH

(71)
old old s p ∑ λ← + − ⊗χ

α
α α α

and the computation of the solution is repeated with an updated set of Lagrange multipliers yielding an improved ap-
proximation of Eqs. (2) and (11). The overall procedure is reiterated until Eqs. (2) and (11) are satisfied up to a certain
tolerance.

If HM
χ and Hs

χ are very large, the solution might be sufficiently accurate after one iteration already. In this case, the updates
(70) and (71) are dispensable and can be omitted. Then, the scheme represents a penalty method (which has been used to
obtain the numerical results in the work at hand with H H 10 MPaM s 6= =χ χ ). Note that, in contrast to the original model (21),
M can be computed even if 0α = . The close connection to classical elasto-plasticity will become obvious during the sub-
sequent discussion of the local Algorithm 2.

4.3. Local algorithms

The principle of virtual power (6) is discretized by the finite element method. At the integration points, the following two
algorithms allow the determination of the stresses.

Algorithm 1. Compute the stresses s q{ , , }σ by solving the nonlinear system of equations:
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Here,   1= − denotes the compliance tensor. The linearization of this system of equations yields the consistent lineariza-
tions (tangent operators) of the stresses s q{ , , }σ (for details see, e.g., Wulfinghoff et al., 2013b, for a similar problem).

Algorithm 2. The following non-smooth energy is considered:
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following algorithm can be applied.
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For the FE-implementation, the linearization of M w.r.t. α̃ can be obtained by the linearization of the algorithm.
Note the formal similarity of Algorithm 2 and classical radial-return algorithms (e.g.. Simo and Hughes, 1998).
In the work at hand, a linear-viscous model (p 1= ) with very small viscosity ( 10 s0

3 1γ ̇ = − , 1 MPaDτ = ) has been applied.
The total simulation time was 1 s. The penalty approximation (70) (with M 0old = ) has only been used for the rank-one
potential. This is not necessary for the regularized logarithmic energy (57), which is smooth. The problem has been solved
using 50 one-dimensional linear elements. The results correspond to Figs. 4, 5 and 9 in Section 3.
5. Summary

The novel aspects presented in this work are the analytical and numerical solutions of the problem of monotonic and
cyclic shearing of laminate microstructures within the framework of strain gradient plasticity. An unusual type of kinematic
hardening characterized by hysteresis loops with inflections is predicted and compared to experimental evidence from the
literature, showing the physical relevance of the derived properties. The solutions have been derived analytically and nu-
merically for strain gradient plasticity material laws based on two different defect energies: a rank-one and a logarithmic
energy. The logarithmic energy leads to a backstress, the internal length scale of which is determined by the GND-density. A
regularization of the non-convex logarithmic energy has been discussed. The regularized energy turns out to allow for a
physical interpretation. Under certain conditions, the model can be interpreted as a gradient plasticity approximation of the
theory of Groma et al. (2003).

We have shown that the overall yield stress of the rank-one problem is size dependent, while the hardening is not. The
yield stress increase scales inversely with the size. The dislocation pile-ups degenerate into singular dislocation walls at the
boundaries. The plastic slip and the backstress are constant inside the soft phase.

A significant new result provided in this work is that the logarithmic energy leads to a similar scaling of the 0.2%-offset
yield stress, at least for the investigated model parameters, although the inverse scaling relation is not exactly met. The
exact scaling is provided by an explicit analytical formula. The logarithmic model allows for non-homogeneous distribution
of plastic slip and backstress in the channel and leads to hardening effects in addition to the yield stress increase. The
predicted hardening is found to be only slightly influenced by the size.

The numerical implementation is discussed with focus on non-smooth defect energies like the rank-one potential. These
non-smooth potentials can be described using sub-differentials. This implies that the generalized stresses can be computed
from the dislocation density tensor uniquely only for non-vanishing values thereof. Sub-differentials are commonly applied
in classical plasticity theory. Here, a sub-differential is equivalent to the introduction of an elastic range. Within this range,
the Cauchy stress can be computed from the elastic strains. By analogy, this observation leads to a new regularization
technique. This method allows for the computation of the generalized stresses, even for vanishing values of the dislocation
density tensor.

A remarkable feature of the logarithmic model is that it provides a strain gradient plasticity based continuum description
of Asaro's KIII nonlinear kinematic hardening mechanism associated with a perfect form of recovery of plastic memory. It
represents a continuum model of the first in/last out scenario of dislocation motion under cyclic loading. At the microscale,
cross-slip and interactions with forest dislocations are responsible for the partial loss of memory and explain why inflection
points are very often not observed in experimental curves. Another origin of such a fading memory in a polycrystal is the
interaction between grains. Computations of polycrystalline aggregates based on the proposed logarithmic potential
therefore represent a necessary step for future research in this field, using the numerical scheme presented in this work.
Similar hysteresis loops were obtained by Ohno and Okumura (2008) using the rank one model in two-dimensional si-
mulations of polycrystalline aggregates. They were interpreted by the authors as an unusual Bauschinger effect, which
prompted them to propose a new model formulation based on purely dissipative strain gradient plasticity effect. In contrast,
we have shown in the present work overwhelming evidence in the literature of this effect in many alloys presenting a
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population of nonshearable precipitates with homogeneous size distribution like iron or aluminium based alloys, up to
nickel-base superalloys. The loops with inflections are observed only during the first to third cycles of the overall response
of polycrystalline materials. This suggests that plasticity can be almost completely reversed at least at the early stages of
plasticity. After the first cycles statistical effects associated with cross-slip and forest interaction do not allow for such
reversibility any more. The evidence of such memory effects in plasticity confirms the idea that energy can be stored and
released based on the dislocation density tensor and that the rank 1, and, preferably, the logarithmic formulation provide a
relevant phenomenological descriptions of this property.

The proposed models illustrated in the case of ideal laminate and single slip situations must be complemented by
additional isotropic hardening contributions coming from dislocation forest interaction but also probably by dissipative
phenomena associated with the dislocation density tensor as suggested by Ohno and Okumura (2008).

One of the properties of the logarithmic defect energy that is being advocated is its nonconvexity. Obviously, non-
convexity may have physical grounds and there is no obvious reason to discard it. Note that the analytical solution with the
logarithmic potential was obtained in the absence of regularization but we have not investigated its stability. The scaling law
for the size dependent yield stress is evaluated at a given fixed amount of plastic strain, typically 0.2%, in the convex branch
of the model with the parameters chosen. The proposed regularization aims at restoring the differentiability at zero GND
content. It is used for the numerical simulation and is motivated by the competition between densities of GND and SSD
predominating at the beginning of plastic flow in the laminate. For the analytical solution, an initial GND density value is
introduced and the material remains in the convex region of the potential during shearing. The non-convex part in the
absence of an initial GND density indeed deserves further study and may require additional regularization by higher order
gradients.

Finally, the formulation based on the dislocation density tensor alone instead of individual GND densities is a useful
pragmatic choice that allows for efficient finite element computations. However it may exhibit some limitations to be
explored in the context of multislip, as attempted for instance by Bardella et al. (2013).
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Appendix A. Vanishing external power of microtractions

The second term of Eq. (39) reads

m H ad , (76)
p∫ · ̇

Δ

with H e ep
1 2γ̇ = ̇ ⊗ and

m Mn. (77)(8)= ^

The boundary is given by A A A A A A( ) 1 1 2 2 3 3∂ Δ = ∪ ∪ ∪ ∪ ∪+ − + − + −, where Ai
± denote the surfaces of the cuboid Δ with as-

sociated surface normals ei
± i( 1, 2, 3)= . At the top and bottom (A2

±), the microtractions read

m M n n e nx( ) , (78)T 1 T T
(9)

2 Bϵ= ^ ^ = − = − ^

m M n mx( ) . (79)B 1 B T⇒ = ^ = −

Since H HT
p

B
ṗ = ̇ , the top and bottom contributions (A2

±) to the integral (76) cancel each other. The A3
±-contributions vanish

based on analogous arguments. The A1
±-contributions vanish since H 0ṗ = in the elastic phase.
Appendix B. Power balance for rank-one energy

With the representation W W We g= + (Eq. (13)), the power of internal forces (41) can be rewritten as

⎜ ⎟⎛
⎝

⎞
⎠W W W v( ) d .

(80)int e e
p

gp∫ ε εΔ = ∂ · ̇ + ∂ · ̇ + ̇ +ε ε
Δ

Since W ( ) [ ]/2e
p pε ε ε ε= − · − , it follows that W We epσ = ∂ = − ∂ε ε and
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⎜ ⎟⎛
⎝

⎞
⎠e e W v( ) ( sym( )) ( / ) d .

(81)int 1 2 g
C D

0∫ σ ε σ γ τ τ γ γ γΔ = · ̇ − · ̇ ⊗ + ̇ + + ̇ ̇ ̇
Δ

Here, Eq. (37) has been applied. From ( ) ( )ext intΔ = Δ and Eq. (40), it follows that

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟W xd 0.

(82)s

s

/2

/2
12 g

C D

0
1∫ σ γ τ τ γ

γ
γ− ̇ + ̇ + + ̇

̇
̇ =

− − ϵ

+ ϵ

The total defect energy rate is given by

W x cGb
t

x xd
d
d

( ) d
(83)s

s

s

s

/2

/2
g 1

(33)

/2
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s
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g 1

(38)
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1 1
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+ ϵ

W x cGbd 2 (0).
(85)s

s

/2

/2
g 1∫ γ̇ = ̇

− − ϵ

+ ϵ

From this equation and Eq. (82), relation (42) immediately follows.
Appendix C. Sensitivity analysis

According to Eq. (56) the macroscopic shear strain can be additively decomposed into an elastic part G/12σ and a plastic
part

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

L
e s h

s
L

s L L/
( )

exp
2

( 2 ) 2 ,
(86)p 0γ α¯ =

+
− +

with L as defined in Eq. (55). The stress can be obtained as the inverse of (86), g ( / )12 p 0σ γ α= ¯ . The function g is illustrated
qualitatively in Fig. 12.

The total differential reads
Fig. 12. Visualization of the function g ( / )p 0γ α¯ .
⎛
⎝⎜

⎞
⎠⎟gd d d d

(87)
12 12 p 12 0

p

0
p 0σ σ γ σ α

γ

α
= ∂ ¯ + ∂ = ′

¯
γ α¯

g gd
1

d d .
(88)

12
0

p
p

0
2 0σ

α
γ

γ

α
α= ′ ¯ −

¯
′

Hence, the sensitivity of 12σ with respect to changes of 0α reads

g .
(89)

12
p

0
20 σ

γ

α
∂ = −

¯
′α
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In the region of well-established plastic flow, one might conclude from Fig. 12 that

g m m
( / )

,
(90)

12
p

0
2 0

p

0
2

12

p 0
0

12

0
0 σ

γ

α

γ

α
σ

γ α
σ
α

∂ = −
¯

′ = −
¯

¯
= −α

where m0 takes a small value 1< . At constant plastic strain, small variations of 0α lead to the following variations of 12σ :

m .
(91)

12 12 0
0

0
σ σ

α
α

Δ ≈ −
Δ

Since m0 is expected to be small, variations 0 0α α|Δ | < have a small influence on the overall size effect.
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