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a b s t r a c t

A yield function for single crystals containing voids has been developed based on a variational approach.
This first yield function is phenomenologically extended by modifying the dependence on the mean
stress and introducing three adjustable parameters. Unit cell finite element calculations are performed
for various stress triaxiality ratios, main loading directions and porosity levels in the case of a perfectly
plastic FCC single crystal. The three model parameters are adjusted on the unit cell calculations so that a
very good agreement between simulation results and the proposed model is obtained.

� 2013 Published by Elsevier Ltd.

1. Introduction

In crystalline metals, void nucleation, growth and coalescence
lead to ductile fracture. Since the last forty years, building on the
earliest works by Mc Clintock (1968); Rice and Tracey (1969);
and Gurson (1977), much effort has been made to improve the pre-
diction of damage evolution and fracture of porous ductile materi-
als at macro and mesoscopic scales. The role of various
characteristic features such as porosity, viscoplasticity, void shape,
plastic anisotropy of the matrix has been studied. Some reviews
were recently provided by Pineau and Pardoen (2007); Besson
(2010); Benzerga and Leblond (2010). Two main approaches have
been proposed to develop models for ductile damage growth. The
first one is based on the seminal work by Gurson (1977) which
uses an upper bound approach, following Tvergaard and Needle-
man (1984), Gologanu and Leblond (1993), Leblond et al. (1994),
Benzerga and Besson (2001), Monchiet et al. (2007), Monchiet
et al. (2008). The second approach is based on variational formula-
tion of the homogenization theory using the concept of linear-
comparison material, see Ponte Castañeda (1991); DeBotton and
Ponte Castañeda (1995); Liu et al. (2005); Danas and Ponte Castañ-
eda (2009) and Lebensohn et al. (2011).

Theoretical results obtained following these approaches can
be verified using unit cell calculations first introduced in the
pioneering work by Koplik and Needleman (1988). This versatile

methodology allows to easily study the effect of various parame-
ters on void growth and coalescence such as hardening rate (Fale-
skog et al., 1998; Gao et al., 1998; Lecarme et al., 2011), void
shape or cell shape (Pardoen and Hutchinson, 2000), void popula-
tion (Faleskog and Shih, 1997,Fabrègue and Pardoen, 2008 and
Fritzen et al., 2012), void distribution (Bandstra and Koss, 2008),
and second phase particles (Steglich and Brocks, 1997; Steglich
et al., 1999).

The effect of the anisotropy of matrix behaviour on void growth
was investigated in relation to the anisotropic plastic properties of
metal sheets, see in particular (Benzerga et al., 2004) and more re-
cently (Monchiet et al., 2008). Typically, a Hill-type yield criterion
was assumed for the matrix in the latter references. The situation is
quite different in the presence of voids embedded in a single crys-
talline matrix. The case of single crystals containing voids (hereaf-
ter referred to as porous single crystals) has only been studied
recently using the unit cell methodology either based on FE simu-
lations (Schacht et al., 2003; Yerra et al., 2010; Ha and Kim, 2010),
or based on slip line theory in the case of simple cylindrical voids
(Kysar et al., 2005; Gan et al., 2006; Gan and Kysar, 2007). Besides,
the analysis of ductile fracture in single crystals has been per-
formed at smaller scales for nano and micro-voids by means of Dis-
crete Dislocations Dynamics in (Huang et al., 2007; Hussein et al.,
2008; Segurado and Llorca, 2009; Segurado and Llorca, 2010 and
Huang et al., 2012), and Molecular Dynamics in (Potirniche et al.,
2006; Zhao et al., 2009; Traiviratana et al., 2008; Tang et al.,
2010b and Tang et al., 2010a). However a set of constitutive equa-
tions describing the overall behaviour of porous single crystals is
still lacking in the literature. The previously mentioned papers do
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not provide an overall yield function for porous single crystals.
There is currently a real need for such a yield function that would
be simple enough to allow straightforward Finite Element imple-
mentation for carrying out structural computations of ductile frac-
ture in single and poly-crystals. It could be used for instance to
reproduce experimental facts showing accelerated anisotropic
growth of cavities in single crystals as observed in Crépin et al.
(1996).

The purpose of the present work is to develop a model to describe
the yield function of porous single crystals. Such models could be
used to represent ductility of stainless steel (304/316 series) used
for core internals of Fast Breeder Reactor and PWR nuclear power
plants in which intragranular voids develop and lead to the phenom-
enon of swelling due to high irradiation levels (Foster and Strain,
1974; Seran et al., 1984; Dubuisson, 2011 and Renault et al., 2011),
also that of Ni based single crystal superalloys used in turbo-engines
components (Wang et al., 2006). The model is theoretically moti-
vated using a micromechanical analysis based on the variational ap-
proach by (Ponte Castañeda and Suquet, 1998). It is extended on a
phenomenological basis to match trends obtained for rate-indepen-
dent material (e.g. Gurson–Tvergaard–Needleman model). Unit cell
calculations are used to adjust and validate the model. Various load-
ing directions and porosity levels (from 0.5% to 10%) are used.

The single crystal constitutive framework is recalled in Sec-
tion 2.1. The proposed yield function for porous single crystal is
presented in Section 2.2. The Section 3 is dedicated to the identifi-
cation methodology of the corresponding material parameters
from unit cell computations. The results and validation of the ap-
proach are provided in Section 4 in terms of crystal orientation,
loading conditions and void volume fraction. The micromechanical
motivation of the model is explained in Appendix A.

2. Proposed model for porous single crystals

The analysis given in this paper is limited to the small deforma-
tion framework, as it is the case in standard limit analysis.

2.1. Model for the single crystal matrix

In this work, which essentially deals with yielding of porous
single crystals, a very simple law is used to describe the constitu-
tive behaviour of the single crystal matrix. For each slip system
s ¼ 1 . . . N, the resolved shear stress, ss is expressed as:

ss ¼ r : ms with ms ¼
1
2
~ls �~ns þ~ns �~ls

� �
ð1Þ

where r is the Cauchy stress tensor acting on the single crystal vol-
ume element.~ls and ~ns are the unit vectors along the slip direction
of the slip system s and normal to the slip plane, respectively. The
total number of slip systems is N. For each slip system a yield sur-
face can be defined as:

ws ¼ jssj � s0 ð2Þ

Provided that ws P 0, the slip rate for each slip system s is given as:

_csðssÞ ¼ _c0
ws

s0

� �n

¼ _c0
jssj � s0

s0

� �n

ð3Þ

where _c0; s0 and n are material parameters. s0 represents the criti-
cal resolved shear stress (CRSS) of the slip system. For the sake of
simplicity each slip system is assumed to have the same CRSS but
the model presented here can be easily extended in order to take
into account different CRSS as well as self and cross hardening.
Using the normality rule, the plastic strain rate tensor, _ep, is ex-
pressed as:

_ep ¼
X

s

_cs
@ws

@r
¼
X

s

_cssignðssÞms ð4Þ

2.2. Model for the porous single crystal

One considers here a single crystal containing spherical voids.
The void volume fraction is referred to as f in the following. Based
on the variational formulation proposed by Ponte Castañeda and
Suquet (1998), it is shown in Appendix A that an effective scalar re-
solved stress acting on each slip system s�s ðr; f Þ can be defined as a
function of the applied stress and the porosity level, such that:

s�s �
1

1� f
s2

s þ
2

45
fr2

eq þ
3

20
fr2

m

� �1
2

¼def:s�s 0 ð5Þ

where rm (resp. req) is the mean stress (resp. von Mises stress) of
the macroscopic stress tensor r. s�2s is expressed as a quadratic form
of r. Note that the notations used here for the overall yield func-
tions are different from those in Appendix A: Small letters are used
for the stress and strain quantities instead of capital letters, because
there is no reference any more to the micromechanical variational
analysis. Similar yield functions were obtained in the case of a
voided solid made of an isotropic von Mises matrix (Leblond
et al., 1994). The quadratic dependence in (5) is known to be inad-
equate in the case of plastic solids since the seminal works of Mc
Clintock (1968) and Rice and Tracey (1969). An exponential depen-
dence on the mean stress should be preferred. Using the second or-
der Taylor expansion of coshðxÞ ¼ 1þ 1

2 x2, other definitions of the
effective scalar resolved stress s�s can be proposed so that it better
corresponds to models derived from the Gurson (1977) model. Fol-
lowing the concept of a scalar stress measure (Besson et al., 2001),
which can be explicitly or implicitly defined, another expression for
s�s can be worked out from the following expression which takes
into account the mean stress dependence as in Gurson type models:

s2
s

s�2s
þ 2

45
f
r2

eq

s�2s

 !
þ 2f cosh

ffiffiffiffiffiffi
3

20

r
rm

s�s

 !
� 1� f 2 ¼def:s�s 0 ð6Þ

s�s is found by solving this equation. Another solution, based on the
recent development by Monchiet et al. (2007) would be to define s�s
based on the following equation:

s2
s

s�2s
þ 2f cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

20
r2

m

s�2s
þ 2

45
r2

eq

s�2s

s0
@

1
A� 1� f 2 ¼def:s�s 0 ð7Þ

In the following the Gurson-like formulation will be used (Eq. 6). It
is however well known that the original Gurson (1977) model could
not well represent the behaviour of actual voided cells as simulated
using finite element calculations (Brocks et al., 1995; Kuna and Sun,
1996 and Fritzen et al., 2012) so that empirical modifications have
to be introduced to better represent the cell behaviour (Tvergaard
and Needleman, 1984 and Faleskog et al., 1998). Accordingly, the
following definition for s�s is proposed:

s2
s

s�2s
þ a

2
45

f
r2

eq

s�2s

 !
þ 2q1f cosh q2

ffiffiffiffiffiffi
3

20

r
rm

s�s

 !
� 1� q2

1f 2 ¼def:s�s 0

ð8Þ

where a; q1 and q2 are parameters that need to be adjusted. q1 and
q2 play a similar role as in the work by Tvergaard and Needleman
(1984) whereas a is a new parameter weighting the relative contri-
bution of the resolved shear stress on each slip system and the usual
isotropic equivalent von Mises stress measure. The identification of
these parameters will be done in the following based on unit cell
simulations of voided single crystals. In all cases, s�s ¼ jssj for
f ¼ 0 so that the yield surface of the single crystal matrix is
retrieved.

For each slip system, the yield surface is then defined as:

w�s ¼ s�s � s0 ¼ 0 ð9Þ
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The plastic strain rate tensor is still expressed using the normality
rule as:

_ep ¼ ð1� f Þ
X

s

_cs
@w�s
@r
¼ ð1� f Þ

X
s

_cs
@s�s
@r

ð10Þ

where _cs is obtained as a function of s�s using Eq. 3 as:

_csðssÞ ¼ _c0
w�s
s0

� �n

¼ _c0
s�s � s0

s0

� �n

ð11Þ

Whatever the chosen definition (Eqs. (5)–(7) or 8), the effective
stress s�s is an homogeneous function of r of degree 1 and differen-
tiable so that (Euler’s theorem): @s�s=@r : r ¼ s�s . The plastic dissipa-
tion is obtained as:

_ep : r ¼ ð1� f Þ
X

s

_cs
@s�s
@r

: r ¼ ð1� f Þ
X

s

_css�s P 0 ð12Þ

which expresses the equality between the plastic work at the mac-
roscopic level (left-hand side) and the microscopic level (right-hand
side). The factor ð1� f Þ on the right-hand side corresponds to the
volume fraction occupied by the single crystal matrix in which a
power equal to

P
s
_css�s is dissipated.

3. Model parameter determination based on finite element
analysis

In this section, the proposed model (Eq. 8) will be tested and ad-
justed. Finite element calculations of voided unit cells are carried
out. The adjustable model parameters (a; q1 and q2) will be identi-
fied to represent unit cell calculations results. In this work Face-
Centered Cubic (FCC) single crystals are considered. In this
highly-symmetric crystalline structure, plastic slip occurs on a
group of 12 slip systems following f111gh110i (see Table 1). Eq.
11, which relates the slip rate to the effective resolved stress, can
be rewritten as:

s�s � s0 � s0
_cs

_c0

� �1
n

¼ 0 ð13Þ

In the limiting case of a nearly perfectly plastic behaviour, which is
used in this study, calculations are performed such that the viscous
stress is less than 1% of the CRSS:

s0
_cs

_c0

� �1
n

< 1%� s0 ð14Þ

within the usual range of imposed strain rates for engineering
materials.

The material parameters for a FCC single crystal used for the
unit cell analysis are given in Table 2. The elastoviscoplastic crystal
plasticity model based on Schmid’s law with a threshold requires
the choice of elasticity moduli. The elastic moduli (cubic elasticity
C11;C12 and C44) take here typical values for 300 series austenitic
stainless steels at 340�C. However, as it is well-known in porous
plasticity, the results of the limit analysis do not depend on the
elastic properties of the material but only on the plasticity thresh-
old value. This has been checked for unit cell computations with a
single void but also for populations of interacting voids, for in-
stance in Fritzen et al. (2012). The same feature has been checked

here for crystal plasticity in the presented unit cell computations.
The value of the parameter _c0 is chosen to satisfy the condition gi-
ven in Eq. 14. The same threshold value s0 ¼ 60 MPa is considered
for all slip systems in Schmid’s law. Accordingly, activation of one
slip system at a given Gauss point of the finite element mesh de-
pends on the value of the resolved shear stress at this point. The
12 possible slip systems are considered at each material point. In
the simulation, slip system activation is heterogeneous due to
the presence of the hole. Multiple slip is allowed and takes place
at several locations. Fully-implicit time integration method is used
for the material’s constitutive equations (Foerch et al., 1997).

3.1. 3D finite element unit cell model

In the last decades, the FE simulation of unit cells has become a
well-known simulation technique to investigate the global and lo-
cal responses of heterogeneous materials (Needleman, 1972;
Tvergaard, 1981; Tvergaard, 1982; Koplik and Needleman, 1988;
Worswick and Pick, 1990; Quinn et al., 1997; Pardoen and Hutch-
inson, 2000 and Benzerga and Besson, 2001). Three-dimensional
unit cell calculations of porous media, considered as an homogeni-
zation method of a representative volume element (RVE) contain-
ing uniformly distributed voids, are widely applied to study the
effect of various parameters such as multiaxial stress state, crystal-
lographic orientation, and initial void volume fraction, on void
growth (Liu et al., 2007; Yerra et al., 2010; Ha and Kim, 2010 and
Yu et al., 2010) and coalescence (Kuna and Sun, 1996,Zhang
et al., 1999,Schacht et al., 2003,Liu et al., 2007,Liu et al., 2010,Yerra
et al., 2010 and Liu et al., 2012).

In this study, FE simulation of unit cells is used to determine the
yield surface of porous single crystals depending on crystallo-
graphic orientation and void volume fraction. Results of the simu-
lation are used to calibrate the model parameters (q1; q2 and a)
introduced in the previous section Eq. 8. The FE mesh used for
the simulation is shown in Fig. 1. The cubic cell (length l0) contains
a spherical void (radius r0) located at the center of the cell. Except
for specific crystallographic orientation the problem has no sym-
metry so that the full cell has to be meshed. The void volume frac-
tion is simply given by: f ¼ Vvoid=Vtot ¼ 4

3 pr3
0=l3

0.
The 3D mesh is made of reduced-integrated quadratic hexahe-

dral elements (see Fig. 1). The simulations were carried out using
the Zset FE software (Besson and Foerch, 1998). A convergence
study was also performed to optimize calculation time while keep-
ing sufficient accuracy. Calculations are carried out so as to pre-
scribe a constant overall stress triaxiality ratio (ratio of the mean
stress to the von Mises stress). The overall macroscopic stress ten-
sor is expressed in terms of 3 principal stresses as:

r ¼
r1 0 0
0 r2 0
0 0 r3

2
64

3
75 ¼ r1

1 0 0
0 g2 0
0 0 g3

2
64

3
75 ð15Þ

Table 1
Slip systems in FCC single crystals.

Slip system s 1 2 3 4 5 6 7 8 9 10 11 12

Slip plane ~n (111) ð111Þ ð111Þ ð111Þ
Slip direction~l ½101� ½011� ½110� ½101� [011] [110] ½011� [110] ½101� ½110� [101] [011]

Table 2
Material parameters for FE simulations.

C11 C12 C44 s0 n _c0

199 GPa 136 GPa 105 GPa 60 MPa 5 7.776 108 s�1

X. Han et al. / International Journal of Solids and Structures 50 (2013) 2115–2131 2117
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where g2 and g3 are loading parameters which are kept constant for
every single unit cell simulation. Both parameters vary between
�0:5 and 1. It is assumed that r1 > 0. The stress triaxiality ratio is
expressed as:

a ¼ rm

req
¼ 1þ g2 þ g3

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2 � g3 � g2g3 þ g2

2 þ g2
3

q ð16Þ

As triaxiality shall be kept constant during the loading history, the
parameters g2 and g3 have to remain constant whereas the ratios of
mean strains E22=E11 and E33=E11 will vary in time. Two strategies
were used to prescribe constant triaxiality. The first one uses the
technique presented by Brocks et al. (1995). A special truss element
(MN in Fig. 1) is added to the mesh. It acts as a spring in the main
loading direction (i.e. 1) which measures the mean stress compo-
nent in that direction. A portion (g2 and g3) of this stress is then ap-
plied in both other directions 2 and 3. Normal displacements on the
cell faces are kept homogeneous so that the cell keeps a parallelipe-
dic shape. This technique allows to perform displacement con-
trolled FE simulations. It is suitable for highly symmetric crystal
directions (e.g. 1 ¼ ½100�;2 ¼ ½010�;3 ¼ ½001�) but tends to over-
constrain the model for general orientations so that high stresses
are generated (in some cases stresses higher than the theoretical
stresses for the undamaged single crystal are obtained). For this rea-
son a second simulation technique assuming periodic boundary
conditions was also used. The displacement vector ~u associated
with each material point~x takes the form:

~u ¼ E �~xþ~v; 8~x 2 Vtot ð17Þ

where E denotes the macroscopic strain tensor and ~v is the periodic
fluctuation vector, which takes the same value for two points situ-
ated on opposite outer boundary surfaces @Vtot of the entire volume
Vtot , while the traction vector ~t ¼ r �~n takes opposite values on
these two points, with ~n being the outer unit normal vector on
@Vtot . In the finite element implementation, the components of
the macroscopic strain tensor, Eij, are degrees of freedom and the
associated reactions of which, Rij, correspond to the macroscopic
stress component Rij times the cell volume: Rij ¼ Vtot � Rij, see

(Besson et al., 2009). Simulations are then carried out prescribing
the different reactions so that R22 ¼ g2R11;R33 ¼ g3R11 and
R12 ¼ R23 ¼ R31 ¼ 0. In that case, simulations are load controlled.

Both methods (spring loaded cell and fully periodic cell) were
compared in the case of highly symmetric triaxial loading (e.g.
½100�–½010�–½001�). Results shown in Fig. 2 indicate that both meth-
ods result in almost identical results in this particular case. In the
general case of non-symmetric orientations, spring loading condi-
tions lead to an over-constraining effect so that slightly larger yield
surfaces are generated. It is also shown that the stress levels
quickly stabilize (due to the absence of work hardening). Based
on these results, stress levels used to calibrate and validate the pro-
posed yield function will be determined for a strain along direction
1 equal to 3%.

l0

2r0

Fig. 1. Unit cell with a spherical void in its center. (a) FE mesh for f ¼ 0:01, with a cut of 1=8 of the full geometry; (b) half of the full geometry showing the dimensions of the
unit cell with a central void.

Fig. 2. Normalized macroscopic stresses along the three principal loading direc-
tions as functions of the macroscopic deformation along direction 1 for
1 ¼ ½100�;2 ¼ ½010� and 3 ¼ ½001� with g2 ¼ 0:4;g3 ¼ 0:727 and a porosity level
f ¼ 0:01.

2118 X. Han et al. / International Journal of Solids and Structures 50 (2013) 2115–2131
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3.2. Model parameter determination

In order to identify the model parameters from various numer-
ical simulations for different crystallographic orientations, the pro-
posed model can be written as:

PT � r � P
� �

: ms
� �2

s�2s
þ a

2f
45

r2
eq

s�2s

 !
þ 2q1f cosh q2

ffiffiffiffiffiffi
3

20

r
rm

s�s

 !

� 1� ðq1f Þ2 ¼def:s�s 0 ð18Þ

where r is the macroscopic stress tensor on global coordinates de-
fined in Eq. 15 and P denotes the rotation matrix following zxz con-
vention (Goldstein et al., 2002), which turns global basis to crystal
basis using Euler angles ð/1;U;/2Þ, given by:

To validate the proposed model for single crystals, five crystallo-
graphic orientations for the main loading direction (direction 1)
have been chosen: ½100�; ½110�; ½111�; ½210� and ½125�. Another three
cases are complemented to study the effect of secondary loading
directions (directions 2 and 3). All these cases are summarized in
Table 3. Five porosity levels are considered as follows: f = 0.005,
0.01, 0.02, 0.05 and 0.1.

Note that a special case with axisymmetric triaxial stress state
(g2 ¼ g3 ¼ g) will also be investigated. In that case the stress triax-
iality ratio is expressed as: a ¼ 1

3 ð1þ 2gÞ=ð1� gÞ. The orthogonal-

ity of the three imposed principal stresses, the axisymmetric
stress state and the symmetric crystalline structure of FCC materi-
als allow deriving a simplified expression of the resolved shear
stress on slip system s, which is then expressed as:

jssj ¼ j PT � r � P
� �

: msj ¼ F1
s req ¼ F1

s ð1� gÞr1 ð20Þ

where F1
s is the Schmid factor for slip system s obtained from a uni-

axial tensile test on the matrix material along the main loading

Table 3
Crystallographic orientations for numerical simulations and corresponding Euler
angles.

Test number Crystallographic orientation
on global coordinates 1-2-3

Euler angles (�)

/1 U /2

1 [100]-[010]-[001] 0 0 0
2 ½100�-½011�-[011] 180 45 180

3 ½100�-½021�-[012] 180 26.57 180
4 ½110�-½110�-[001] 45 0 0
5 ½111�-½211�-½011� 0 45 54.74

6 ½210�-½120�-[001] 26.57 0 0
7 ½125�-½121�-[210] 116.57 90 65.91
8 ½125�-½052�-[(29)25] 93.95 80.24 67.86

Table 4
Triaxialities applied for FE simulations and values of corresponding model parameter g.

a 0 0.33 0.5 1.0 1.5 3.0 5.0 10.0 50.0 þ1

g �0:5 0 0.143 0.4 0.538 0.727 0.824 0.906 0.980 1.0

Table 5
List of all the performed unit cell FE calculations.

Test details Number of tests Figures

8 orientations f ¼ 0:01 � ð4� 10 FE calculations�3redundant testsÞ 8� ð4� 10� 3Þ ¼ 296 4–14
4 porosities � 3 orientations �10 FE calculations 4� 3� 10 ¼ 120 16
f ¼ 0:005; f ¼ 0:02;� 2 orientations ½110� and ½210� �10 FE calculations 2� 2� 10 ¼ 40 none1

1 used only for parameter identification.

Table 6
Adjusted values of model parameters.

a q1 q2

6.456 1.471 1.325

Fig. 3. Identification results showing comparison points between FE unit cell
simulations and effective single crystal model predictions. They are contained in a
10% error cone.

P ¼
cos /1 cos /2 � sin /1 cos U sin /2 sin /1 cos /2 þ cos /1 cos U sin /2 sin U sin /2

� cos /1 sin /2 � sin /1 cos U cos /2 � sin /1 sin /2 þ cos /1 cos U cos /2 sin U cos /2

sin /1 sin U � cos /1 sin U cos U

2
64

3
75 ð19Þ
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direction 1. Hence, the resulting effective resolved stress s�s for slip
system s is given by:

F1
s

� �2
þ a

2f
45

� �
ð1� gÞ2r2

1

s�2s

þ 2q1f cosh
q2

2

ffiffiffiffiffiffi
1

15

r
ð1þ 2gÞr1

s�s

 !
� 1� ðq1f Þ2 ¼def :s�s 0 ð21Þ

Based on this equation, the whole range of positive stress triaxiality
from zero to infinity will be investigated. In FE simulations, ten dis-
tributed values of triaxialities have been chosen to test the pro-
posed model (see Table 4).

A total number of 456 FE calculations were carried out and
listed in Table 5, with above-mentioned triaxial stress states, crys-

tallographic orientations and porosities. The loading conditions are
characterized by g2 and g3. Four cases were considered succes-
sively: g2 ¼ g3;g2 ¼ 0:4;g2 ¼ 0:727;g2 ¼ 1. In each case, 10 values
of g3 were applied. The porosity f ¼ 0:01 was first considered for 8
crystallographic orientations. Four more porosities f ¼ 0:005;
0:02;0:05 and 0:1 were considered, with 3 crystallographic orien-
tations ½001�; ½111� and ½�125�, and again 10 loading conditions.
Additional tests are necessary to check the effect of porosity along
other crystallographic orientations ½011� and ½210�, for porosities
f ¼ 0:005 and 0:02.

The details of these simulations results will be presented and
discussed in the next section. The model parameters a; q1 and q2

have been identified by minimizing (Levenberg–Marquardt meth-
od) the quadratic difference between model results and FE unit cell

Fig. 4. 3D yield surfaces for ½100� � ½010� � ½001� triaxial loading direction, with f ¼ 0:01. (a) Yield surfaces for each of the 12 slip systems; (b) Yield surface for the porous
single crystal.

Fig. 5. Yield surfaces for ½100� � ½010� � ½001� triaxial loading direction, with f ¼ 0:01. (a) Yield surface for the porous single crystal, with g2 ¼ g3 ¼ g (i.e. red curve in Fig. 4b).
(b) Yield surfaces for the porous single crystal, with g2 respectively fixed to 0.4, 0.727 and 1.0 (i.e. blue curves in Fig. 4b). Thick continuous and dashed lines correspond to the
yield surfaces for the proposed model. Symbols correspond to 3D unit cell FE analyses. Thin dashed lines correspond to the bulk material (non porous single crystal) obtained
from the proposed model for each studied case.
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simulation results. Optimized values are given in Table 6. Compar-
ison of these two sets of data after identification is shown in Fig. 3.
The maximum error is always less than 10% and much smaller in
many cases. Theoretical values for a; q1 and q2 are equal to 1 (see
Eq. 6). The calibrated value for q1 is close to 1:5 which is in agree-
ment with the literature in the case of an isotropic von Mises ma-
trix (see e.g. (Faleskog et al., 1998; Gao et al., 1998)). In particular a
value for q1 equal to 1:5 is very often used. The calibrated value for
a is significantly higher than the theoretical one. Note that a plays
an important role at high porosities (i.e. 5% and 10%).

4. Results and discussion

In this section, the model predictions and unit cell analyses are
compared for specific cases in order to examine the effect of crys-
tallographic orientation and porosity on the resulting yield surface.
Note that, for the sake of a nearly perfectly plastic behaviour used
in FE simulations, the limit surfaces obtained from limit analyses
could be considered as a good estimation of the yield surfaces.
Therefore, it was assumed that the limit surface is identical to
the yield surface so that in this section the‘‘yield surface’’ term
would be used to describe these two material properties.

Fig. 6. 3D yield surfaces for each of the 12 slip systems, with f ¼ 0:01: (a) for ½100� � ½011� � ½011� triaxial loading direction; (b) for ½100� � ½021� � ½012� triaxial loading
direction.

Fig. 7. Yield surfaces for the porous single crystal, with f ¼ 0:01: (a) for ½100� � ½011� � ½011� triaxial loading direction; (b) for ½100� � ½021� � ½012� triaxial loading direction.

Fig. 8. Yield surfaces for [100] main loading direction, in the case with g2 ¼ g3 ¼ g,
for various secondary loading directions, f ¼ 0:01.
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Fig. 9. Yield surfaces for the porous single crystal, in the cases of g2 fixed at 0.4, 0.727 and 1.0, with f ¼ 0:01: (a) for ½100� � ½011� � ½011� triaxial loading direction; (b) for
½100� � ½021� � ½012� triaxial loading direction.

Fig. 10. Yield surfaces for ½110� � ½110� � ½001� triaxial loading direction, with f ¼ 0:01. (a) 3D yield surfaces for all 12 slip systems; (b) 3D yield surface for the porous single
crystal. (c) Yield surface for the porous single crystal, with g2 ¼ g3 ¼ g; (d) Yield surfaces for the porous single crystal, with g2 fixed at 0.4, 0.727 and 1.0.
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4.1. Representation of the yield surface

The overall yield surface results, as in the case of a non porous
single crystal, from the intersections of the yield surfaces (12 in the
present case) for each individual slip system. It is therefore not
possible to represent the macroscopic yield surface by expressing
the von Mises stress as a function of the mean stress (i.e.
req ¼ g rmð Þ) as in the case of the Gurson model. In the following,
the yield surface will be represented by plotting (3D plot) the mac-
roscopic stress along the main loading direction 1 normalized by
the CRSS, as a function of secondary loading parameters g2 and g3:

r1=s0 ¼ gðg2;g3Þ ð22Þ

In the case of axisymmetric loading (i.e. g2 ¼ g3 ¼ g), this normal-
ized macroscopic stress is simply expressed as a function of g (2D
plot) as:

r1=s0 ¼ gðgÞ ð23Þ

4.2. Results for ½100�–½010�–½001� triaxial loading

In this section, the three triaxial loading directions (1, 2 and 3)
coincide with the h100i directions of the single crystal. The poros-

ity is equal to 1%. The resulting theroretical 12 yield surfaces (Eq. 8)
for all slip systems are plotted in Fig. 4a while Fig. 4b shows the
overall yield surface resulting from the intersection of the individ-
ual yield surfaces. In that particular loading case, it is important to
recall that the h100i loading direction family leads to the same pro-
jection of the stress vector on the four slip planes of a FCC cystal
(see Table 1). For this symmetry reason, only three distinct groups
of curves are obtained, which correspond to the three slip systems
on each slip plane (see Fig. 4a). In particular, the yield surface of
the single crystal is symmetric with respect to the g2 ¼ g3 line.
Four special loading cases to be closely investigated in the follow-
ing are indicated by colored lines (red and blue lines) in Fig. 4b: (i)
g2 ¼ g3 ¼ g, (ii) g2 ¼ 0:4, (iii) g2 ¼ 0:727 and (iv) g2 ¼ 1. Model re-
sults Eq. (8) are now compared to unit cell simulation results.

Results for the g2 ¼ g3 case are compared in Fig. 5a. In that par-
ticular case, the resulting yield surface is differentiable. This corre-
sponds to the fact that the same slip systems are activated for all
loading conditions. For this highly symmetric case, two of the three
slip systems of each slip plane play the same role and are conse-
quently active (in total eight slip systems are active). For the same
reason, similar results are also obtained for the g2 ¼ 1 case (i.e.
r1 ¼ r2) in Fig. 5b, but the active slip systems are different from
that of the previous case. However, in cases with g2 fixed to 0:4

Fig. 11. Yield surfaces for ½111� � ½211� � ½011� triaxial loading direction, with f ¼ 0:01. (a) 3D yield surfaces for all 12 slip systems; (b) 3D yield surface for the porous single
crystal. (c) Yield surface for the porous single crystal, with g2 ¼ g3 ¼ g; (d) Yield surface for the porous single crystal, with g2 fixed at 0.4, 0.727 and 1.0.
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or 0:727 (Fig. 5b), two regimes are observed on the yield surface. In
the case where g2 ¼ 0:4 (resp. g2 ¼ 0:727), only one slip system is
active on each slip plane for g3 between �0:5 and 0:4 (resp. 0:727).
For g3 above 0:4 (resp. 0:727), the active slip systems are replaced
by different ones so that the resulting yield surface presents a dis-
continuous derivative at g3 ¼ 0:4 (resp. g2 ¼ 0:727). These evolu-
tions are due to the behaviour of the matrix material only; one
can note that similar trends are observed for the non-porous single
crystal (called bulk material in the figures, see the thin dashed lines
in Fig. 5).

In all these cases, the proposed model accurately captures the
FE simulations over the whole range of investigated stress triaxial-
ities. Note that due to the low porosity level (1%), results obtained
for the porous crystal and the bulk material remain close except for
high stress triaxialities. In particular r1 !1 when g2 ! 1 and
g3 ! 1 for the bulk material whereas r1 keeps finite values for
the porous single crystal. On the other hand for pure tensile load-
ing (g2 ¼ g3 ¼ 0), both model and simulation are close to the the-
oretical value for the bulk single crystal: r1=s0 � 1=F1

s ¼
ffiffiffi
6
p

where
F1

s is the Schmid factor for ½100� loading.

4.3. Effect of secondary loading direction: ½100� � ½0ij� � ½0ji�

The effect of the secondary loading direction on the yield sur-
face of the porous single crystal is investigated for a fixed main
loading direction 1 ¼ ½100�. The secondary loading direction 3 is
set to ½011� or to ½012�. The yield surfaces for each effective slip sys-
tem of the porous single crystal are illustrated respectively in
Fig. 6a and b for these two cases. In the first case
(½100� � ½011� � ½011�), just like in the reference case (½100�–½010�–
½001�), the loading direction family h011i leads to the same Schmid
factor for every activated slip system while for the other non-acti-
vated slip systems the Schmid factor is equal to zero. Moreover, the
Schmid factors for h100i and h110i loading direction families have
the same value (Fs ¼

ffiffiffi
6
p

=6). For these reasons, only 3 groups of
yield surfaces can be identified, and the yield surface of the overall
porous single crystal (see Fig. 7a) presents exactly the same surface
as in the reference case. However non-activated slip systems lead
to different yield surfaces (compare Figs. 4a and 6a) so that the
post-yield behaviour could be different in the case where the single
crystal exhibits work-hardening.

Fig. 12. Yield surfaces for ½210� � ½120� � ½001� triaxial loading direction, with f ¼ 0:01. (a) 3D yield surfaces for all 12 slip systems; (b) 3D yield surface for the porous single
crystal. (c) Yield surface for the porous single crystal, with g2 ¼ g3 ¼ g; (d) Yield surface for the porous single crystal, with g2 fixed at 0.4, 0.727 and 1.0.
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In the second case (½100� � ½021� � ½012�), since the secondary
loading direction does not lead to the same Schmid factor for every
slip system, more numerous distinct yield surfaces are observed in
Fig. 6b, and the yield surface for the porous single crystal in this
case (Fig. 7b) is slightly different from the previous one.

Fig. 8 shows the yield surface predicted by the proposed model
with corresponding data points calculated by FE method for
g2 ¼ g3 ¼ g, for the same main loading direction ½100� and different
secondary loading directions. As shown from Eq. 21, the secondary
loading directions do not affect the predicted yield surface in this
particular diagonal case. In the case explored by Figs. 9a and b,
with fixed values for g2, the yield surfaces are slightly different
while the proposed model is able to capture the FE simulation data
with a good accuracy.

4.4. Effect of main loading direction

The effect of the main loading direction (1) is investigated in
this section. Comparisons between results obtained by the pro-
posed model and by FE unit cell simulations are shown for the fol-
lowing orientations ½110� (see Fig. 10), ½111� (see Fig. 11), ½210� (see

Fig. 12) and and finally ½125� (see Fig. 13). In this last case, the effect
of the secondary loading direction (3) is also studied.

Yield surfaces predicted by the model for main loading direc-
tions taken equal to ½110�; ½111� or ½210� significantly differ (see
Figs. 10b, 11b and 12b). In comparison to the 1 ¼ ½100� case, yield
surfaces are no longer symmetric with respect to the g2 ¼ g3 line.
As previously noted, the sharp slope changes on the yield surfaces
correspond to a change in the active slip systems. These trends are
directly due to the crystallographic nature of the matrix material.
Due to the low porosity, the difference between the yield surface
of the bulk material (see Figs. 10c/d, 11c/d and 12c/d) and that of
the porous material is only significant at high stress triaxiality lev-
els. In all cases, the model prediction and the FE unit cell results are
in very good agreement (see Figs. 10c/d, 11c/d and 12c/d, model:
lines, FE results: symbols).

All cases presented above exhibit some degree of symmetry so
that several individual slip systems may have the same yield sur-
face. In order to check the validity of the proposed model in cases
where loading has little or no symmetry with respect to the crys-
tallographic orientation, main loading along the ½125� crystal direc-
tion was investigated. For 3 ¼ ½210�, 11 different yield surfaces for

Fig. 13. ½125� loading: (a) 3D yield surfaces for each slip system for 3 ¼ ½210�, (b) 3D yield surface for the porous single crystal for 3 ¼ ½210�, (c) 3D yield surfaces for each slip
system for 3 ¼ ½ð29Þ25�, (d) 3D yield surface for the porous single crystal for 3 ¼ ½ð29Þ25�.

X. Han et al. / International Journal of Solids and Structures 50 (2013) 2115–2131 2125



Author's personal copy

the slip systems are obtained whereas for 3 ¼ ½ð29Þ25� all 12 yield
surfaces differ. The resulting theoretical yield surfaces are plotted
in Figs. 13 for both secondary loading directions. Comparisons with
FE results are shown in Fig. 14a for the g2 ¼ g3 case, in Fig. 14b for
various fixed values for g2 and 3 ¼ ½210� and Fig. 14c for various

fixed values for g2 and 3 ¼ ½ð29Þ25�. The agreement between the
model and the simulation results is excellent. Note, in particular,
that the differences between 3 ¼ ½210� and 3 ¼ ½ð29Þ25� at high
stress triaxialities are well reproduced by the model (Figs. 14 a
and c).

Yield surfaces in the particular case where g2 ¼ g3 are com-
pared in Fig. 15 for five different main loading directions. In that
particular case results for 1 ¼ ½100� and 1 ¼ ½110� coincide as well
as those for 1 ¼ ½210� and 1 ¼ ½125� as they share the same maxi-
mum Schmid factor. At low and moderate stress triaxialities the
differences between the yield surfaces is controlled by the value
of the Schmid factor for the bulk material. These differences tend
to decrease at very high triaxiality levels. Under purely hydrostatic
loads (g! 1) the model predicts a unique yield stress r1 which is
given by (solving Eq. 8 and Eq. 9 for ss ¼ req ¼ 0 and rm ¼ r1):

r1

s0
¼ 1

q2

ffiffiffiffiffiffi
20
3

r
arccosh

1þ ðq1f Þ2

2q1f

 !
ð24Þ

This limit is well verified by the FE simualtions.

4.5. Effect of void volume fraction f

The results presented above were obtained for a fixed porosity
level (1%). In this section, the model and the unit cell calculations
are compared for porosities equal to 0.5%, 1%, 2%, 5% and 10%.
For the sake of conciseness, the comparison is limited to the case
where g2 ¼ g3 for a main loading direction equal to ½100� (equiva-
lent to ½110� for g2 ¼ g3), ½111� or ½125� (equivalent to ½210� for

Fig. 14. Yield surfaces for the porous single crystal for ½125� loading, f ¼ 0:01: (a) g2 ¼ g3 ¼ g for 3 ¼ ½210� and 3 ¼ ½ð29Þ25�, (b) for 3 ¼ ½210� and g2 ¼ 0:4;0:727 and 1, (c) for
3 ¼ ½ð29Þ25� and g2 ¼ 0:4;0:727 and 1.

Fig. 15. Effect of the main loading direction 1 on the yield surface for the porous
single crystal, in the case with g2 ¼ g3 ¼ g; f ¼ 0:01.

Fig. 16. Effect of porosity from 0.5% to 10% for various main loading directions, with g2 ¼ g3 ¼ g: (a) ½100�main loading direction; (b) ½111�main loading direction; (c) ½125�
main loading direction.
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g2 ¼ g3). Results are shown in Fig. 16. Comparisons with results
corresponding to the bulk material (thin dashed lines) are also pre-
sented. It is clearly observed that, for low triaxialities, the effect of
porosity on the yield surface is rather limited so that yield surfaces
for the voided materials are very close to the curve for the bulk
material. Despite this moderate effect, FE simulations for these tri-
axiality and porosity ranges are needed to calibrate parameter a.
The original model developed in Appendix A strongly underesti-
mates the trends obtained using FE simulations with a ¼ 1
whereas the optimized value is much larger (a ¼ 6:46). At high tri-
axiality ratio, Eq. 24 appears to well represent FE simulations for
the entire porosity range and all loading directions.

4.6. Field of plastic slip activation around the hole

The unit cell computations do no provide only results at the
macroscopic scale but also fields of plastic deformation around
the hole that bring information about the deformation modes of
a hole in a single crystal. The impact of crystallography on the

shape evolution of a hole in a single crystal matrix during growth
was studied by Yerra et al. (2010) within the framework of finite
deformation crystal plasticity. Since the limit analysis provided in
the present work is limited to small strain, the shape changes are
not illustrated here. Instead, maps are now provided showing the
activation of slip systems around the hole depending on crystal ori-
entation and prescribed stress triaxiality. For that purpose, the to-
tal cumulative slip ccum is defined as the sum of all the cumulative
slip variables cs:

ccum ¼
X12

s¼1

cs ð25Þ

The field of total cumulative slip is illustrated in Fig. 17 for three dif-
ferent crystal orientations and three triaxiality levels for fixed val-
ues of porosity (1%) and mean strain. The pictures show middle
cross-sections of the unit cell in the 1–2 plane, where 1 and 2 refer
to the two first crystal directions indicated in the orientation of the
cell. The inhomogeneity of plastic slip appears clearly in these maps
with an obvious symmetry of the deformation patterns for the

Fig. 17. Fields of cumulative plastic slip ccum on all slip systems in the 1–2 plane cross-section of the unit cell, shown on non-deformed meshes, for three different orientations
and three different triaxialities for an overall plastic deformation Ep

11 ¼ 0:01. The porosity is f ¼ 0:01.
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½100� � ½010� � ½001� orientation, in contrast to the two other ones
where symmetry is broken.

Fig. 18 shows the activation of the 12 slip systems around the
hole in the case of an imposed triaxiality of 1.5, for the specific ori-
entation ½111� � ½211� � ½011� with a given overall strain level. It
turns out that all the slip systems are activated at some places,

mainly around the North and South poles on the figure where mul-
tiple slip is observed. The fact that the twelve slip systems are acti-
vated at some place in the unit cell in contrast to the corresponding
bulk single crystal is probably one reason why the von Mises
equivalent stress must be introduced in the proposed yield func-
tion (Eq. 8) in addition to the resolved shear stress.

Fig. 18. Fields of the amount of slip cs on all slip systems in the 1–2 plane cross-section of the unit cell, for the orientation ½111� � ½211� � ½011� with an imposed triaxiality
level of 1.5, shown on non-deformed meshes, for an overall plastic deformation Ep

11 ¼ 0:01. The porosity is f ¼ 0:01. The color scale is the same as in Fig. 17.
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5. Conclusion

The original contribution of the present work to the modeling of
ductile fracture in single crystals is to provide a yield function in
closed form for porous single crystals and to validate it by means
of systematic unit cell computations. It is theoretically motivated
using a variational micromechanical approach. It is formulated as
the combination of N yield criteria, N being the number of potential
slip systems in the single crystal matrix, based on the definition of
a new effective equivalent stress measure for each slip system. This
equivalent stress measure incorporates in a nonlinear way the re-
solved shear stress on the considered slip system and the equiva-
lent von Mises and mean stresses. To better match an
exponential dependence on the mean stress (which is well recog-
nized for rate-independent materials), this yield function was phe-
nomenologically extended following a procedure similar to the
GTN extension of Gurson’s model (Tvergaard and Needleman,
1984 and Leblond et al., 1994). The extension introduces three
adjustable parameters (q1; q2 and a). Unit cell simulations were
used to fit these parameters in the case of a FCC single crystal. Var-
ious stress triaxiality ratios, main loading directions and porosity
levels were considered for the unit cell simulations. In all cases,
the model was able to capture the results of the calculations with
a very good accuracy, including the effects of main loading direc-
tion, of secondary loading direction and of porosity.

Further work will include the analysis of the plastic flow rule
associated with the proposed yield function. In particular, the
validity of the normality rule Eq. 10 will be tested for this new
yield criterion. In addition, the porosity growth rate
( _f ¼ ð1� f Þtraceð _epÞ) will be investigated by comparing the results
of the model and unit cell simulations. It is well-known that crys-
tallographic aspects of plastic deformation around holes strongly
affect their growth rate, for example in H.C.P. metals, see Crépin
et al. (1996). The proposed yield function will then be used to de-
velop a set of constitutive equations for the porous single crystal
including self and cross-hardening within a finite strain frame-
work. A first application of this model will be the evaluation of
the fracture toughness properties in presence of swelling in irradi-
ated stainless steels.

Appendix A. Development of a model for voided viscous single
crystals

In this section a model is developed for viscous single crystals
containing spherical voids. The single crystal is assumed to have
a nonlinear viscous behaviour with N slip systems. Following DeB-
otton and Ponte Castañeda (1995) each slip system is associated to
a slip potential function /s defined as:

/s ¼
_c0s0

nþ 1
ss

s0

				
				
nþ1

ðA:1Þ

where _c0ð> 0Þ and s0ð> 0Þ, respectively, are the reference slip rate
and the reference flow stress of slip system s. The creep exponent
is denoted by n and ss is the resolved shear stress on the slip system
s, given by:

ss ¼ r : ms ðA:2Þ

where ms is the orientation tensor defined by Eq. 1. The overall
stress potential of the single crystal is the sum of the potentials
for all slip systems:

UðrÞ ¼
XN

s¼1

/sðssÞ ðA:3Þ

As defined in Eq. A.1, /s is a power law function which is strictly
convex.

Based on the work by DeBotton and Ponte Castañeda (1995), a
stress potential for a linear comparison single crystal is introduced
as:

ULðrÞ ¼
1
2
r : Mv : r ¼

XN

s¼1

ass2
s ðA:4Þ

where as denotes the slip system compliance. The fourth-order
compliance tensor is written as:

Mv ¼ 2
XN

s¼1

asms �ms ¼ 2
XN

s¼1

asRs ðA:5Þ

Then, according to DeBotton and Ponte Castañeda (1995) dual
potentials are defined as:

/sðssÞ ¼max
asP0
fass2

s � VsðasÞg ðA:6Þ

VsðasÞ ¼max
ssP0
fass2

s � /sðssÞg ðA:7Þ

Using Eq. A.1 together with Eq. A.7, by taking account of the convex-
ity of the viscous potential with n > 1, the function Vs can be explic-
itly expressed as:

VsðasÞ ¼
n� 1
nþ 1

_c0s0

2
2s0as

_c0

� �nþ1
n�1

ðA:8Þ

Based on this constitutive model for the single crystal, the porous
single crystal can be further described introducing a variational
characterization as proposed in Ponte Castañeda (1991); Ponte Cas-
tañeda(1992a). The effective stress potential for the ‘‘composite’’
(i.e. single crystal þ voids) is derived from the theorem of minimum
complementary potential energy, by the following relation:

UðRÞ ¼ min
rð~xÞ2S

Z
X

Uðrð~xÞÞdX ðA:9Þ

with X being the representative volume element containing voids
and the metallic matrix, R the macroscopic stress tensor defined
as the average over the total volume R ¼ hrð~xÞiX, and S the set of
Statically Admissible (S.A.) stress fields with a homogeneous stress
boundary condition on the outer boundary @X of X : rð~xÞ S.A.
() r 2 S with S ¼ fdivðrÞ ¼~0 in X and r:~n ¼ R:~n on @X} where
~n is the outer normal to the boundary, @X, of X.

Following Ponte Castañeda (1992b) and Ponte Castañeda and
Zaidman (1996), the effective potential can be estimated as:

UðRÞP max
farP0gr¼1;N

ULðRÞ � ð1� f Þ
XN

s¼1

VsðasÞ
 !

ðA:10Þ

where ULðRÞ denotes any estimate of the potential of the linear
composite. UL can be expressed as:

ULðRÞ ¼
1
2

R : M : R ðA:11Þ

where M is an estimate of the effective viscous compliance fourth
order tensor of the ‘‘composite’’. In Eq. A.10 it has been assumed
that the slip system compliance as can be considered as identical
for each slip system of the single crystal and independent of the po-
sition in X. Furthermore, the ð1� f Þ factor accounts for the fact that
only a fraction of the composite corresponds to the single crystal.
The remainder (i.e. f) corresponds to voids for which the V function
is equal to zero.

In the following, Eq. A.10 will be regarded as an equality in or-
der to obtain an estimate of the potential of the composite (Ponte
Castañeda and Zaidman, 1996). To proceed it is also necessary to
select a proper estimate of the effective stress potential of the
linear comparison single crystal (UL). In the following a Hashin–
Shtrikman lower bound will be used. In that case the effective
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viscous compliance tensor M (referred to as MHS�) is given by the
following equation (DeBotton and Ponte Castañeda, 1995):

MHS� þM�
 ��1 ¼ ð1� f ÞMv þM�½ ��1 þ f Mv þM�½ ��1 ðA:12Þ

where Mv is the compliance tensor of the voids. M� is the inverse of
the influence tensor of Hill for a spherical void. As the bulk and
shear moduli of the void are equal to zero, Eq. A.12 leads to:

MHS� ¼ 1
1� f

Mv þ f
1� f

M� ðA:13Þ

The inverse of the influence tensor of Hill can easily be computed
in the case of an isotropic compliance matrix which is expressed
as 1:

M0 ¼
1

3j0
Jþ 1

2l0
K ðA:14Þ

In the case where the matrix material can be considered as incom-
pressible (i.e. j0 !1), the tensor M� is found to be:

M� ¼ 1
4l0

Jþ 1
3l0

K 	 1
3j�

Jþ 1
2l�

K ðA:15Þ

In the following M0 (defined by the shear modulus l0 only) will be
used instead of Mv to compute M�, since no direct expression for M�

as a function of Mv is available. A suitable value for l0 must conse-
quently be used. In that case the lower bound character of the mod-
el is lost. As a first approximation, it is assumed that the deviatoric
projections of Mv and M0 are equal so that:

Mv :: K ¼M0 :: K ðA:16Þ

Noting that K :: K ¼ 5 and that Rs :: K ¼ 1
2 ; 8s, one finally obtains

from A.5 and A.14:

l0 ¼
5

2
X

s

as

ðA:17Þ

Using relation A.13, the effective stress potential of the porous lin-
ear comparison single crystal can be approximated as:

ULðRÞ ¼
1
2

R : MHS� : R ¼ 1
2

R :
1

1� f
Mv þ f

1� f
M�

� �
: R

¼ 1
1� f

X
s

asT
2
s þ fU�ðRÞ

 !
ðA:18Þ

where Ts ¼ R : ms is the macroscopic resolved shear stress of the
slip system s for the non-linear single crystal and U�ðRÞ is derived
from A.11 and A.15:

U�ðRÞ ¼ 1
2j�

R2
m þ

1
6l�

R2
eq ðA:19Þ

where Rm (resp. Req) is the mean stress (resp. von Mises stress) of
the macroscopic stress tensor R. Note that U� is expressed using iso-
tropic invariants of R because M0 is assumed to be isotropic as a
first approximation. Finally UL can be expressed as:

ULðRÞ ¼
1

1� f

XN

s¼1

as T2
s þ f

3
20

R2
m þ

2
45

R2
eq

� �� � �
ðA:20Þ

It follows that the estimate of the effective potential U can be
rewritten using A.10 and A.8 as:

UðRÞ ¼ max
farP0gr¼1;N

1
1� f

XN

s¼1

as T2
s þ f

3
20

R2
m þ

2
45

R2
eq

� �� �� �"

�ð1� f Þ
XN

s¼1

n� 1
nþ 1

_c0s0

2
2s0as

_c0

� �nþ1
n�1

#
ðA:21Þ

At this stage of the derivation it is convenient to introduce the fol-
lowing quantity:

T�s ¼
1

1� f
T2

s þ f
2

45
R2

eq þ
3

20
R2

m

� �� �1
2

ðA:22Þ

In order to maximize the right hand-side of Eq. A.21 one needs to
solve the system of equations formed by the vanishing of the partial
derivatives of the argument of the Max operator in (A.21) with re-
spect to as;8s. This leads to:

as ¼
_c0

2s0

T�s
s0

� �n�1

ðA:23Þ

Introducing this solution into Eq. A.21 leads to the following expres-
sion for U:

UðRÞ ¼ ð1� f Þ
X

s

_c0s0

nþ 1
T�s
s0

				
				

nþ1

	
X

s

/sðT�s Þ ðA:24Þ

Based on this equation, effective slip systems can be attributed to
the homogenized porous single crystal whereby T�s can be inter-
preted as an effective scalar resolved stress acting on each slip sys-
tem. Rate independent plasticity is obtained for n! þ1. The yield
surface for each slip system is then expressed as: T�s � s0 ¼ 0.
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