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Extensions of classical homogenization methods are presented that are used to replace a composite material by an effec-
tive generalized continuum model. Homogeneous equivalent second gradient and micromorphic models are considered,
establishing links between the macroscopic generalized stress and strain measures and the fields of displacement, strain
and stress inside a volume element of composite material. Recently proposed non-homogeneous boundary conditions to
be applied to the unit cell, are critically reviewed. In particular, it is shown that such polynomial expansions of the lo-
cal displacement field must be complemented by a generally non-periodic fluctuation field. A computational strategy is
introduced to unambiguously determine this fluctuation. The approach is well-suited for elastic as well as elastoplastic
composites.
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1 Introduction

Generalized continua encompass higher grade media that rely on the introduction of higher order gradients of the displace-
ment field or of some constitutive variables characterizing plasticity, damage, etc., and higher order continua that resort to
additional independent kinematic or constitutive degrees of freedom. Archetypes of each type of these enhanced continuum
theories are the strain gradient theory by Mindlin [42], on the one hand, and the micromorphic model by Eringen [15], on
the other hand. A whole hierarchy of higher order and higher grade continua is now available to model size effects in the
mechanical behaviour of materials and structures [20, 24, 31]. The micromorphic model incorporates 9 additional degrees
of freedom in the three-dimensional case that represent the full rotation and distortion of a triad of directors attached to each
point. It represents one of the most general formulation that can be used to address the size-dependent linear and non-linear
behaviour of various materials, like solid foams as well as porous crystalline solids [13, 43].

Two major obstacles to the use of such sophisticated continuum models are the physical interpretation of the additional
degrees of freedom and the identification of the numerous additional material parameters arising in the constitutive functions
of the model. Generalized continua are very often referred to as media with microstructure without giving precisely the
link between the phenomenological constitutive equations and the detailed microstructure of the material. The mechanics
of heterogeneous materials and homogenization methods are widely used to derive the effective properties of classical
Cauchy materials based on the description of a representative volume element. Extension of these methods to generalized
continua would establish clear definitions of the macroscopic degrees of freedom and provide a systematic way of deriving
additional macroscopic materials parameters. Homogenization techniques already exist to construct 1D Cosserat beam
models and 2D Mindlin plate models [1]. In the case of 3D generalized continua, it has been proposed in [17, 18, 28] to
construct an effective generalized continuum model starting from a heterogeneous classical Cauchy material by means of
extended homogenization methods. These homogenization schemes must be clearly distinguished from another research
topic which consists in considering a generalized continuum model at both the microscopic and macroscopic levels. For
instance, homogenization of Cosserat composites was considered in [21, 39, 51]. The present work concentrates on the
construction of an overall strain gradient or micromorphic continuum from a microscopic heterogeneous Cauchy material.
Such a generalized continuum approach is necessary when significantly high strain gradients develop at the macroscopic
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scale, more precisely, when the wave length of variation of the macroscopic fields is not sufficiently large compared to the
size of the heterogeneities.

For that purpose, quadratic boundary conditions to be applied on a RVE were first proposed in [22, 28] to construct an
effective second gradient and Cosserat overall continuum, respectively. They represent extensions of the classical affine
conditions used in classical homogenization theory [6]. They were used to identify higher order stiffness, typically bending
stiffnesses, that are necessary to account for fiber size effect in composites under significant macroscopic strain gradients,
in [2,8,9,11,44,48]. Cosserat approaches are particularly well-suited to describe the effective behaviour of civil engineering
and granular materials, as shown in [5, 27, 47, 50].

Such higher order homogenisation schemes have been used in so-called FE2 methods for which the constitutive model
at each material of a computed structure is replaced by the resolution of a boundary value problem on the unit cell of
the underlying heterogeneous material. The method is computationally very expensive but makes it possible to address
nonlinear problems without writing explicit constitutive laws in the generalized continuum model. In [16], the Cosserat
model is used at the macro-level to represent a fiber matrix composite and the quadratic and cubic boundary conditions
proposed in [22] are applied to each unit cell. In the references [25,36,37], the macroscopic medium is regarded as a strain
gradient continuum so that quadratic boundary conditions are sufficient. More recently, a micromorphic overall continuum
was considered in [19, 32, 33] which represents currently the most general extension of classical homogenization models.

In most cases however, the proposed extended homogenization procedures remain heuristic and several questions are
still pending: existence of a representative volume element in the presence of non-homogeneous boundary conditions,
properties of the local fluctuation field in the case of a polynomial macro-field, as recently addressed by [52], and the
contribution of this fluctuation in the extended Hill–Mandel condition. The objective of the present work is to illustrate that
the application of polynomial loading conditions leads to a converged and well-defined energy state of the unit cell that can
be used to identify effective properties of a homogeneous generalised continuum. The deviation of the local field from a
polynomial distribution will be characterized in order to assess the contribution of this fluctuation to the work of internal
forces of the effective medium. We do not address the validation of the approach since it has already been illustrated in the
case of multilayered composites and other microstructures in [22, 33].

The article is organised as follows. Second section discusses the available homogenization techniques to construct an
effective second gradient model starting from a Cauchy composite material, and points out their current shortcomings.
In Sect. 3, the approach is generalized to overall micromorphic media. An extended polynomial Ansatz is proposed to
prescribe the overall generalized strain measures to the unit cell. A computational strategy is described in Sect. 4 to define
the notion of representative volume element in the presence of non-homogeneous boundary conditions for both elastic and
elastoplastic composite materials.

Intrinsic notations are used throughout this work but the index notations is explicited at places to avoid any misun-
derstanding. In particular, scalars, vectors, tensors of second, third, fourth, and fifth ranks are denoted by a, a , a∼, a∼, a≈, a∼∼

,

respectively. Contractions are written as:

a∼ : b∼ = aijbij , a∼
... b∼ = aijkbijk, a≈ :: b≈ = aijklbijkl (1)

using the Einstein summation rule for repeated indices. The gradient operators ∇x or ∇X are introduced when the functions
depend on microscopic coordinates x or macroscopic coordinates X . The following notation is used:

U ⊗ ∇X = Ui,j e i ⊗ e j , with Ui,j =
∂Ui

∂Xj
, (2)

u ⊗ ∇x = ui,j e i ⊗ e j , with ui,j =
∂ui

∂xj
, (3)

where (e i)i=1,2,3 is a Cartesian orthonormal basis.
Throughout this work, the analysis is limited to the small deformation framework.

2 Second gradient homogenization

The objective of the homogenisation method is to replace a micro-heterogeneous Cauchy material V∞ by a homogeneous
equivalent medium with material point global coordinates X . It is assumed that a volume element V (X ), of volume V ,
can be attached to each material point X . The points in V (X ) are characterised by the local coordinates x . For simplicity,
the volume elements V (X ) are assumed to have the same shape. Each can be obtained by translation from a given reference
unit cell V (0 ).
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2.1 Second gradient model and asymptotic multiscale expansion method

The second gradient model relies on the introduction of the first and second gradient of the displacement field, U (X ), in
the continuum model. In particular, the work density of internal forces takes the following form

p(i)(U ) = σ∼ : U ⊗ ∇X + M∼
... U ⊗ ∇X ⊗ ∇X , (4)

where σ∼ is the symmetric simple stress tensor and M∼ the hyperstress or double stress tensor which is symmetric with
respect to its two last indices. Note that there is a strict equivalence between the strain gradient and the second gradient of
displacement models [42]. The stress tensors fulfill the following balance of momentum equation

τ∼ · ∇X = 0, with τ∼ = σ∼ − M∼ · ∇X (5)

in the absence of volume forces nor acceleration. Constitutive relationships relate the first and second gradient of displace-
ment to both stress tensors.

Multiscale asymptotic expansion methods have been used in [7] to derive such constitutive equations in the case of
linear elastic composites with periodic microstructures. For that purpose, the local field u (x ) inside the volume element is
expanded in the form

u (x , X ) = u 0(x , X ) + εu 1(x , X ) + ε2u 2(x , X ) + ε3u 3(x , X ) + . . . , (6)

where ε = l/L is a small parameter defined as the ratio of the typical size l of heterogeneities in the composite and the wave
length L of variation of the macroscopic fields. Within this framework, the local coordinates represent a zoom x = X /ε
around the material point X . The fields u i can be shown to be solutions of a sequence of boundary value problems on the
unit cell yielding

u (x , X ) = U (X )+εA∼ 1
(x ) : U ⊗∇X +ε2A≈ 2(x )

... U ⊗∇X⊗∇X+ε3A≈ 3(x ) :: U ⊗∇X⊗∇X⊗∇X +. . . ,

(7)

where the Ai tensors are localization tensors computed from the individual boundary value problems. They are periodic
functions of the local coordinates. Applying the local constitutive law of classical linear elasticity inside the unit cell
and averaging the classical Cauchy stress delivers the macroscopic higher order elastic moduli of the second gradient
macroscopic medium.

In fact, the multiscale expansion method provides the effective constitutive law linking the stress τ∼ to the first, second,
and third gradients of the macro-displacement field, as it should be. Indeed, if σ∼ and M∼ are linearly related to the first
and second displacement gradients, it follows from the definition in (5) that τ∼ must also depend on the third displacement
gradient. This fact has not been clearly recognized in the literature.

2.2 Requirements for second gradient homogenization

In the context of classical homogenization theory, for instance according to multiscale asymptotic methods, the macroscopic
displacement degrees of freedom at material point X are defined as the mean value of the local displacement field with
respect to a unit cell V (X )

U (X ) = 〈u (x )〉V (X ) =
1
V

∫
V (X )

u (x ) dV =
1
V

∫
V∞

u (x )HV (x − X ) dV, (8)

where HV is the indicator function associated with the domain V (0 ), taking the value 1 for points inside V (0 ) and 0
otherwise. As a consequence, and assuming sufficient regularity of the local displacement field, we have

U ⊗∇X =
∂U

∂X
=

1
V

∫
V∞

u (x )⊗ ∂HV

∂X
(x −X ) dV =

1
V

∫
∂V (X )

u (x )⊗n dV =
1
V

∫
V (X )

∂u

∂x
dV,

(9)

where n is the outer normal vector of the boundary of domain V (X ), see [40] for a detailed discussion of such averaging
theorems. As a result

U ⊗ ∇X = 〈u ⊗ ∇x〉V (X ). (10)
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Similarly, assuming again sufficient regularity of the local displacement field, we have

U ⊗ ∇X ⊗ ∇X = 〈u (x ) ⊗ ∇x ⊗ ∇x〉. (11)

A heterogeneous material can be replaced by a homogeneous second gradient model in the sense that it exists an equiv-
alence in energy between both media in terms of the work of internal forces associated with each continuum

〈σ∼ : ε∼〉V (X ) = Σ∼ (X ) : E∼ (X ) + M∼ (X )
... K∼ (X ). (12)

This represents an extension of the Hill–Mandel condition, well-known in classical homogenization theory [46].
The conditions (10,11,12) are the sole requirements that a generalised homogenization procedure should fulfill. In par-

ticular, prescription of generalised boundary conditions on the unit cell should not contradict the relationships (10,11)
between local and overall gradient fields. Also, explicit definitions of the higher order stresses should be compatible with
the condition (12).

2.3 Quadratic Ansatz

Quadratic Ansätze have been initially proposed in [14, 17, 22, 28, 38] to extend the usual affine conditions of loading of
material volume element in order to incorporate strain gradient effects in the homogenization procedure. Such polynomial
developments represent an alternative to multiscale asymptotic expansions to derive effective higher order properties, with
the advantage that they can be used in a straightforward manner, irrespective of the local linear or nonlinear behaviour of
the composite material.

Let us first consider a quadratic displacement field prescribed to the whole material volume element V

u ∗(x ) = E∼ · x +
1
2

D∼ : (x ⊗ x ), u∗
i = Eijxj +

1
2

Dijkxjxk, ∀x ∈ V (X ), (13)

where E∼ is constant second order tensor and D∼ , having the symmetry properties Dijk = Dikj , is a constant third order
tensor. When X is taken as the geometric centre of V (X ), we compute successively

〈u ∗(x ) ⊗ ∇x〉V (X ) = E∼ + D∼ · X , 〈u ∗(x ) ⊗ ∇x ⊗ ∇x〉V (X ) = D∼ . (14)

Prescribing the complete displacement field (13) can be used as an extension of the classical Voigt and Taylor homogeniza-
tion models, for which the mean strain only is prescribed, in order to estimate effective second gradient properties. However,
as in the classical case dealing with the homogeneous strain approximation, these estimated properties are generally too
stiff. Accordingly, the quadratic conditions may be restricted to the boundary ∂V (X ) of the unit cell

u (x ) = u ∗(x ) = E∼ · x +
1
2

D∼ : (x ⊗ x ), ∀x ∈ ∂V (X ). (15)

This prescription entirely determines the mean strain applied to the unit cell, by virtue of the Gauss theorem

〈u (x ) ⊗ ∇x〉V (X ) =
1
V

∫
∂V (X )

u (x ) ⊗ n dS =
1
V

∫
∂V (X )

u ∗(x ) ⊗ n dS

=
1
V

∫
V (X )

u ∗(x ) ⊗ ∇xdV =
1
V

∫
V (X )

(E∼ + D∼ · x )dV = E∼ + D∼ · X . (16)

However, nothing can be said in general about the average value of the second gradient of the displacement in the material
volume element

〈u (x ) ⊗ ∇x ⊗ ∇x〉V (X ) =
1
V

∫
∂V

(u ⊗ ∇x) ⊗ n dS (17)

since the gradient of the local displacement field is not a priori known nor controlled at the boundary from the Dirichlet
conditions solely. At this volume element scale, the only continuous variable is x , we do not consider the macroscopic field
variable X . As a result, the use of the Dirichlet quadratic boundary conditions enables the control of the mean strain but
gives only partial information on the value of its gradient (u ⊗ ∇x)(x ) at the boundary. Accordingly, no information can
be gained on the expected value of the average second gradient and the mean second gradient cannot be directly controlled
by the coefficients of the quadratic polynomial. As a result, the condition 〈u ⊗ ∇x ⊗ ∇x〉V = D∼ must be regarded as an
additional constraint to be enforced when solving the boundary value problem on the material volume element. Up to now,
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to our knowledge, no numerical scheme has been proposed to enforce this additional constraint in an exact way. This will
be further discussed in Sect. 2.5.

In classical homogenization, it is well-known that homogeneous strain based boundary conditions on the unit cell of a
periodic medium lead to too stiff apparent moduli [34]. Periodicity boundary conditions introducing a fluctuation which is
periodic at the boundary are the best-suited conditions. It is expected that such a fluctuation is also necessary in the case of
quadratic loading conditions. A fluctuation field should therefore be added in the form

u (x ) = E∼ · x +
1
2
D∼ : (x ⊗ x ) + v (x ), ui = Eijxj +

1
2
Dijkxjxk + vi, ∀x ∈ V (X ), (18)

where v (x ) is the fluctuation field. The fluctuation field may then contribute to the mean strain and mean strain gradient

〈u (x ) ⊗ ∇x〉V (X ) = E∼ + D∼ · X + 〈v (x ) ⊗ ∇x〉V (X ), (19)

〈u (x ) ⊗ ∇x ⊗ ∇x〉V (X ) = D∼ + 〈v (x ) ⊗ ∇x ⊗ ∇x〉V (X ). (20)

If the fluctuation is periodic, meaning that it takes the same values at homologous points of the unit cell boundary, the mean
first and second gradients of the fluctuation field vanish and the mean strain and strain gradient can be controlled. Such
an assumption is compatible with classical first order homogenization characterized by the prescription of the E∼ tensor.
However there is in general no reason for assuming such a periodicity requirement in the presence of overall strain gradient
loading, as discussed in [52]. On the other hand, the periodicity condition on the fluctuation field must be accompanied
by corresponding static conditions in order to obtain a well-posed boundary value problem. In classical homogenization
theory, the anti-periodicity of the traction vector at homologous points is required

v (x −) = v (x +), t (x +) = −t (x −), (21)

where t = σ∼
± ·n± is the traction vector and x ± are homologous points at the boundary. When a strain gradient is applied

to a unit cell, the traction vectors cannot be expected to be anti-periodic any longer in general.
When the local field of displacement is expressed in the form (18), which is always possible, the extended Hill–Mandel

condition (12) becomes

〈σ∼(x ) : ε∼(x )〉V (X ) = 〈σ∼(x )〉V (X ) : E∼ + D∼
... 〈σ∼(x ) ⊗ x 〉V (X ) + 〈σ∼(x ) : v (x ) ⊗ ∇x〉V (X ). (22)

When the contribution 〈σ∼(x ) : v (x ) ⊗ ∇x〉V (X ) of the fluctuation to the overall work of internal forces vanishes, one is
entitled to propose the following definitions of the overall generalised strain and stress tensors

〈u (x ) ⊗ ∇x〉V (X ) = E∼ , K∼ (X ) = 〈u (x ) ⊗ ∇x ⊗ ∇x〉V (X ) = D∼ , (23)

Σ∼ (X ) := 〈σ∼(x )〉V (X ), M∼ (X ) := 〈σ∼(x ) ⊗ x 〉V (X ) (24)

thus relating the hyperstress tensor to the first moment of the stress distribution of the Cauchy stress field inside the material
volume element. When the fluctuation field v is periodic, its contribution to the overall work of internal forces indeed
vanishes, so that the previous stress and strain definitions hold. This will be the case if D∼ = 0, i.e. within the classical
homogenization framework. However, in general, the fluctuation is not periodic and there is also no reason for expecting
the fluctuation contribution to the energy to vanish. In fact, the identifications (23) and (24) hold only if the quadratic
expansion is imposed to the whole volume, as in (13). When the polynomial is prescribed at the boundary according to
(18), nothing ensures that 〈u (x ) ⊗ ∇x ⊗ ∇x〉V (X ) = D∼ , as discussed earlier.

So, in general,

〈σ∼(x ) : v (x ) ⊗ ∇x〉V (X ) �= 0. (25)

This contribution will be investigated in Sects. 4.4 and 4.5. As a result, the overall stress tensors can be defined only in an
implicit way by (22).

Also, additional conditions on the fluctuations are required if the mean strain gradient is to be prescribed on the unit cell.
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2.4 Links with couple stress and Cosserat approaches

The authors in [8, 9, 17, 44] adopt a restricted version of the polynomial (13) which reads, in the 2D case

u∗
1 = −K31x1x2 − K32

2
x2

2, u∗
2 = K32x1x2 +

K31

2
x2

1, (26)

where the matrix Kij can be interpreted as the overall curvature tensor of an effective couple stress or Cosserat medium,
as proved in [22]. The couple stress theory is a special case of the second gradient model for which only the effect of
the gradient of the material rotation, i.e. the skew-symmetric part of the displacement gradient, is taken into account. The
Cosserat theory is obtained when the microrotation differs from the material rotation and is treated as independent degree
of freedom. The Cosserat theory departs from the couple stress theory in the same way as the Timoshenko beam from the
Euler-Bernoulli beam, in the 1D case. As a result, the Cosserat model possesses an additional generalized strain measure
which is the difference between the microrotation and the material rotation. It has been shown in [10, 22] that this relative
rotation can be prescribed to the unit cell by means of a third order polynomial that takes the following form in the 2D case

u∗
1 = D̂(x3

2 − 3x2
1x2), u∗

2 = −D̂(x3
1 − 3x2

1x2), (27)

with a single additional coefficient D̂.
In the 3D case, it was proved in [18] that a fourth order polynomial is required to control the trace of the curvature tensor

which vanishes in the 2D case and that cannot be prescribed by means of the quadratic polynomial.

2.5 Limitations of existing approaches

Analysis of available literature shows that it is difficult in general to fulfill the simultaneous conditions on the fluctuation
ensuring that

〈u (x ) ⊗ ∇x ⊗ ∇x〉V (X ) = D∼ and 〈σ∼(x ) : v (x ) ⊗ ∇x〉V (X ) = 0. (28)

In the references [28,33,53], non homogeneous conditions are directly prescribed at the boundary of the unit cell, according
to Eq. (15). As a result of the previous discussion, the mean second gradient cannot be actually controlled. In other words,
there is no direct relation between the average second gradient and the coefficients of the quadratic polynomial in (15). It
follows that the definition of the higher order stress (24) remains approximate.

In the special case of the bending polynomial (26) and for the specific microstructures studied in [9, 16, 22], the period-
icity requirement (21) seems to be sufficient and the numerically found fluctuation field does not contribute to the overall
energy. Under bending conditions, and for special symmetries of the unit cell, indeed, the anti-periodicity conditions (21)
for the traction vector are still relevant. It is only approximately the case for the third order polynomial term (27) required
for the full Cosserat model.

In the FE2 strategy used in [25, 36, 37], it is essential that the requirements (28) be fulfilled. That is why these authors
clearly address the question of the realization of conditions (28). They adopt the periodicity conditions (21), together with
an heuristic additional linear constraint on the fluctuation v (derived from the heuristic definition (A5) in [36]). However,
this additional condition does not ensure that the mean second gradient of the displacement field is controlled by D∼ in (28),
as recognized by the authors. On the other hand, the condition of anti-periodic traction vector, tacitly used in these works,
warrants that the fluctuation does not contribute to the overall work of internal forces, which is the second condition in (28)
(condition (34) in [36]). However this anti-periodicity condition must be abandoned in the presence of overall stress and
strain gradients.

The fact that usual periodic conditions (21) cannot be used in the context of second gradient homogenisation has been
seen by the authors in [52] who instead propose a combination of linear and periodic perturbation terms suggested by the
observation of correctors in the multiscale asymptotic expansion homogenisation method [7]. However this perturbation,
though improved compared to the periodic assumption, remains approximate and confined to the use in the context of linear
elasticity, for which asymptotic methods remain tractable.

Accordingly, no theoretical nor numerical scheme seems to be available in literature that is able to strictly enforce the
requirements (28). Only approximate schemes have been proposed. In the present work, we will not try to enforce these
conditions. Instead, using the polynomial as loading conditions in a representative volume element, we will record the
evolution of the generalised contributions. This will allow for the study of the properties of the perturbation field and for
the identification of effective behaviour according to an implicit scheme.
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96 S. Forest and D. K. Trinh: Generalized continua and homogenisation methods

3 Micromorphic overall modelling of heterogeneous materials

The micromorphic theory first proposed by [15, 41] introduces microdeformation degrees of freedom represented by the
generally non-symmetric second order tensor field, χ

∼
(X ), in addition to the displacement degrees of freedom, U (X ). It

is assumed that the development of microdeformation gradient

K∼ (X ) = χ
∼
(X ) ⊗ ∇X (29)

is associated with internal work and energy storage. There is also an energetic price to pay for the microdeformation to
depart from the macrodeformation, characterised by the relative deformation measure

e∼(X ) = U (X ) ⊗ ∇X − χ
∼
(X ). (30)

The micromorphic model encompasses the strain gradient theory as a limit case if the internal constraint

χ
∼
≡ U ⊗ ∇X ⇐⇒ e∼ ≡ 0 (31)

is enforced [20].

3.1 Definition of the micromorphic degrees of freedom

A kinematic view of the micromorphic model has been proposed by Germain [26] that we rephrase here. In a theory
which takes microstructure into account, from the macroscopic point of view of continuum mechanics, each particle is still
represented by a material point X , but its kinematic properties are defined in a more refined way. At the microscopic level
of observation, a particle appears itself as a continuum V (X ) of small extent. Let us call X its center of mass and x a
point of V (X ). As V (X ) is of small extent, it is natural to look at the Taylor expansion of the local displacement u (x )
with respect to x − X and also, as a first approximation, to stop this expansion with the terms of degree 1

u (x , X ) = U (X ) + χ
∼
· (x − X ). (32)

The physical significance of this assumption is clear: one postulates that one can get a sufficient description of the relative
motion of the various points of the particle if one assumes that this relative motion is a homogeneous deformation. For
a given local field u (x , X ), in short u (x ), instead of explicitly performing the aforementioned Taylor expansion, it
has been proposed in [19, 22, 33] to determine the homogeneous deformation field (32) that is the closest to the actual
displacement field, in the sense of the following minimization problem

min
U (X ),χ

∼
(X )

∫
V (X )

∣∣∣
∣∣∣u (x ) − U (X ) − χ

∼
(X ) · (x − X )

∣∣∣
∣∣∣2 dV (33)

for a given material point X . The minimization procedure is straightforward and delivers, taking X as the centre of V (X )

U (X ) = 〈u (x )〉V (X ), (34)

χ
∼
(X ) = 〈(u (x ) − U (X )) ⊗ (x − X )〉V (X ).A∼

−1 = 〈u (x ) ⊗ (x − X )〉V (X ).A∼
−1 (35)

with

A∼ = 〈(x − X ) ⊗ (x − X )〉V (X ). (36)

The relation (34) is known from classical homogenization methods and defines the macroscopic displacement as the zeroth
moment of the local displacement field. Formula (35) has the merit to unambiguously define the macroscopic micromorphic
degrees of freedom as the first moment of the local displacement field, tensor A∼ being the quadratic moment tensor of
the unit cell. This represents an enhancement of the macroscopic description that incorporates additional effects of the
microstructures than conventional schemes.

If the displacement field is a linear transformation, u = E∼ · x , the microdeformation is computed as

χij = 〈uixk〉A−1
kj = 〈Eilxlxk〉A−1

kj = Eil〈xlxk〉A−1
kj = Eij (37)

so that the microdeformation coincides with the macro-deformation E∼ . In particular, if a rigid body motion is applied to
the unit cell, the microdeformation will reduce to the applied rotation, as it should be.
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3.2 Higher order strain measures

The mechanical theory requires the evaluation of the macroscopic gradients of the degrees of freedom. The macroscopic
gradient of the displacement field is still given by the average (10). The gradient of the microdeformation (29) is computed
using the definition (35) as follows

Kijk =
∂

∂Xk

(
〈(ui − Ui)(xl − Xl)〉A−1

lj

)

= 〈 ∂

∂xk
((ui − Ui)(xl − Xl))〉A−1

lj + 〈(ui − Ui)(xl − Xl)〉 ∂

∂Xk
A−1

lj

= 〈ui,k(xl − Xl)〉A−1
lj + 〈(ui − Ui)〉A−1

kj + 〈(ui − Ui)(xl − Xl)〉A−1
lj,k. (38)

Taking (34) into account, and assuming that A∼ does not vary from material point to material point, the microdeformation
gradient takes the simple form

K∼
T (X ) = 〈u (x ) ⊗ ∇x ⊗ (x − X )〉 · A∼ −1, Kijk = 〈ui,k(xl − Xl)〉A−1

lj , (39)

where transposition of the third rank tensor is applied to the last two indices. Accordingly, the microdeformation gradient
can be interpreted as the first moment of the distribution of the local displacement gradient.

The relative deformation must also be evaluated and takes the form of the difference

e∼(X ) = 〈u (x ) ⊗ ∇x〉V (X ) − 〈u (x ) ⊗ (x − X )〉V (X ) · A∼ −1. (40)

When the displacement field u is a linear transformation, inclusive rigid body motion, both the relative deformation and
the microdeformation gradient vanish, as it should be.

3.3 Polynomial Ansatz

Prompted by the discussion in Sect. 2.4, we consider the following polynomial Ansatz of degree 4

u∗
i (x ) = Eijxj +

1
2

Dijkxjxk +
1
3
Dijklxjxkxl +

1
4
Dijklmxjxkxlxm, ∀x ∈ V (0) (41)

that is written in the following intrinsic form

u ∗(x ) = E∼ ·x +
1
2

D∼ : (x ⊗x ) +
1
3

D≈
... (x ⊗x ⊗x ) +

1
4

D∼∼
:: (x ⊗x ⊗x ⊗x ), ∀x ∈ V (0), (42)

where the coefficients are tensors of the ranks 2 to 5.
The macroscopic micromorphic strain measures are now computed successively for such a polynomial field on the

reference unit cell V (0)

〈u ∗ ⊗ ∇x〉V (0) = E∼ + D≈ : A∼ , (43)

χ
∼

= 〈u ∗ ⊗ x 〉V (0) · A∼ −1 = E∼ +
1
3

D≈
... A≈ · A∼ −1, χij = Eij +

1
3

DipqrApqrkA−1
kj , (44)

K∼
T = D∼ + D∼∼

... A≈ · A∼ −1, Kipq = 〈ui,qxr〉V (0)A
−1
rp = Diqp + DiqklmAklmrA

−1
rp . (45)

These simple formula hold if the coordinate system is such that 〈x 〉 = X = 0 , and that the means 〈xi〉, 〈xixjxk〉, and
〈xixjxkxlxm〉 identically vanish. The fourth order geometric moment A

≈
of the unit cell has been introduced

A≈ = 〈x ⊗ x ⊗ x ⊗ x 〉V (0). (46)

It is interesting to notice that the relative deformation is related only to the third order polynomial

e∼ = D≈ : A∼ − 1
3
D≈

... A≈ · A∼ −1. (47)
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The formula (43) to (45) set direct linear relationships between the coefficients of the polynomial and the strain measures
of the effective micromorphic medium. They were used in [33] to prescribe a given curvature K∼ or relative deformation
to the unit cell. However the number of coefficients in the polynomials generally differs from the number of components
of the generalized strain measures. For instance, the microdeformation gradient Kipq cannot be controlled solely by the
coefficients Dipq of the quadratic polynomial since Dipq is symmetric with respect to the last two indices contrary to Kipq .
The selection of the relevant higher order polynomial coefficients remains to be done. In the present contribution, we will
only consider the coefficient Dijk and some coefficients of Dijkl.

However, the polynomial (42) will usually not be applied to the whole volume but instead at the boundary ∂V of a given
heterogeneous material volume element V

u (x ) = E∼ · x +
1
2
D∼ : (x ⊗ x ) +

1
3
D≈

... (x ⊗ x ⊗ x ) +
1
4

D∼∼
:: (x ⊗ x ⊗ x ⊗ x ), ∀x ∈ ∂V. (48)

In that case, the relation (43) is still valid but (45) must be modified. Note that the microdeformation cannot be controlled
from the displacement prescribed at the boundary. The overall microdeformation gradient can be computed knowing the
displacements prescribed at the boundary, using the same special coordinate system as previously, and choosing a constant
translation such that U (0) = 0

Kipq =
1
V

A−1
rp

∫
V (0)

ui,qxr dV =
1
V

A−1
rp

∫
V (0)

(uixr),q dV − 1
V

A−1
qp

∫
V (0)

ui dV

=
1
V

A−1
rp

∫
V (0)

(uixr),q dV =
1
V

A−1
rp

∫
∂V (0)

uixrnq dS

=
1
V

A−1
rp

∫
∂V (0)

u∗
i xrnq dS =

1
V

A−1
rp

∫
V (0)

u∗
i,qxr dV +

1
V

A−1
qp

∫
V (0)

u∗
i dV (49)

so that the expression differs from (45) by the mean value of u ∗. We find

K∼
T = D∼ + D∼∼

... A≈ · A∼ −1 + 1
2 D∼ : A∼ ⊗ A∼

−1 + 1
4 D∼∼

:: A≈ ⊗ A∼
−1, (50)

Kipq = Diqp + DiqklmAklmrA
−1
rp + 1

2 DijkAjkA−1
qp + 1

4 DijklmAjklmA−1
qp . (51)

Finally, the real local field will be the superposition of the polynomial and of a perturbation

u (x ) = u ∗(x ) + v (x ). (52)

Fig. 1 (online colour at: www.zamm-journal.org) Finite Element mesh of a 1 × 1 unit cell (left), of a 3 × 3 assembly of
cells (middle) and of 9 × 9 group of cells (right). The matrix phase is in grey and the inclusions are blue. The red colour
is used to locate the central unit cell.
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The fluctuation leads to additional contributions to the micromorphic measures that are obtained by substituting v to u in
the formula (35), (39), and (40). These contributions do not vanish in general.

4 Representative volume element for polynomial Dirichlet conditions

4.1 Convergence of the energy for quadratic and cubic Ansätze in linear elastic media

The method consisting in increasing the number of unit cells in the considered volume of a periodic microstructure, sub-
jected to polynomial boundary conditions, as illustrated in Fig. 1, has been utilized in [35] in order to show that the identified
effective higher order moduli do depend on this number. We will use this numerical method in a quite different way. We
consider assemblies of N ×N unit cells. The number N is increased in order to apply the polynomial boundary conditions
as remotely as possible from a central unit cell and reach a representative volume element size for which the energy state of
the central unit does not vary any more. In that way, we are able, first, to check if such a converged state exists for several

1x1 5x5 9x9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

1x1 3x3 9x9

1x1 3x3 9x9

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

Fig. 2 (online colour at: www.zamm-journal.org) Normalised strain energy field W (x )/W in the central unit cell when applying
quadratic Dirichlet boundary conditions (15) at the remote boundary of a N × N group of cells, for D111 = 1 mm−1 (top), D112 =

1 mm−1 (middle), D122 = 1 mm−1 (bottom). The considered material is the composite of Fig. 1.
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kinds of polynomials, and, second, to fully characterize the deviation of the actual displacement field from the applied
polynomial field.

As an example, a periodic composite is considered with the unit cell of Fig. 1 (left) consisting of a square cell with a
square inclusion at the center. Assemblies of 3× 3 and 9× 9 cells are also illustrated in Fig. 1. Both materials are assumed
to behave elastically, the grid material being the hard phase (Young’s modulus E = 200000 MPa), whereas the inclusions
are soft (E = 20000 MPa). The Poisson ratio is identical for both materials: ν = 0.3. The volume fraction of inclusions is
20%. The edge length of the unit cell is 1 mm. Larger assemblies are multiples of this length. Plane strain conditions are
enforced in the following finite element computations. Eight-node quadratic square elements, with nine Gauss points, are
used throughout this work.

The outer boundary of assemblies of 1 × 1, 3 × 3, 5 × 5, . . . , 9 × 9 cells has been subjected to the quadratic Dirichlet
boundary conditions from (15) by successively setting D111 = 1 mm−1, D112 = 1 mm−1, D122 = 1 mm−1, the remaining
coefficient being set to zero. These coefficients are the relevant ones for the 2D case. In Fig. 2, we show the field of
normalized elastic work W (x )/W , where W (x ) = σ∼(x ) : ε∼(x ) is the local work of internal forces and W = 〈σ∼ : ε∼〉9×9

is the average elastic work in the central cell of the 9 × 9 assembly, as a consequence of the non-homogeneous Dirichlet
conditions. It turns ouht that, for the three loading conditions, there exists a converged field of elastic energy in the central
cell. This stable state is obtained for the 5 × 5 or larger assemblies. The quadratic conditions induce strong boundary layer
effects that do not disturb the field in the central cell if the outer boundary is remote enough. This property is akin to the
classical notion of representative volume element.

As shown by the deformed states of Fig. 2(left), the edges of the outer boundary remain straight or become parabolic.
In contrast, the edges of the central cells are no longer straight lines nor parabolic but exhibit an additional waviness
corresponding to a perturbation v (x ) of the polynomial field. Note in particular the type of bending deformation induced
by the loading D112.

We have also checked that there exists a converged state when the cubic polynomial (27) is prescribed at the outer
boundary as shown in Fig. 3.

1x1 7x7 9x9

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

Fig. 3 (online colour at: www.zamm-journal.org) Normalised strain energy field W (x )/W in the central unit cell when
applying the cubic Dirichlet boundary conditions (27) at the remote boundary of a N × N group of cells, for D̂ = 1. The
considered material is the composite of Fig. 1.

Table 1 Overall microdeformation gradient components induced on the central unit cell by the successive application of
quadratic polynomial coefficient at the remote boundary of a cell assembly.

D111 = 1 mm−1 D112 = 1 mm−1 D122 = 1 mm−1

K111 0.037 0. −0.276
K112 0. 1.070 0.

K122 −0.434 0. 0.474
K211 0. −0.820 0.

K212 0.122 0. 0.172
K222 0. −0.688 0.
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We find that the mean strain in the central unit cell is zero for the considered quadratic and cubic boundary conditions,
as it should be. The microdeformation gradient components Kijk induced by the application of the polynomial Dijk can
be computed as a post-processing using the definition (39) applied to the converged state of the central unit cell. The
corresponding values are given in Table 1. It appears that one single non-vanishing term of the polynomial leads to several
non-zero components of the microdeformation gradient. For instance, the coefficient D112 induces a main K112 contribution
but also comparable K211 and K222 contributions. The loading D111 induces mainly K122 and K212 components. Due to
the linearity of the problem with respect to the coefficients of the polynomial, it is possible to determine a combination of
Dijk values that leads to the wanted microdeformation gradient components and thus it is possible to control K∼ on the unit
cell.

4.2 Particular case of a micro-homogeneous medium

The linear polynomial u∗
i = Eijxj of classical homogenisation displays the remarkable property that, when applied to the

boundary of a volume element made of a homogeneous material, the solution of the boundary value problem is the linear
polynomial u∗

i itself. In other words, the fluctuation v in (18) vanishes if the medium is homogeneous. Does this property
pertain to higher orders?

1x1 5x5 9x9

x

y

z

1x1 3x3 9x9

1x1 3x3 9x9

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

Fig. 4 (online colour at: www.zamm-journal.org) Normalised strain energy field W (x )/W in the central unit cell when applying
quadratic Dirichlet boundary conditions (15) at the remote boundary of a N × N group of cells, for D111 = 1 mm−1 (top), D112 =

1 mm−1 (middle), D122 = 1 mm−1 (bottom). The considered material is a homogeneous material. An arbitrary unit cell of size l = 1 mm
has been chosen.
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A homogeneous square unit cell of edge length 1 mm has been chosen arbitrarily. The polynomial (15) has been pre-
scribed to this single volume and to “assemblies” of N × N such unit cells. The fields of normalised strain energy in the
central unit are given in Fig. 4. They show that the property of the first order polynomial does not pertain to the quadratic
polynomial, for the three investigated loading conditions. However a converged solution exists in the central cell that dif-
fers from the prescribed quadratic polynomial. In other words the fluctuation does not vanish even for this homogeneous
medium.

This fact can be checked easily by looking for the conditions on the polynomial coefficients for the polynomial ui =
1
2 Dijkxjxk to be a solution of a boundary value problem in a homogeneous elastic medium.

In contrast, the cubic polynomial (27) is an admissible solution for a homogeneous isotropic medium. The corresponding
fluctuation identically vanishes for a homogeneous medium, as seen in Fig. 5. This admissibility has not been tested yet for
the full third order polynomial.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Fig. 5 (online colour at: www.zamm-journal.org) Nor-
malised strain energy field W (x )/W in the central unit cell
when applying the cubic Dirichlet boundary conditions (27)
at the remote boundary of a N × N group of cells, for
D̂ = 1 mm−2. The considered material is a homogeneous
material. An arbitrary unit cell of size l = 1 mm has been
chosen.

One may think of establishing some constraints on the coefficients for the polynomial to be a solution of the considered
boundary value problem on the unit cell for a homogeneous medium. However, such constraints will be limited to special
material symmetries of the elastic behaviour or special values of the material properties.

4.3 Convergence of the homogenization scheme for elasto-plastic media

The main advantage of the proposed extension of standard homogenization technique is that it can be used irrespective
of the local material behaviour, in particular for nonlinear material behaviour. This possibility was first explored in [18]
and [16] for Cosserat effective behaviour, in the case of the elastoplastic behaviour of the matrix in a composite. The
response of the unit cell to the application of a mean curvature can be used to identify the material parameters of effective
nonlinear constitutive equations for the macroscopic generalized continuum, or to feed an enhanced FE2 computational
strategy. However, in the latter contributions, the fluctuation was assumed to be periodic. In the present work, more general
loading conditions are considered including all 2D strain gradient loading conditions, and no assumption is made regarding
the fluctuation term.

For that purpose, the computational strategy for the determination of the representative volume element size adopted
in the two previous sections, is applied to the same composite but assuming elastic–plastic behaviour for the matrix grid
material. The constitutive equations are based on standard J2-elastoplasticity with linear isotropic hardening. The evolution
of the yield strength is R = R0 + Hp, p being the cumulative plastic strain. We take: R0 = 100 MPa, H = 2000 MPa.
The N × N groups of cells are subjected to the quadratic boundary conditions (15), with, respectively, D111, D112, D122

varying from 0 to 0.1 mm−1, the remaining coefficients being set to zero. The maximum loading of 0.1 mm−1 is such that
the reached plastic strain values remain compatible with the small strain framework.
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Fig. 6 (online colour at: www.zamm-journal.org) Cumulative plastic strain field in the central unit cell when applying quadratic Dirich-
let boundary conditions (15) at the remote boundary of a N×N group of cells, for D111 = 0.1 mm−1 (top), D112 = 0.1 mm−1 (middle),
D122 = 0.1 mm−1 (bottom). The matrix phase is elastoplastic with linear hardening. For the illustration, the deformed state has been
magnified by a factor of 10.

The Fig. 6 shows that the cumulative strain field converges if the number N of unit cells inside the volume element is
increased. The final deformed states are strongly different from the linear case of Fig. 2. It can be seen that a fluctuation
field develops when compared to the direct application of the quadratic conditions on the unit cell. Plasticity is found to be
localized in narrow zones.

Note that such a convergence of the plastic strain state does not occur if perfect plasticity is considered because the
nonlinear loading conditions induce strong plastic strain localization that are more and more intense when the size of
the group of cell is increased. In particular shear bands form starting from the corners of the square volume element and
intersect in the central cell. This is not presented here for the sake of brevity.
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4.4 Characterisation of the fluctuation field

The proposed computational method makes it possible to fully characterize the fluctuation field from the numerical simula-
tions. For that purpose, we compute the perturbation v from the converged state of the central unit cell remotely subjected
to the individual quadratic polynomial

v FE(x ) = u FE(x ) − 1
2
D∼ : x ⊗ x , (53)

where the exponent FE stands for the Finite Element results.
We can now compare the values that the fluctuation v FE takes at homologous points of the left and right edges, and on

the bottom and top edges, of the central unit cell of Fig. 1 (left). The corresponding curves are drawn for both components
v1, v2 for all three loading conditions D111 = 1 mm−1, D112 = 1 mm−1 and D122 = 1 mm−1, in Figs. 7, 8, and 9,
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Fig. 7 (online colour at: www.zamm-journal.org) Components of the fluctuation field v on the edges of the central unit cell for remotely
prescribed quadratic boundary conditions with D111 = 1 mm−1.

vle f t
1

vright
1

x2/l
0.40.20-0.2-0.4

0.05

0.04

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

-0.04

-0.05

vbottom
1

vtop
1

x2/l
0.40.20-0.2-0.4

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

vle f t
2

vright
2

x2/l
0.40.20-0.2-0.4

5.86

5.84

5.82

5.8

5.78

5.76

5.74

5.72

vbottom
2

vtop
2

x1/l
0.40.20-0.2-0.4

5.88

5.86

5.84

5.82

5.8

5.78

5.76

5.74

5.72

Fig. 8 (online colour at: www.zamm-journal.org) Components of the fluctuation field v on the edges of the central unit
cell for remotely prescribed quadratic boundary conditions with D112 = 1 mm−1.
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Fig. 9 (online colour at: www.zamm-journal.org) Components of the fluctuation field v on the edges of the central unit cell for remotely
prescribed quadratic boundary conditions with D122 = 1 mm−1.
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Fig. 10 (online colour at: www.zamm-journal.org) Stress components involved contributing to the traction vectors at the
edges of the central unit cell for quadratic remote loading of the cell assembly with D111 = 1 mm−1.

Table 2 Mean work of internal forces W over the central unit cell and the contributions of the polynomial and of the
fluctuation for three overall loading conditions.

W (MPa) WD (MPa) Wv (MPa) |Wv/W |
D111 = 1 mm−1 461. 1780. −1319. 2.86

D112 = 1 mm−1 13890. 20965. −7075. 0.51

D122 = 1 mm−1 1762. 2760. −998. 0.57

respectively. For the loading conditions D111 = 1 mm−1 and D122 = 1 mm−1, we find that v1 is periodic whereas v2 is
anti-periodic. For the loading D112 = 1 mm−1, v2 is periodic whereas v1 is anti-periodic. As a result, the superposition of
the full quadratic polynomial, i.e. including all terms, will lead to a non-periodic fluctuation.

The question of the anti-periodicity of the traction vector at the boundary of the unit cell was raised in Sect. 2.5. A
definite answer can now be given from the numerical results. The traction vector on the vertical (resp. horizontal) edges of
the unit cell of Fig. 1(left) involves the components σ11 and σ12 (resp. σ12 and σ22). These components are plotted along the
horizontal and vertical edges in Figs. 10, 11, and 12, for the three individual loading conditions. For the loading conditions
D111 = 1 mm−1 and D122 = 1 mm−1, the component t2 of the traction vector is found to be anti-periodic whereas the
component t1 is periodic. The reverse holds for the loading D112 = 1 mm−1. Again, the numerical example proves that
the traction is generally not anti-periodic, contrary to the case of classical homogenisation.
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Fig. 11 (online colour at: www.zamm-journal.org) Stress components involved contributing to the traction vectors at the
edges of the central unit cell for quadratic remote loading of the cell assembly with D112 = 1 mm−1.
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Fig. 12 (online colour at: www.zamm-journal.org) Stress components involved contributing to the traction vectors at the edges of the
central unit cell for quadratic remote loading of the cell assembly with D122 = 1 mm−1.

4.5 Overall contribution of the fluctuation to the energy and to the macroscopic strain gradient

The numerical example can also be used to evaluate the contribution of the fluctuation field to the overall strain energy
inside the central unit cell. In classical periodic homogenisation, this contribution is known to vanish. Does this result
pertain for quadratic conditions? The strain energy associated with the displacement field u = u ∗ + v given by (18) is
computed as

W = 〈σ∼ : ε∼(u )〉 = 〈σ∼ : ε∼(u ∗)〉 + 〈σ∼ : ε∼(v )〉
= 〈σijxk〉Dijk + 〈σijvi,j〉
= WD + Wv, (54)
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where averaging is performed over the unit cell and were Eij = 0 was taken for conciseness. The contribution due to D∼ is
WD and the one associated with the fluctuation is Wv .

In the considered numerical example, the strain energy associated with the fluctuation is computed as a post-processing
of the Finite Element simulations

Wv = W
FE − 〈σFE

ij xk〉Dijk . (55)

The different contributions are reported in Table 2. The results show that the contribution Wv does not vanish. Far from
being negligible, it represents half of the total energy and even more. The contribution is negative so that the final strain
energy is significantly smaller than WD .

Similarly, we can evaluate the contribution of the fluctuation to the overall microdeformation gradient by computing

K∼
T (v ) = K∼

T − D∼ = 〈u FE ⊗ ∇x ⊗ x 〉 · A∼ −1 − D∼ (56)

from the Finite Element results and from Eq. (45). It can be deduced from the values in Table 1. Again, far from being
negligible, the contribution K∼ (v ) is found to be a significant part of the total microdeformation gradient.

5 Conclusions

Generalized continuum approaches become efficient when the hypothesis of separation of scales between the macro and
micro-levels is about to fail. If this condition fails completely, i.e. when the wave length of the variation of the macro strain
and stress fields is equal or below the size of the material’s heterogeneities, the only alternative is to abandon homogeniza-
tion and to perform large scale computations of material domains including all relevant heterogeneities.

In the present contribution, we have proposed a critical analysis of the current endeavour for constructing a homoge-
neous equivalent generalised continuum replacing a composite Cauchy material. The introduction of non-homogeneous,
especially polynomial, boundary conditions to the composite unit cell has been discussed as an heuristic extension of
the classical homogenisation scheme. The objective was to relate the coefficients of such polynomials to the generalized
strain measures of the macroscopic extended continuum. A very general continuum approach has been considered at the
macro-scale, namely the micromorphic continuum, because it can account for both Cosserat rotational effects and stretch-
ing mechanisms that are important for instance in compressible materials. Explicit definitions of the macroscopic degrees
of freedom and of their gradient have been put forward. It has been established that the relations between the polynomial of
second to fourth order and the microdeformation and microdeformation gradient actually involve the essential contribution
of a fluctuation field which has hardly been discussed in the past literature on the subject of higher order homogenization.

A computational strategy has been illustrated in the case of a simple elastic composite in order to unambiguously
determine this fluctuation field. It consists in applying quadratic and cubic Dirichlet boundary conditions at the boundary of
a larger and larger volume of the composite material, i.e. containing a growing number of unit cells, until a stabilised stress-
strain field is reached in a central unit cell far from the outer boundary. This is the proposed definition of the representative
volume element size for polynomial boundary conditions. In the case of linear elasticity, the superposition principle can
be used to impose the wanted microdeformation gradient to the central unit cell. The earlier approaches proposed in the
literature, that mainly rely on vanishing or periodic fluctuations, turn out to be inaccurate in the application of well-suited
boundary conditions and determination of overall general stress and strain quantities. A consequence is that it is not known
yet which boundary conditions could be prescribed to the perturbation at the boundary of a single unit cell in order to induce
the proper displacement field without considering larger assemblies of cells. A FE2 is therefore no longer possible.

The question of validation of the proposed approach by means of comparisons between full field and homogenized
computations has not been addressed here for the sake of brevity. Such comparisons exist in the literature and are promising
[12, 16, 17, 22, 32, 38]. They also show the limitations of the approach since it may fail for some special loading conditions
that are typically not accounted for by the chosen polynomials. This is a situation similar to that encountered for the
development of improved beam and shell models.

Many open questions remain to be solved for the proposed scheme to represent a useful and sound extension of classical
homogenization procedure. In particular, only displacement based conditions have been considered yet and stress-based
boundary conditions are still missing. The reason lies in the fact that it is difficult to devise non-homogeneous stress-based
conditions fulfilling the requirements of balance of momentum and moment of momentum on the unit cell. Only quadratic
displacement boundary conditions have been illustrated in the numerical example and the work remains to be done for
determining the proper coefficients of the third and fourth order polynomials to control the overall microdeformation and
microdeformation gradient.

Also, an essential question in extending homogenisation methods is the derivation of the higher order boundary condi-
tions to be prescribed at the macro-scale for the microdeformation and associated double forces. Similar question arises for
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the boundary conditions in the case of composite beams and plates, which are very often set rather intuitively. A general
homogenization procedure is still missing to derive the higher order boundary conditions from the conditions at the mi-
croscale. In an heuristic manner, zero microdeformation will be applied at a clamped boundary, whereas simple and double
traction free conditions will be applied to free surfaces. Derivation of more precise conditions remain a research topic.

When the fluctuation field is taken into account in the way put forward in this work, the previously proposed identification
procedures for the higher order elastic constants have to be revised. For instance, the following strain energy equivalence
will be considered to construct the elastic second gradient medium

〈σ∼ : ε∼〉V (0) = 〈σ∼〉 : E∼ + 〈σ∼ ⊗ x 〉 ... D≡ + 〈σ∼ : v ⊗ ∇x〉V (0) = E∼ : C≈
eff : E∼ + K∼

... A∼∼∼

eff
... K∼ , (57)

where the effective second gradient properties are the tensors C≈
eff and A∼∼∼

eff of elastic moduli to be identified from

several loading conditions. In general, the material will exhibit anisotropic overall properties. Elasticity symmetry classes
and corresponding independent moduli have already been determined for tensors of order 6 in [3, 4].

The main advantage of the proposed polynomial approach compared to more rigorous asymptotic methods lies in the
fact that the technique is readily applicable if the materials in the unit cell exhibit nonlinear behaviour. A first illustration
has been given in Sect. 4.3. More generally, the approach should be used to identify the effective material parameters arising
in nonlinear constitutive equations for micromorphic media. Such constitutive frameworks have been developed for elasto-
viscoplasticity in the references [13,23,29,30,45,49] and could be identified by means of the generalized homogenization
method.
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