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1 Introduction

Continuum crystal plasticity is a special class of anisotropic elastoviscoplastic behaviour of materials. It
relies on the precise knowledge of the kinematics of plastic slip according to crystallographic slip systems
and of the driving force for activation of plastic slip, namely the corresponding resolved shear stress. When
the number of dislocations inside the material volume element is high enough, a continuum description of
plastic deformation and hardening can be formulated as settled in (Mandel, 1965; Mandel, 1971; Mandel,
1973) and (Teodosiu and Sidoroff, 1976).

The objective of this contribution is to establish the continuum mechanical framework for the formula-
tion of constitutive equations for single crystals. The considered plastic deformation mechanism is crystal-
lographic slip but the formulation can serve as a basis for extensions to climb or twinning since thermome-
chanical balances and most kinematic considerations are still valid.

There exists an extreme variety of possible constitutive equations for single crystals derived in the last 40
years but the thermomechanical foundation is unique and now clearly settled. We will consider the variety
of constitutive laws by introducing generic internal variables without making specific choices. Only generic
examples of evolution laws for such internal variables are provided and the reader is referred to (Fivel and
Forest, 2004a), and references quoted therein, for a detailed discussion of best–suited constitutive laws for
metal single crystals. Also the transition from single to polycrystal behaviour is not addressed here but
rather in (Fivel and Forest, 2004b; Besson et al., 2009).

The most relevant internal variables for describing the work–hardening of single crystals are undoubtedly
dislocation densities, ρs, defined as the total length of dislocations belonging to a slip system s divided by the
volume of the material volume element. Evolution equations for dislocations densities can be found in (Fivel
and Forest, 2004a). In the present contribution, we introduce general isotropic and kinematic hardening
variables accounting for monotonic and cyclic responses of crystals. Dislocation densities are generally
related to isotropic hardening through forest hardening but recent contributions also aim at establishing
dislocation based kinematic hardening dislocation rules.

Another characterisation of the dislocation distribution is the dislocation density tensor introduced by
(Nye, 1953). It is defined in section 3 and contributes to many size effects observed in crystalline solids: grain
size or Hall–Petch effect, precipitate size effect, etc. The dislocation density tensor cannot be handled as a
usual internal variable because it is related to the gradient of the plastic deformation field. As a result, higher
order partial differential equations arise when hardening laws involve the dislocation density tensor. The
development of constitutive models involving the dislocation density tensor is the realm of strain gradient
plasticity. Such a strain gradient plasticity theory is proposed in section 4. Even for the probably too simple
constitutive equations presented here, the model shows that the dislocation density tensor is responsible for
a size–dependent kinematic hardening component in the material behaviour.

2 Thermomechanics of single crystal behaviour

2.1 Balance equations

Mechanical equilibrium can be expressed in the form of the principle of virtual power

−
∫
D
σ∼ : D∼

∗ dv +

∫
D
ρ(f − a ) · v ∗ dv +

∫
∂D
t · v ∗ ds = 0 (1)

for all virtual velocity fields and all subdomains, D, of the current configuration Ω of the body. The Cauchy
stress tensor is σ∼ and D∼ is the strain rate tensor. Volume and acceleration forces are denoted by f and a ,
respectively, whereas t is the traction vector. The principle of virtual power implies the following balance
of momentum equation

divσ∼ + ρf = ρa (2)
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The energy balance is the purpose of the first principle of thermodynamics∫
D
ρė dv −

∫
D
ρ(a − f ) · v dv =

∫
∂D
t · v ds+Q (3)

or equivalently, after implementing the balance of momentum principle,∫
D
ρė dv =

∫
D
σ∼ : D∼ dv +Q (4)

where ρe is the volume density of internal energy. The heat production rate is assumed to take the form

Q = −
∫
∂D
q · n ds (5)

The local form of the energy principle is then

ρė = σ∼ : D∼ − div q (6)

The second principle of thermodynamics stipulates that∫
D
ρη̇ dv +

∫
∂D

q

T
· n ds ≥ 0 (7)

where η is the mass density of entropy and T the temperature field. The validity of this principle with
respect to all subdomain D leads to the local form of the entropy principle

ρη̇ + div
q

T
≥ 0 (8)

Introducing the free energy density Ψ := e− Tη and taking the balance of energy into account, we are lead
to the Clausius inequality

σ∼ : D∼ − ρΨ̇− ρηṪ − q · ∇T

T
≥ 0 (9)

2.2 Kinematics of single crystals

It is based on the multiplicative decomposition of the deformation gradient, F∼ , into an elastic part, E∼ , and
a plastic part, P∼ :

F∼ (X ) = 1∼ +
∂u

∂X
= 1∼ + ∇Xu , F∼ (X ) = E∼ (X ).P∼ (X ) (10)

The initial coordinates of the material point in the reference configuration are denoted byX and ∇X denotes
the gradient operator with respect to initial coordinates. The current position of the material point in the
current configuration is x . The displacement vector is u = x −X . The multiplicative decomposition (10)
is associated with the definition of an intermediate configuration for which elastic strain is unloaded, see
figure 1. The intermediate released configuration is uniquely determined up to a rigid body rotation which
is chosen such that the lattice orientation in the intermediate configuration is the same as the initial one.
Mandel called it the isoclinic intermediate configuration. As a result, lattice rotation and distortion during
elastoplastic deformation are contained in the elastic deformation part E∼ , as examined at the end of this
section.

The multiplicative decomposition leads to the following partition of the velocity gradient

∇v = Ḟ∼ · F∼
−1 = Ė∼ ·E∼

−1 +E∼ · Ṗ∼ · P∼
−1 ·E∼

−1 (11)

We introduce the Cauchy–Green and Green–Lagrange elastic strain measures

C∼
e := E∼

T ·E∼ , E∼
e =

1

2
(C∼

e − 1∼) (12)

and note that

Ė∼
e

=
1

2
(Ė∼

T ·E∼ +E∼
T · Ė∼ ) =

1

2
Ċ∼

e

=
1

2
E∼

T · (E∼
−T · Ė∼

T + Ė∼ ·E∼
−1) ·E∼ = E∼

T ·
(
Ė∼

e
·E∼
−1
)sym

·E∼ (13)

2



where sym operator takes the symmetric part of the quantity in brackets. The mass density of the material
point with respect to the current (resp. intermediate) configuration is denoted by ρ (resp. ρe). The volume
density of internal forces with respect to the intermediate configuration is

Jeσ∼ : D∼ = Jeσ∼ : (Ḟ∼ · F∼
−1) = Jeσ∼ : (Ė∼ ·E∼

−1) + Jeσ∼ : (E∼ · Ṗ∼ · P∼
−1 ·E∼

−1)

= Jeσ∼ : (Ė∼ ·E∼
−1)sym + Jeσ∼ : (E∼ · Ṗ∼ · P∼

−1 ·E∼
−1)

= Π∼
e : Ė∼

e
+M∼ : Ṗ∼ .P∼

−1 (14)

where Je = detE∼ is the volume change from the intermediate to the current configuration, Π∼
e is the second

Piola–Kirchhoff stress tensor with respect to the isoclinic intermediate configuration, and M∼ is the Mandel
stress tensor defined as :

Π∼
e = JeE∼

−1.σ∼ .E∼
−T , M∼ = JeE∼

T .σ∼ .E∼
−T = C∼

e ·Π∼
e (15)

Plastic deformation is the result of slip processes according to N slip systems characterised by the slip
direction, m s, and the normal to the slip plane, n s, in the intermediate configuration :

Ṗ∼ .P∼
−1 =

N∑
s=1

γ̇sm s ⊗ n s (16)

Note that plastic deformation induced by dislocation glide is isochoric so that

Jp = detP∼ = 1, Je = J = detF∼ (17)

2.3 Constitutive equations

Constitutive equations for elastoviscoplastic materials are based on the definition of two potential func-
tions, namely the free energy density function and the dissipation potential. The specific energy density,
Ψ(E∼

e, T, α), is a function of elastic strain, temperature and internal variables accounting for hardening prop-
erties. Writing the Clausius–Duhem inequality (9) with respect to the intermediate isoclinic configuration
amounts to multiplying (9) by ρe/ρ = Je

Jeσ∼ : D∼ − ρeΨ̇− ρeηṪ −Q ·
∇XT

T
≥ 0 (18)

where Q = JeF∼
−T · q . Expanding the time derivative of the free energy density, we obtain(
Π∼

e − ρe
∂Ψ

∂E∼
e

)
: Ė∼

e
− ρe(η +

∂Ψ

∂T
)Ṫ +M∼ : Ṗ∼ · P∼

−1 − ρe
∂Ψ

∂α
α̇−Q · ∇X

∂T
≥ 0 (19)

The following state laws provide the hyperelasticity relation and the entropy density :

Π∼
e = ρe

∂Ψ

∂E∼
e = C

≈
: E∼

e, η = −∂Ψ

∂T
, X = ρe∂Ψ/∂α (20)

where a quadratic potential for elasticity has been proposed, thus introducing the fourth rank tensor of
elasticity moduli, C

≈
. Such an assumption is realistic for metals since elastic strain usually remains small,

as discussed in the next subsection. The thermodynamic forces associated with the internal variables α are
called X. The residual dissipation rate is

M∼ : Ṗ∼ · P∼
−1 −Xα̇−Q · ∇XT

T
≥ 0 (21)

The first term is the plastic power. Part of it is stored due to the second contribution whereas the third one
denotes thermal dissipation.

At this stage, a dissipation potential Ω(M∼ , X) is introduced from which the flow rule and the evolution
equation for internal variables are derived

Ṗ∼ .P∼
−1 =

∂Ω

∂M∼
, α̇ = − ∂Ω

∂X
(22)
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Positivity of dissipation rate is ensured if the dissipation potential Ω(M∼ , X) exhibits specific convexity
properties with respect to its arguments (convex with respect to M∼ and concave with respect to X) and if
a Fourier type of heat conduction is chosen

Q = −K∼ ·∇X(log T ) (23)

The dissipation potential is assumed to depend on M∼ and X via the Schmid yield function

fs(M∼ , X) = |τs − xs| − τsc , with τs = M∼ : m s ⊗ n s (24)

where τsc is the critical resolved shear stress for slip system s, which may evolve due to isotropic hardening.
Kinematic hardening is accounted for by means of back-stress components xs attached to each slip system.
The resolved shear stress τs = m s.M∼ .n s on slip system s is the driving force for activation of slip. This
corresponds to the specific choice of hardening variables: X = (τsc , x

s). So we consider a function

Ω(M∼ , X) =

N∑
s=1

Ωs(fs(M∼ , X)) (25)

It follows that

Ṗ∼ .P∼
−1 =

∂Ω

∂M∼
=

N∑
s=1

∂Ωs

∂fs
∂fs

∂M∼
=

N∑
s=1

γ̇sm s ⊗ n s (26)

where the slip rate is computed as

γ̇s =
∂Ωs

∂fs
sign (τs − xs) (27)

Accordingly, the kinematics (16) is retrieved from the normality rule, showing that the crystal slip kinematics
is associated with the Schmid law. Let us call (ρs, αs) internal variables associated with the isotropic and
kinematic hardening variables (τsc , x

s). The hardening rules in (22) become

ρ̇s = − ∂Ω

∂τsc
=
∂Ωs

∂fs
= |γ̇s|, α̇s = − ∂Ω

∂xs
=
∂Ωs

∂fs
sign (τs − xs) = γ̇s (28)

It is worth computing the plastic power after taking the previous relations into account

M∼ : Ṗ∼ .P∼
−1 =

N∑
s=1

τsγ̇s (29)

Specific hardening laws including evolution equations for dislocation densities can be found for example in
(Fivel and Forest, 2004a). As an example, we consider here a power law potential

γ̇s =
∂Ω

∂τs
=

〈
|τs − xs| − τc

K

〉n

sign(τs), (30)

Ω(τs) =

N∑
s=1

K

n+ 1

〈
|τs − xs| − τc

K

〉n+1

(31)

The brackets 〈x〉 denote the positive part of x. Viscosity parameters are K and n in (30). They can be
chosen such that plastic processes are almost rate–independent in a given range of applied strain rates. As
an example, we give here simple nonlinear evolution rules for the isotropic and kinematic variables that are
used for practical computations

τsc = τc + q

N∑
r=1

hsr(1− exp(−bvr)), α̇s = γ̇s − dv̇sαs (32)

where q, b, d are material parameters. An interaction matrix hrs is necessary to account for interaction
between dislocations and is responsible for latent hardening (Fivel and Forest, 2004a).
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Figure 1: Multiplicative decomposition of the deformation gradient into elastic and plastic parts.

2.4 Lattice rotation

The previous continuum mechanical approach makes it possible to distinguish between the transformation of
material and lattice directions. Material lines are made of material points that are subjected to the motion
u (X ). The tangent to a material line at X is a material direction d in the reference configuration that
transforms into the material direction d ′ in the current configuration by means of the deformation gradient:

d ′(X ) = F∼ (X ) · d (X ) (33)

In contrast, lattice directions are not material insofar as they are not necessarily made of the same material
points (atoms) in the initial and current configurations due to the passing of dislocations, but keep the
same crystallographic meaning. According to the concept of isoclinic configuration, lattice directions are
unchanged from the initial to the intermediate configuration of figure 1. Glide of dislocations through, and
thus leaving, the material volume element do not distort nor rotate the lattice, although material lines are
sheared. According to the continuum theory of dislocations, statistically stored dislocations accumulating in
the material volume element affect material hardening but do not change the element shape. Accordingly,
an initial lattice direction d ] is transformed into d ]′ by means of the elastic deformation:

d ]′(X ) = E∼ (X ).d ](X ) (34)

The kinematics of elastoplastic deformation recalled in section 2.2 can be expanded in the case of small
strains and small rotations, based on the polar decompositions of total, elastic and plastic deformations:

E∼ = R∼
e.U∼

e ' (1∼ + ω∼
e).(1∼ + ε∼

e) ' 1∼ + ε∼
e + ω∼

e (35)

P∼ = R∼
p.U∼

p ' (1∼ + ω∼
p).(1∼ + ε∼

p) ' 1∼ + ε∼
p + ω∼

p (36)

where R∼
e,R∼

p and U∼
e,U∼

p are rotations and symmetric stretch tensors, respectively. Accordingly, ε∼
e,ω∼

e

(resp. ε∼
p,ω∼

p) represent small elastic (resp. plastic) strain and rotation. The elastic rotation accounts for
lattice rotation, as follows from the proposed kinematics of plastic slip. Similarly, the following holds for the
total deformation:

F∼ = R∼ .U∼ = (1∼ + ω∼).(1∼ + ε∼) ' 1∼ + ε∼ + ω∼ (37)

so that
ε∼ = ε∼

e + ε∼
p, ω∼ = ω∼

e + ω∼
p (38)

where all strain tensors are symmetric whereas all ω tensors are skew–symmetric.
In metals, elastic strain remains small whereas lattice rotations can become very large. That is why the

kinematics of crystallographic slip is very often approximated as

F∼ ' R∼
e · P∼ (39)
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especially for the simulation of metal forming processes. Lattice rotation is then directly given by R∼
e.

Let us consider also rotation rates by introducing the material spin tensorW∼ which is the skew–symmetric
part of the velocity gradient

Ḟ∼ · F∼
−1 = D∼ +W∼ = Ė∼ ·E∼

−1 +E∼ · Ṗ∼ · P∼
−1 ·E∼

−1 = D∼
e +W∼

e +D∼
p +W∼

p (40)

where the elastic and plastic contributions have been split into their symmetric and skew–symmetric parts.
The elastic spin tensor is therefore defined as

W∼
e =

(
Ė∼ ·E∼

−1
)skew

=
(
Ṙ∼

e
·R∼

e−1 +R∼
e · U̇∼

e
·U∼

e ·R∼
e−1
)skew

(41)

' Ṙ∼
e
·R∼

e−1 = Ṙ∼
e
·R∼

eT (42)

where the exponent skew denotes the skew–symmetric part of the tensor in brackets. The latter approxima-
tion is valid when elastic strain rates can be neglected compared to rotation rates, which is generally the case
for metals at sufficiently high total strains. Note that for any rotation Q

∼
, the rotation rate Q̇

∼
·Q

∼

−1 = Q̇
∼
·Q

∼

T

is a skew–symmetric tensor due to the fact that a rotation is an orthogonal tensor1. The plastic spin rate is

W∼
p =

(
E∼ ·

(
N∑
s=1

γ̇sm s ⊗ n s

)
·E∼
−1

)skew

(43)

'

(
R∼

e ·

(
N∑
s=1

γ̇sm s ⊗ n s

)
·R∼

eT

)skew

' R∼
e ·

(
N∑
s=1

γ̇s (m s ⊗ n s)
skew

)
·R∼

eT (44)

In the case of small elastic strain and rotations, the expressions simplify and we obtain

D∼
p ' ε̇∼

p =

N∑
s=1

γ̇s (m s ⊗ n s)
sym

(45)

W∼
p ' ω̇∼

p =

N∑
s=1

γ̇s (m s ⊗ n s)
skew

(46)

D∼
e ' ε̇∼

e = ε̇∼− ε̇∼
p, Ẇ∼

e
' ω̇∼

e = ω̇∼ − ω̇∼
p (47)

3 The dislocation density tensor

3.1 Elements of tensor analysis

The Euclidean space is endowed with an arbitrary coordinate system characterizing the points M(qi). The
basis vectors are defined as

e i =
∂M

∂qi
(48)

The reciprocal basis (e i)i=1,3 of (e i)i=1,3 is the unique triad of vectors such that

e i · e j = δij (49)

If a Cartesian orthonormal coordinate system is chosen, then both bases coincide.
The gradient operator for a tensor field T (X ) of arbitrary rank is then defined as

gradT = T ⊗∇ :=
∂T

∂qi
⊗ e i (50)

The gradient operation therefore increases the tensor rank by one.

1meaning that Q
∼

·Q
∼

T = Q
∼

T ·Q
∼

= 1∼

6



The divergence operator for a tensor field T (X ) of arbitrary rank is then defined as

div T = T ·∇ :=
∂T

∂qi
· e i (51)

The divergence operation therefore decreases the tensor rank by one.
The curl operator2 for a tensor field T (X ) of arbitrary rank is then defined as

curlT = T ∧∇ :=
∂T

∂qi
∧ e i (52)

where the vector product is ∧. The curl operation therefore leaves the tensor rank unchanged. The vector
product on an oriented Euclidean space is

a ∧ b = εijkajbk e i = ε∼ : (a ⊗ b ) (53)

The component εijk of the third rank permutation tensor is the signature of the permutation of (1, 2, 3).
With respect to a Cartesian orthonormal basis, the previous formula simplify. We give the expressions

for a second rank tensor T∼

gradT∼ = Tij,k e i ⊗ e j ⊗ e k (54)

divT∼ = Tij,j e i (55)

We consider then successively the curl of a vector field and of a second rank vector field, in a Cartesian
orthonormal coordinate frame

curlu =
∂u

∂Xj
∧ e j = ui,j e i ∧ e j = εkijui,j e k (56)

curlA∼ =
∂A∼
∂xk
∧ e k = Aij,ke i ⊗ e j ∧ e k = εmjkAij,k e i ⊗ em (57)

We also recall the Stokes formula for a vector field for a surface S with unit normal vector n and oriented
closed border line L: ∮

L
u · dl = −

∫
S

(curlu ) · n ds,

∮
L
uidli = −εkij

∫
S
ui,jnk ds (58)

Applying the previous formula to uj = Aij at fixed i leads to the Stokes formula for a tensor field of rank 2:∮
L
T∼ · dl = −

∫
S

(curlT∼ ) · n ds,

∮
L
Aijdli = −εkij

∫
S
Aij,knm ds (59)

3.2 Dislocation density tensor

In continuum mechanics, the previous differential operators are used with respect to the initial coordinates
X or with respect to the current coordinates x of the material points. In the latter case, the notation
∇, grad ,div and curl are used but in the former case we adopt ∇X ,Grad,Div and Curl. For instance,

F∼ = 1∼ + Gradu =⇒ CurlF∼ = 0 (60)

This result expresses the fact that the deformation gradient is a compatible field which derives from the
displacement vector field. This is generally not the case for elastic and plastic deformation:

CurlE∼ 6= 0, CurlP∼ 6= 0 (61)

Elastic and plastic deformations are generally incompatible tensor fields, even though the product F∼ = E∼ ·P∼
is compatible. It may happen incidentally that elastic deformation be compatible for instance when plastic
or elastic deformation is homogeneous.

2or rotational operator.
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A consequence of the incompatibility of the elastic deformation is that, for an oriented surface S ⊂ Ω of
the body, with border L, the vector B belonging to the intermediate isoclinic configuration

B =

∮
L
E∼
−1 · dl = −

∫
S

(curlE∼
−1) · n ds (62)

does not vanish in general. It can be interpreted as the continuum Burgers vector for the circuit L. It
represents a generalization of the concept of Burgers vector for dislocations. This geometric definition was
introduced by (Bilby et al., 1957; Teodosiu, 1970; Kröner and Teodosiu, 1972) within the context of the
continuum theory of dislocations. The previous calculation leads to the definition of the dislocation density
tensor

α∼ := −curlE∼
−1 = −εjklE−1ik,l e i ⊗ e j (63)

which is used to compute the resulting Burgers vector for dislocations crossing the surface S:

B =

∫
S
α∼ · n ds (64)

The Burgers vector can also be computed by means of a closed circuit L0 ⊂ Ω0 convected from L ⊂ Ω:

B =

∮
L
E∼
−1 · dx =

∮
L0

E∼
−1 · F∼ · dX =

∮
L0

P∼ · dX (65)

=

∫
S0

(CurlP∼ ) · dS =

∫
S

(CurlP∼ ) · F∼
T · ds

J
(66)

Nanson’s formula3 has been used. We obtain the alternative definition of the dislocation density tensor

α∼ = curlE∼
−1 =

1

J
(CurlP∼ ) · F∼

T (67)

The present modern treatment of the dislocation density tensor was settled by (Cermelli and Gurtin, 2001;
Svendsen, 2002). A statistical mechanics perspective of the dislocation density tensor can be found in
(Kröner, 1969).

It can be noticed that the relation (67) implies

J(curlE∼
−1) ·E∼

−T = (CurlP∼ ) · P∼
T (68)

which is a consequence of (60), curlF∼ = curl (E∼ · P∼ ) = 0.
Within the small perturbation framework, we introduce the notations

H∼ = Gradu = H∼
e +H∼

p, with H∼
e = ε∼

e + ω∼
e, H∼

p = ε∼
p + ω∼

p (69)

We have
E∼
−1 ' 1∼ −H∼

e (70)

so that the dislocation density tensor can be computed as

α∼ ' CurlH∼
e = −CurlH∼

p (71)

since CurlH∼ = 0 due to the compatibility of the deformation gradient.

3.3 Lattice curvature

Experimental techniques like EBSD provide the field of lattice orientation and, consequently, of lattice
rotation R∼

e during deformation. Since

α∼ = −curlE∼
−1 = −curl (U∼

e−1 ·R∼
eT ) (72)

the hypothesis of small elastic strain implies

α∼ ' −curlR∼
eT (73)

3ds = JF∼
−T · dS
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If, in addition, elastic rotations are small, we have

α∼ ' −curl (1∼ − ω∼
e) = curlω∼

e (74)

The small rotation axial vector is defined as

×
ω e = −1

2
ε∼ : ω∼

e, ω∼
e = −ε

∼
·
×
ω e (75)

or, in matrix notations,

[ω∼
e] =


0 ωe

12 −ωe
31

−ωe
12 0 ωe

23

ωe
31 −ωe

23 0

 =


0 −×ωe

3

×
ωe
2

×
ωe
3 0 −×ωe

1

−×ωe
2

×
ωe
1 0

 (76)

The gradient of the lattice rotation field delivers the lattice curvature tensor. In the small deformation
context, the gradient of the rotation tensor is represented by the gradient of the axial vector:

κ∼ :=
×
ω e (77)

One can establish a direct link between curlω∼
e and the gradient of the axial vector associated with ω∼ . For

that purpose, the matrix form of curlω∼
e is derived according to (57):

[curlω∼
e] =


ωe
12,3 + ωe

31,2 −ωe
31,1 −ωe

12,1

−ωe
23,2 ωe

12,3 + ωe
23,1 −ωe

12,2

−ωe
23,3 −ωe

31,3 ωe
23,1 + ωe

31,2

 (78)

or equivalently

[curlω∼
e] =


−×ωe

3,3 −
×
ωe
2,2

×
ωe
2,1

×
ω3,1

×
ωe
1,2 −×ωe

3,3 −
×
ωe
1,1

×
ω
e

3,2

×
ωe
1,3

×
ωe
2,3 −×ωe

1,1 −
×
ωe
2,2

 (79)

from which it becomes apparent that

α∼ = κ∼
T − (traceκ∼)1∼, κ∼ = α∼

T − 1

2
(traceα∼)1∼ (80)

This is a remarkable relation linking, with the context of small elastic strains4 and rotations, the dislocation
density tensor to lattice curvature. It is known as Nye’s formula (Nye, 1953).

4 Strain gradient plasticity: The “curlHp” model

We consider now a strain gradient plasticity theory which includes the full curl of the plastic deformation
tensor, H∼

p, into constitutive modelling. This approach, therefrom to be referred to as the “curlHp” model,
was proposed by (Gurtin, 2002) and applied to a constrained layer and a composite problem in (Bittencourt
et al., 2003; Cordero et al., 2010). The balance and constitutive equations are introduced in the context of
small perturbations. Then the model is applied to a crystal undergoing single slip. It will be shown that a
specific form of the back stress arises from this application.

4.1 Balance equations

Following (Gurtin, 2002), we consider a continuum whose power density of internal forces takes the form:

p(i) = σ∼ : Ḣ∼ + s∼ : Ḣ∼
p

+M∼ : curl Ḣ∼
p
. (81)

4 and in fact of small gradient of elastic strain.

9



For objectivity reasons, the stress tensor σ∼ is symmetric whereas the micro–stress tensor s∼ and the double–
stress tensor M∼ are generally asymmetric. The total power of internal forces in a domain V , with boundary
∂V , is

P(i) =

∫
V

(
σ∼ : Ḣ∼ + s∼ : Ḣ∼

p
+M∼ : curl Ḣ∼

p
)
dV,

=

∫
V

(
(σij u̇i),j +

(
MijεjklḢ

p
ik

)
,l

)
dV

+

∫
V

(
−σij,j u̇i + sijḢ

p
ij − εjklMij,lḢ

p
ik

)
dV,

= −
∫
V

(
σij,j u̇i − (εkjlMik,l + sij)Ḣ

p
ij

)
dV

+

∫
∂V

(
σijnj u̇i + εjklMijnlḢ

p
ik

)
dS.

The power density of contact forces is taken as

p(c) = t .u̇ +m∼ : Ḣ∼
p
, (82)

where t ,m∼ are, respectively, the surface simple and double tractions. Volume forces are not written for
simplicity. The method of virtual power can be used to derive the field equations governing the continuum,
based on the virtual motions u̇ and Ḣ∼

p
:

divσ∼ = 0, σij,j = 0, (83)

curlM∼ + s∼ = 0, εjklMik,l + sij = 0, (84)

for all regular points of the domain V . Furthermore, the following boundary conditions on ∂V can be derived:

t = σ∼ .n , ti = σijnj , (85)

m∼ = M∼ .ε
∼
.n , mij = Mikεkjlnl. (86)

4.2 Energy and entropy principles, constitutive equations

Under isothermal conditions, the energy balance in its local form states that:

ρė = p(i), (87)

where e is the internal energy density function and, ρ, the mass density. The entropy principle is formulated
as

ρ(ė− ψ̇) ≥ 0 (88)

where ψ is the Helmholtz free energy function. The free energy is taken as a function of the elastic strain, ε∼
e,

the dislocation density tensor, or curlH∼
p, and a generic internal hardening variable, q, viz. ψ(ε∼

e, curlH∼
p, q).

As a result, the Clausius–Duhem inequality becomes(
σ∼ − ρ

∂ψ

∂ε∼
e

)
: ε̇∼

e +

(
M∼ − ρ

∂ψ

∂curlH∼
p

)
: curl Ḣ∼

p
+ (σ∼ + s∼) : Ḣ∼

p
− ρ∂ψ

∂q
q̇ ≥ 0. (89)

Here, the constitutive assumption is made that the two first terms in the previous inequality are non dissi-
pative and therefore should vanish. Then,

σ∼ = ρ
∂ψ

∂ε∼
e
, M∼ = ρ

∂ψ

∂curlH∼
p . (90)

It follows that the residual dissipation rate is

D = (σ∼ + s∼) : Ḣ∼
p
−Rq̇ ≥ 0, (91)

where R = ρ∂ψ/∂q is the thermodynamic force associated with the internal variable, q. The existence of a
dissipation potential, namely Ω(σ∼ + s∼, R), is postulated so that

Ḣ∼
p

=
∂Ω

∂
(
σ∼ + s∼

) , q̇ = −∂Ω

∂R
. (92)
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4.3 Application of the “curlHp” model to a single slip problem

For a crystal deforming under single slip conditions, the plastic deformation rate is given by:

Ḣ∼
p

= γ̇P∼ = γ̇l ⊗ n , (93)

where P∼ = l ⊗ n is the orientation tensor, l is the slip direction and n the normal to the slip plane. The
dissipation rate can then be expressed as,

(τ + l .s∼.n )γ̇ −Rq̇ ≥ 0, (94)

where τ = l .σ∼ .n is the resolved shear stress. In the absence of a hardening variable, q, for simplicity, the
following generalised Schmid law can be defined (for positive γ̇):

|τ − x| = τc, with x = −l .s∼.n , (95)

meaning that plastic flow occurs when the effective resolved shear stress |τ − x| reaches the critical resolved
shear stress τc. A kinematic hardening component, x, naturally arises in the formulation for which a more
specific form is given next. The curl of the plastic deformation is then given by

curlH∼
p = l ⊗ (n ×∇γ). (96)

For a two–dimensional case, one finds

[
curlH∼

p
]

=

 0 0 γ,2n1n2 − γ,1n22
0 0 −γ,2n21 + γ,1n1n2
0 0 0

 . (97)

In the particular case when l = e 1, n = e 2, the only non–vanishing component of the dislocation density
tensor is

(curlH∼
p)13 = −γ,1. (98)

Let us consider at this stage the simple quadratic potential:

ρψ(ε∼
e, curlH∼

p) =
1

2
ε∼
e : C

≈
: ε∼

e +
1

2
A
(
curlH∼

p
)

:
(
curlH∼

p
)
, (99)

so that
σ∼ = C

≈
: ε∼

e, M∼ = A curlH∼
p, (100)

where C
≈

is the four–rank tensor of the elastic moduli, assumed isotropic hereafter, and A is a higher order

modulus. According to the balance equation (84), it follows that

s∼ = −curlM∼ = −curl curlH∼
p. (101)

For single slip, the double curl of plastic deformation is defined as

curl curlH∼
p = l ⊗ ((n × γ,ije i)× e j). (102)

In the particular case of l = e 1, n = e 2, we obtain

curl curlH∼
p = γ,12e 1 ⊗ e 1 − γ,11e 1 ⊗ e 2, (103)

so that the back–stress takes the form

x = A(curl curlH∼
p) : (l ⊗ n ) = −γ,11. (104)
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5 Conclusions

The elastoviscoplasticiy theory of single crystals is the single well–established anisotropic nonlinear mechan-
ical theory. Indeed, the multiplicative decomposition of the deformation gradient into elastic and plastic
parts is only possible when a triad of directors can be unambiguously defined for the considered materials.
Mandel showed that lattice directions in a single crystal determine privileged directors for the material.
Such directors are more difficult to define for a composite material or for a polycrystal (Mandel, 1982). The
benefit is that the kinematic aspects of plastic deformation in single crystals is well–accepted today and that
research can be focused on the development of relevant evolution equations for the internal variables like
dislocation densities.

Discrete dislocation dynamics simulations are currently used as guidelines to develop advanced constitu-
tive equations, as explained in the chapter by B. Devincre in part I. The transition from the single crystal
to polycrystalline material volume elements can be done by means of analytical and computational homoge-
nization methods, like simulations of the response of polycrystalline aggregates, see chapter by H. Proudhon
in part III.

2D and 3D field measurement techniques have been used to validate the plasticity theory. For large
metallic grains, the theory is essentially validated by the early contribution (Teodosiu et al., 1993) and
subsequent comparisons between lattice rotation and total strain field measurements by means of EBSD and
grids. More recent techniques give access to 3D data (Proudhon et al., 2010; Vaxelaire et al., 2010; Ludwig
et al., 2009).

Difficulties arise when tackling size effect problems in crystal plasticity. The introduction of the disloca-
tion density tensor in modern crystal plasticity theory gives rise to the prediction of size effects that are in
qualitative agreement with many experimental results. However, quantitative agreement is not met yet. The
determination of scaling laws, like the Hall–Petch scaling 1/

√
d (with d, the grain size) or Orowan’s scaling

1/d for distances d between precipitates, are still not correctly retrieved by most strain gradient plasticity
models because of the expensive nonlinear 3D computations required or because of the inadequate enhanced
constitutive equations. These research issues are discussed in the contribution (Cordero et al., 2010) and in
the references quoted therein.
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