Computational Micromechanics of Single Crystals and Polycrystals

part III: Micromechanics of polycrystals

Samuel Forest

Centre des Matriaux/UMR 7633 Mines de Paris/CNRS BP 87, 91003 Evry, France Samuel.Forest@ensmp.fr

Plan

- 1 Computational mechanics of microstructures
 - Morphology and meshing of polycrystals
 - Exercise: boundary conditions for computing volume elements
- 2 Computing strain heterogeneities in polycrystals
 - Representative volume element for polycrystals
 - Parallel computing of polycrystalline aggregates
- 3 Homogenization models for polycrystals
- 4 Texture evolution during the deformation of polycrystals
- 5 Grain size effects in polycrystals
 - Cosserat single crystal plasticity
 - Hall–Petch behaviour

Plan

1 Computational mechanics of microstructures

- Morphology and meshing of polycrystals
- Exercise: boundary conditions for computing volume elements
- 2 Computing strain heterogeneities in polycrystals
 - Representative volume element for polycrystals
 - Parallel computing of polycrystalline aggregates
- 3 Homogenization models for polycrystals
- 4 Texture evolution during the deformation of polycrystals
- 5 Grain size effects in polycrystals
 - Cosserat single crystal plasticity
 - Hall–Petch behaviour

Models for polycrystals : Voronoi mosaics

Computational mechanics of microstructures

Meshing polycrystals : Voronoi cells

Morphological and crystallographic texture

Parallel computing

old chicken farm... 60 PC bipro Pentium IV 768 Mo 30 Go

Parallel computing

new chicken farm! 80 PC bipro Opteron 8 Mo

Parallel computing

Subdomain decomposition method Zset code (www.nwnumerics.com, www.mat.ensmp.fr): FETI method (Finite Element Tearing and Interconnecting Method)

Plan

1 Computational mechanics of microstructures

- Morphology and meshing of polycrystals
- Exercise: boundary conditions for computing volume elements
- 2 Computing strain heterogeneities in polycrystals
 - Representative volume element for polycrystals
 - Parallel computing of polycrystalline aggregates
- 3 Homogenization models for polycrystals
- 4 Texture evolution during the deformation of polycrystals
- 5 Grain size effects in polycrystals
 - Cosserat single crystal plasticity
 - Hall–Petch behaviour

Boundary conditions for material volume elements

• Kinematic uniform boundary conditions (KUBC) :

$$\underline{\mathbf{u}} = \underline{\mathbf{E}} \cdot \underline{\mathbf{x}} \quad \forall \underline{\mathbf{x}} \in \partial V$$

$$< \varepsilon >= rac{1}{V} \int_V \varepsilon \, dV = \mathbf{E} \quad \text{and} \quad \mathbf{\Sigma} \hat{=} < \mathbf{\sigma} >= rac{1}{V} \int_V \mathbf{\sigma} \, dV$$

• Static uniform boundary conditions (SUBC) :

$$\underline{\sigma}.\underline{\mathbf{n}} = \underline{\boldsymbol{\Sigma}}.\underline{\mathbf{n}} \quad \forall \underline{\mathbf{x}} \in \partial V$$

$$< \sigma > = rac{1}{V} \int_V \sigma \, dV = \Sigma$$
 and $\mathbf{E} = < \varepsilon > = rac{1}{V} \int_V \varepsilon \, dV$

• Periodicity conditions (PERIODIC) :

$$\underline{\mathbf{u}} = \underline{\mathbf{E}}.\underline{\mathbf{x}} + \underline{\mathbf{v}} \quad \forall \underline{\mathbf{x}} \in V, \ \underline{\mathbf{v}} \ periodic$$

Plan

Computational mechanics of microstructures

- Morphology and meshing of polycrystals
- Exercise: boundary conditions for computing volume elements
- 2 Computing strain heterogeneities in polycrystals
 - Representative volume element for polycrystals
 - Parallel computing of polycrystalline aggregates
- 3 Homogenization models for polycrystals
- 4 Texture evolution during the deformation of polycrystals
- 5 Grain size effects in polycrystals
 - Cosserat single crystal plasticity
 - Hall–Petch behaviour

RVE for elastic copper crystals

isotropic texture

 $C_{11} = 168400 \text{ MPa}, \quad C_{12} = 121400 \text{ MPa}, \quad C_{44} = 75390 \text{ MPa}$ cubic elasticity $a = 2C_{44}/(C_{11} - C_{12}) = 3.2$

RVE for polycrystalline thin films?

The RVE does not exist for a one-grain thick polycrys-talline layer

However 3 to 5 grains within the thickness are sufficient to reach bulk properties... [El Houdaigui, 2004]

Computing strain heterogeneities in polycrystals

periodic or mixed boundary conditions

Plan

Computational mechanics of microstructures

- Morphology and meshing of polycrystals
- Exercise: boundary conditions for computing volume elements
- 2 Computing strain heterogeneities in polycrystals
 - Representative volume element for polycrystals
 - Parallel computing of polycrystalline aggregates
- 3 Homogenization models for polycrystals
- 4 Texture evolution during the deformation of polycrystals
- **5** Grain size effects in polycrystals
 - Cosserat single crystal plasticity
 - Hall–Petch behaviour

Elastoplastic deformation of polycrystalline aggregates

Macroscopic response

Mean response per grain

Computing strain heterogeneities in polycrystals

Local response in one grain

Local response in one grain

Computing strain heterogeneities in polycrystals

Plan

Computational mechanics of microstructures

- Morphology and meshing of polycrystals
- Exercise: boundary conditions for computing volume elements
- 2 Computing strain heterogeneities in polycrystals
 - Representative volume element for polycrystals
 - Parallel computing of polycrystalline aggregates

3 Homogenization models for polycrystals

- 4 Texture evolution during the deformation of polycrystals
- 5 Grain size effects in polycrystals
 - Cosserat single crystal plasticity
 - Hall–Petch behaviour

Ingredients of mean field theory

• Macroscopic quantitied

$$\sum_{i=1}^{\infty}, E_{i}, E_{i}^{p}$$

• Mean values per phase

$$\sigma^{g}, \varepsilon^{pg}, \gamma^{sg}$$

• Taylor model

$$\mathbf{g}^{pg} = \mathbf{E}^{p} \Longrightarrow \mathbf{g}^{g} \neq \mathbf{\Sigma}$$

Static model

$$\sigma_{\widetilde{\Sigma}}^{g} = \Sigma \Longrightarrow \varepsilon_{\widetilde{\Sigma}}^{pg} \neq \Sigma_{\widetilde{\Sigma}}^{pg}$$

• Self-constitent estimates

$$\underline{\sigma}^{g} \neq \underline{\Sigma}, \quad \underline{\varepsilon}^{pg} \neq \underline{E}^{p}$$

Self-consistent scheme

[Kröner, 1961]

Homogenization models for polycrystals

Scale transition rules

• Secant and tangent approximations

$$\dot{\boldsymbol{\Sigma}} = \mathop{\boldsymbol{\mathsf{L}}}_{\approx}^{\textit{eff}} : \dot{\boldsymbol{\mathsf{E}}}$$

• Lin and Kröner estimates (\simeq Taylor)

$$\dot{\sigma} = \dot{\Sigma} + \mu (\dot{E}^{p} - \dot{\varepsilon}^{p})$$

• Berveiller and Zaoui's estimate (1979)

$$\underline{\sigma} = \sum_{\alpha} + \mu \alpha (\underline{\mathsf{E}}^{\mathsf{p}} - \underline{\varepsilon}^{\mathsf{p}})$$

elastoplastic accommodation coefficient α varying from 1 to 0.01 during deformation

• limitations : elastoviscoplasticity, radial and monotonic loading, no real grain morphology, limited interaction between grains, estimation that may be out of the theoretical bounds, difficult to estimate strain heterogeneities inside the grains...

Identification of scale transition rules

$$\mathbf{E} = \mathbf{E}^{e} + \mathbf{E}^{p}, \quad \mathbf{\Sigma} = \mathbf{C} : \mathbf{E}^{e}, \quad \mathbf{\Sigma} = \sum_{g=1}^{N_{g}} f_{g} \, \mathbf{c}^{g}, \quad \dot{\mathbf{E}}^{p} = \sum_{g=1}^{N_{g}} f_{g} \, \dot{\mathbf{c}}^{pg}$$

 $\sigma^g \longrightarrow \dot{\varepsilon}^{\rho g}$ according to the constitutive equations of single crystal plasticity Example of efficient parametrized scale transition rule:

$$\underline{\sigma}^{g} = \sum_{\sim} + C\left(\underline{B} - \underline{\beta}^{g}\right), \quad \underline{B} = \sum_{g=1}^{N_{g}} f_{g} \underline{\beta}^{g}, \quad \underline{\dot{\beta}}^{g} = \underline{\dot{\varepsilon}}^{pg} - D\dot{\varepsilon}^{pg}_{eq} \underline{\beta}^{g}$$

intergranular plastic accommodation variables $\underset{\sim}{\mathcal{A}}$ with the nonlinear evolution law

scale transition parameters : $C, D \neq$ material parameters

identification procedure, inverse approach

Homogenization models for polycrystals

Plan

Computational mechanics of microstructures

- Morphology and meshing of polycrystals
- Exercise: boundary conditions for computing volume elements
- 2 Computing strain heterogeneities in polycrystals
 - Representative volume element for polycrystals
 - Parallel computing of polycrystalline aggregates
- 3 Homogenization models for polycrystals
- 4 Texture evolution during the deformation of polycrystals
- 5 Grain size effects in polycrystals
 - Cosserat single crystal plasticity
 - Hall–Petch behaviour

Texture evolution (FCC)

Texture evolution (FCC) (tension $F_{33} = 1.7$)

Texture evolution (FCC) (compression $F_{33} = 0.3$)

Texture evolution (FCC)

Texture evolution during the deformation of polycrystals

Texture evolution (FCC) (rolling $F_{33} = 0.66$)

planes : {111}

Texture evolution during the deformation of polycrystals

Texture evolution (FCC) (rolling $F_{33} = 0.43$)

Texture evolution during the deformation of polycrystals

Texture evolution (FCC) (rolling $F_{33} = 0.43$)

planes : {200}

Texture evolution during the deformation of polycrystals

Texture evolution (FCC)

Texture evolution during the deformation of polycrystals

Texture evolution (FCC) (rolling $F_{33} = 0.88$)

planes : {111}

Texture evolution during the deformation of polycrystals

Texture evolution (FCC) (rolling $F_{33} = 0.43$)

planes : {111}

Texture evolution during the deformation of polycrystals

Texture evolution (FCC) (rolling $F_{33} = 0.43$)

planes : {200}

Texture evolution during the deformation of polycrystals

Texture evolution (FCC) (anisotropic initial texture)

Texture evolution during the deformation of polycrystals

Texture evolution (FCC) (torsion $F_{12} = 0.55$)

planes : {111}

Texture evolution during the deformation of polycrystals

Texture evolution (FCC) (torsion $F_{12} = 0.77$)

planes : {111}

Texture evolution during the deformation of polycrystals

Texture evolution (FCC) (torsion $F_{12} = 1.00$)

Texture evolution during the deformation of polycrystals

Plan

Computational mechanics of microstructures

- Morphology and meshing of polycrystals
- Exercise: boundary conditions for computing volume elements
- 2 Computing strain heterogeneities in polycrystals
 - Representative volume element for polycrystals
 - Parallel computing of polycrystalline aggregates
- 3 Homogenization models for polycrystals
- 4 Texture evolution during the deformation of polycrystals
- 5 Grain size effects in polycrystals
 - Cosserat single crystal plasticity
 - Hall–Petch behaviour

Plan

Computational mechanics of microstructures

- Morphology and meshing of polycrystals
- Exercise: boundary conditions for computing volume elements
- 2 Computing strain heterogeneities in polycrystals
 - Representative volume element for polycrystals
 - Parallel computing of polycrystalline aggregates
- 3 Homogenization models for polycrystals
- 4 Texture evolution during the deformation of polycrystals
- 5 Grain size effects in polycrystals
 - Cosserat single crystal plasticity
 - Hall–Petch behaviour

Dislocation density tensor

 a) circuit de Burgers autour d'une surface élémentaire de cristal traversée de lignes de dislocations

(b) densité scalaire de dislocations définie comme la longueur de lignes de dislocations dans un volume donné

$$\underline{\alpha} = \underline{\mathsf{K}}^{\mathsf{T}} - (\operatorname{trace} \underline{\mathsf{K}})\underline{1}$$

lattice curvature tensor

$$\mathbf{K} = \underline{\phi} \otimes \mathbf{\nabla}$$

lattice curvature due to edge dislocations lattice torsion due to screw dislocations

 Ilexion de réseau associée à *d* torsion de réseau associée à Graibons d'accommodation Graibons d'accommodation

Cosserat continuum mechanics

kinematics d.o.f. $\underline{\mathbf{u}}$, $\underline{\boldsymbol{\Phi}}$ Cosserat deformation :

$$e_{ij} = u_{i,j} + \epsilon_{ijk} \Phi_k$$

curvature tensor :

 $\kappa_{ij} = \Phi_{i,j}$

isotropic elasticity :

$$\begin{split} \boldsymbol{\sigma} &= \lambda \, \mathbf{1} \operatorname{Tr} \mathbf{e}^{\mathbf{e}} + 2\mu \, {}^{\{} \mathbf{e}^{\mathbf{e}\}} + 2\mu_{c} \, {}^{\}} \mathbf{e}^{\mathbf{e}\{} \\ \boldsymbol{\mu} &= \alpha \, \mathbf{1} \operatorname{Tr} \mathbf{\kappa}^{\mathbf{e}} + 2\beta \, {}^{\{} \mathbf{\kappa}^{\mathbf{e}\}} + 2\gamma \, {}^{\}} \mathbf{\kappa}^{\mathbf{e}\{} \end{split}$$

statics balance of momentum :

$$\sigma_{ij,j} + f_i = 0$$

balance of moment of momentum :

Grain size effects in polycrystals

$$\mu_{ii,i} - \epsilon_{ijk}\sigma_{jk} + c_i = 0.46/55$$

Cosserat crystal plasticity model

$${}^{\sharp}\mathbf{F} = \mathbf{R}^{T} \cdot \mathbf{F}, \quad {}^{\sharp}\mathbf{K} = \mathbf{R}^{T} \cdot \mathbf{K}$$

multiplicative/additive decomposition
$${}^{\sharp}\mathbf{F} = {}^{\sharp}\mathbf{F}^{e} \cdot {}^{\sharp}\mathbf{F}^{p}, \quad {}^{\sharp}\mathbf{K} = {}^{\sharp}\mathbf{K}^{e} \cdot {}^{\sharp}\mathbf{F}^{p} + {}^{\sharp}\mathbf{K}^{p}$$

$${}^{\sharp}\mathbf{F}^{e} \cdot {}^{\sharp}\mathbf{F}^{p-1} = \sum_{s=1}^{n} \dot{\gamma}^{s\sharp}\mathbf{P}^{s}$$

$${}^{\sharp}\mathbf{K}^{p} \cdot {}^{\sharp}\mathbf{F}^{p-1} = \sum_{s=1}^{n} \left(\frac{\dot{\theta}_{\perp}^{s}}{l_{\perp}}\mathbf{R}^{s} \perp + \frac{\dot{\theta}_{\odot}^{s}}{l_{\odot}}\mathbf{R}^{s} \odot\right)$$

$${}^{\sharp}\mathbf{P}^{s} = {}^{\sharp}\mathbf{m}^{s} \otimes {}^{\sharp}\mathbf{n}^{s}$$

$${}^{\sharp}\mathbf{Q}_{\perp} = {}^{\sharp}\mathbf{\xi} \otimes {}^{\sharp}\mathbf{m}, {}^{\sharp}\mathbf{Q}_{\odot} = \frac{1}{2}\mathbf{1} - {}^{\sharp}\mathbf{m} \otimes {}^{\sharp}\mathbf{m}$$

$$r^{s} = r_{0} + q \sum_{r=1}^{n} h^{sr}(1 - \exp(-bv^{r})) + \mathbf{R}(|\theta^{s}|), \quad r_{c}^{s} = r_{c0}$$

Grain size effects in polycrystals

Plan

Computational mechanics of microstructures

- Morphology and meshing of polycrystals
- Exercise: boundary conditions for computing volume elements
- 2 Computing strain heterogeneities in polycrystals
 - Representative volume element for polycrystals
 - Parallel computing of polycrystalline aggregates
- 3 Homogenization models for polycrystals
- 4 Texture evolution during the deformation of polycrystals
- Grain size effects in polycrystals
 Cosserat single crystal plasticity
 - Hall–Petch behaviour

Grain size effects in polycrystals

Lattice curvature in a ferritic steel

Microplasticity: plastic strain

150 μ m

 $10 \mu m$

Microplasticity: lattice rotation

Microplasticity: lattice curvature

 $150 \mu m$

 $10 \mu m$

Microplasticity : local stresses

