Continuum single crystal plasticity

Samuel Forest

Mines ParisTech / CNRS Centre des Matériaux/UMR 7633 BP 87, 91003 Evry, France Samuel.Forest@mines-paristech.fr

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

- 3 Constitutive equations for anisotropic elastoviscoplastic materials
 - Exercise: Playing with Schmid law
 - Standard anisotropic materials
 - Specific constitutive equations
 - Identification of material parameters

Applications

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

- 3 Constitutive equations for anisotropic elastoviscoplastic materials
 - Exercise: Playing with Schmid law
 - Standard anisotropic materials
 - Specific constitutive equations
 - Identification of material parameters

4 Applications

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

Single crystals in industrial components

jet engine (source: SNECMA)

Single crystals in industrial components

compressor / combustion chamber / high pressure turbine

Single crystals in industrial components

single crystal nickel base superalloy turbine blades

Thermomechanics of single crystal component

temperature field in a single crystal turbine blade

Introduction

Thermomechanics of single crystal component

Introduction

Thermomechanics of single crystal component

Cyclic loading of multi-perforated single crystal blades

Introduction

Micro-electromechanichal systems: MEMS

silicium wafer with chips

Micro-electromechanichal systems: MEMS

multilayered component / aluminium or copper interconnections

Nano-mechanics

nanomachines

Multicrystalline part in a MEMS

 $d \sim L$

- d grain size
- L component size
 - fluctuations of apparent properties
 - stress and strain gradients

Predict polycrystal anisotropic behavior

Metal forming: Rolling of a cuproberyllium alloy

Aims of microstructural mechanics

1 Mechanical behaviour of heterogeneous materials

- \star understanding of local deformation and fracture mechanisms
- \star influence of morphology of phases : computation of RVE
- $\star\,$ homogenization methods and modelling effective properties :
 - * test available estimations
 - * prediction with a minimum of approximations, respecting bounds!
 - * case of constituents with high contrast of properties
- ★ additional information : variance of the fields, dispersion, local heterogeneity

2 Computation of small structures

- \star mini-samples, thin layers, coarse grain materials, MEMS
- $\star\,$ zones of stress concentration
- Oamage of materials driven by extremal values, not by mean values...

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

- 3 Constitutive equations for anisotropic elastoviscoplastic materials
 - Exercise: Playing with Schmid law
 - Standard anisotropic materials
 - Specific constitutive equations
 - Identification of material parameters

4 Applications

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

Slip bands in a single crystal during cyclic loading

From dislocation dynamics to continuum crystal plasticity

17/71

Plastic slip of atomic planes...

... due to the motion of crystal linear defects: dislocations

From dislocation dynamics to continuum crystal plasticity

18/71

Kinematics of plastic single slip

small plastic strain:

$$\varepsilon^{p} = \frac{\gamma^{s}}{2} (\underline{\ell}^{s} \otimes \underline{\mathbf{n}}^{s} + \underline{\mathbf{n}}^{s} \otimes \underline{\ell}^{s})$$

From dislocation dynamics to continuum crystal plasticity

19/71

Cubic Face Centered (FCC) single crystals

- slip directions a $\{111\}$ -plane are indicated by arrows
- 4 slip planes $\{111\}$ i.e. $(111), (\overline{1}11), (1\overline{1}1), (11\overline{1})$
- 6 slip directions <110> i.e. $[110], [\overline{1}10], [101], [\overline{1}01], [011], [01\overline{1}]$

From dislocation dynamics to continuum crystal plasticity

Slip systems: $\{111\}\langle 110\rangle$

Slip systems: $\{111\}\langle 110\rangle$

Slip systems: $\{111\}\left<110\right>$

Slip systems: $\{111\}\left<110\right>$

Slip systems: $\{111\} \langle 110 \rangle$

Plan

Introduction

2 From dislocation dynamics to continuum crystal plasticity

3 Constitutive equations for anisotropic elastoviscoplastic materials

- Exercise: Playing with Schmid law
- Standard anisotropic materials
- Specific constitutive equations
- Identification of material parameters

4 Applications

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

3 Constitutive equations for anisotropic elastoviscoplastic materials

• Exercise: Playing with Schmid law

- Standard anisotropic materials
- Specific constitutive equations
- Identification of material parameters

4 Applications

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

Slip systems in FCC crystals

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	[101]	$[0\overline{1}1]$	$\overline{[110]}$	$\left[\overline{1}01\right]$	[011]	[110]
number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	(111)	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$[0\overline{1}1]$	[110]	[101]	$[\bar{1}10]$	[101]	[011]

tensile test in the direction $\underline{\mathbf{t}} \quad \underline{\sigma} = \sigma \, \underline{\mathbf{t}} \otimes \underline{\mathbf{t}}, \quad \tau^s = \sigma \, (\underline{\mathbf{n}}^{s}.\underline{\mathbf{t}}) \, (\underline{\ell}^{s}.\underline{\mathbf{t}})$ Schmid factor $M^s \quad \tau^s = M^s \, \sigma, \quad M^s = (\underline{\mathbf{n}}^{s}.\underline{\mathbf{t}}) \, (\underline{\ell}^{s}.\underline{\mathbf{t}})$

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	Ì <u>1</u> 01	[0 <u>1</u> 1]	$\overline{110}$	Ì <u>1</u> 01	[011]	[110]
Schmid factor						

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	$(\bar{1}11)$	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$\left[0\overline{1}1\right]$	[110]	[101]	110	[101]	[011]
Schmid factor						

tensile test in the direction [001] Schmid factor $M^s = (\underline{\mathbf{n}}^s . \underline{\mathbf{t}}) (\underline{\ell}^s . \underline{\mathbf{t}})$

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	[101]	$[0\overline{1}1]$	$\overline{[110]}$	[101]	[011]	[110]
Schmid factor						

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	$(\bar{1}11)$	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$\left[0\overline{1}1\right]$	[110]	[101]	110	[101]	[011]
Schmid factor						

tensile test in the direction [001] Schmid factor $M^s = (\underline{\mathbf{n}}^s . \underline{\mathbf{t}}) (\underline{\ell}^s . \underline{\mathbf{t}})$ 8 active slip systems

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	[101]	$[0\overline{1}1]$	$[\bar{1}10]$	$[\bar{1}01]$	[011]	[110]
Schmid factor	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{6}}$	0	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{6}}$	0

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	$(\bar{1}11)$	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$[0\overline{1}1]$	[110]	[101]	$[\overline{1}10]$	[101]	[011]
Schmid factor	$\frac{1}{\sqrt{6}}$	0	$\frac{1}{\sqrt{6}}$	0	$-\frac{1}{\sqrt{6}}$	$-\frac{1}{\sqrt{6}}$

tensile test in the direction [111] Schmid factor $M^s = (\underline{\mathbf{n}}^s . \underline{\mathbf{t}}) (\underline{\ell}^s . \underline{\mathbf{t}})$

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	[101]	$\left[0\overline{1}1\right]$	$\overline{110}$	101	[011]	[110]
Schmid factor						

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	$(\bar{1}11)$	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$\left[0\overline{1}1\right]$	[110]	[101]	110	[101]	[011]
Schmid factor						

tensile test in the direction [111] Schmid factor $M^s = (\underline{\mathbf{n}}^s . \underline{\mathbf{t}}) (\underline{\ell}^s . \underline{\mathbf{t}})$ 6 active slip systems

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	[101]	$[0\overline{1}1]$	[110]	[101]	[011]	[110]
Schmid factor	0	0	0	0	$\frac{2}{3\sqrt{6}}$	$\frac{2}{3\sqrt{6}}$

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	(111)	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$[0\overline{1}1]$	[110]	[101]	$[\bar{1}10]$	[101]	[011]
Schmid factor	0	$\frac{2}{3\sqrt{6}}$	$\frac{2}{3\sqrt{6}}$	0	$\frac{2}{3\sqrt{6}}$	$\frac{2}{3\sqrt{6}}$

tensile test in the direction [011] Schmid factor $M^s = (\underline{\mathbf{n}}^s . \underline{\mathbf{t}}) (\underline{\ell}^s . \underline{\mathbf{t}})$

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	[101]	$\left[0\overline{1}1\right]$	$\overline{110}$	101	[011]	[110]
Schmid factor						

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	$(\bar{1}11)$	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$\left[0\overline{1}1\right]$	[110]	[101]	$\overline{110}$	[101]	[011]
Schmid factor						

tensile test in the direction [011] Schmid factor $M^s = (\underline{\mathbf{n}}^s . \underline{\mathbf{t}}) (\underline{\ell}^s . \underline{\mathbf{t}})$ 4 active slip systems

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	[101]	$[0\overline{1}1]$	[110]	[101]	[011]	[110]
Schmid factor	$\frac{1}{\sqrt{6}}$	0	$\frac{1}{\sqrt{6}}$	0	0	0

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	(111)	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	[011]	[110]	[101]	110	[101]	[011]
Schmid factor	0	$\frac{1}{\sqrt{6}}$	$\frac{1}{\sqrt{6}}$	0	0	0
tensile test in the direction [012] Schmid factor $M^s = (\underline{\mathbf{n}}^s . \underline{\mathbf{t}}) (\underline{\ell}^s . \underline{\mathbf{t}})$

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	[101]	$\left[0\overline{1}1\right]$	$\overline{110}$	101	011	[110]
Schmid factor						

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	$(\bar{1}11)$	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$\left[0\overline{1}1\right]$	[110]	[101]	110	[101]	[011]
Schmid factor						

tensile test in the direction [012] **2 active slip systems** Schmid factor $M^s = (\underline{\mathbf{n}}^s \cdot \underline{\mathbf{t}}) (\underline{\ell}^s \cdot \underline{\mathbf{t}})$

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	[101]	$[0\overline{1}1]$	$[\bar{1}10]$	$[\bar{1}01]$	[011]	[110]
Schmid factor	$\frac{\sqrt{6}}{5}$	$\frac{1}{5}\sqrt{\frac{3}{2}}$	$\frac{1}{5}\sqrt{\frac{3}{2}}$	$\frac{1}{5}\sqrt{\frac{2}{3}}$	$\frac{1}{5}\sqrt{\frac{3}{2}}$	$\frac{1}{5\sqrt{6}}$

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	$(\overline{1}11)$	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$[0\overline{1}1]$	[110]	[101]	$[\overline{1}10]$	[101]	[011]
Schmid factor	$\frac{1}{5}\sqrt{\frac{3}{2}}$	$\frac{1}{5}\sqrt{\frac{2}{3}}$	$\frac{\sqrt{6}}{5}$	$-\frac{1}{5\sqrt{6}}$	$-\frac{1}{5}\sqrt{\frac{2}{3}}$	$-\frac{1}{5}\sqrt{\frac{3}{2}}$

33/71

tensile test in the direction [123] Schmid factor $M^s = (\underline{\mathbf{n}}^s . \underline{\mathbf{t}}) (\underline{\ell}^s . \underline{\mathbf{t}})$

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	[101]	$[0\overline{1}1]$	$\overline{[110]}$	[101]	[011]	[110]
Schmid factor						

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	$(\bar{1}11)$	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$\left[0\overline{1}1\right]$	[110]	[101]	110	[101]	[011]
Schmid factor						

tensile test in the direction [123] **1** act Schmid factor $M^s = (\underline{\mathbf{n}}^{s}.\underline{\mathbf{t}})(\underline{\ell}^{s}.\underline{\mathbf{t}})$

1 active slip system

number	1	2	3	4	5	6
name	B4	B2	B5	D4	D1	D6
plane	(111)	(111)	(111)	$(1\overline{1}1)$	$(1\overline{1}1)$	$(1\overline{1}1)$
direction	$[\bar{1}01]$	$[0\overline{1}1]$	$[\overline{1}10]$	$[\overline{1}01]$	[011]	[110]
Schmid factor	$\frac{\sqrt{6}}{7}$	$\frac{\sqrt{6}}{14}$	$\frac{\sqrt{6}}{14}$	$\frac{1}{7}\sqrt{\frac{2}{3}}$	$\frac{5}{7\sqrt{6}}$	$\frac{\sqrt{6}}{14}$

number	7	8	9	10	11	12
name	A2	A6	A3	C5	C3	C1
plane	$(\overline{1}11)$	$(\bar{1}11)$	$(\bar{1}11)$	$(11\overline{1})$	$(11\overline{1})$	$(11\overline{1})$
direction	$[0\overline{1}1]$	[110]	[101]	$[\overline{1}10]$	[101]	[011]
Schmid factor	$\frac{1}{7}\sqrt{\frac{2}{3}}$	$\frac{\sqrt{6}}{7}$	$\frac{4}{7}\sqrt{\frac{2}{3}}$	0	0	0

firs activated slip systems in tension according to Schmid law

Yield surface single crystals

Fig. 1. Theoretical yield surfaces predicted by Schmid and Hill criteria (stresses in MPa). (a) Octahedral slip only, coordinate system (100), (010), (001). (b) Octahedral and cube slip, coordinate system (100), (010), (001). (c) Octahedral slip only, coordinate system (110), (110), (001). (d) Octahedral and cube slip, coordinate system (110), (110), (001).

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

3 Constitutive equations for anisotropic elastoviscoplastic materials

- Exercise: Playing with Schmid law
- Standard anisotropic materials
- Specific constitutive equations
- Identification of material parameters

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

Main equations of continuum thermodynamics

• energy principle (local form)

$$\rho \dot{\boldsymbol{e}} = \boldsymbol{\sigma} : \boldsymbol{D} + \rho \boldsymbol{r} - \operatorname{div} \boldsymbol{\underline{q}}$$

• entropy principle (local form)

$$\rho \dot{s} + \operatorname{div}\left(\frac{\underline{\mathbf{q}}}{T}\right) - \frac{\rho r}{T} \ge 0$$

• Clausius-Duhem inequality

$$-
ho(\dot{e} - T\dot{s}) + \sigma : \mathbf{D} - \frac{\mathbf{q}}{T}. \mathrm{grad} \ T \ge 0$$

Helmholtz free energy density $\psi=\textit{e}-\textit{Ts}$

$$-
ho(\dot{\psi}+s\dot{T})+\sigma: \mathbf{D}-rac{\mathbf{q}}{T}.\mathrm{grad}\ T\geq 0$$

• intrinsic and thermal dissipation

$$D^{th} = -rac{\mathbf{q}}{\overline{T}}.\mathrm{grad} \ \mathcal{T}$$

 $D^{i} = -
ho(\dot{\Psi} + s\dot{T}) + \mathbf{\sigma}: \mathbf{D}$

Constitutive equations for anisotropic elastoviscoplastic materials

Multiplicative decomposition of the deformation gradient

 $\mathop{\textbf{F}}_{\scriptscriptstyle \sim}=\mathop{\textbf{E}}_{\scriptscriptstyle \sim}\cdot\mathop{\textbf{P}}_{\scriptscriptstyle \sim}$

isoclinic intermediate configuration according to [Mandel, 1973]

Multiplicative decomposition of the deformation gradient

 $\mathbf{F} = \mathbf{R} \cdot \mathbf{U}, \quad \mathbf{E} = \mathbf{R}^e \cdot \mathbf{U}^e, \quad \mathbf{P} = \mathbf{R}^p \cdot \mathbf{U}^p$

 $\begin{array}{l} \underbrace{\textbf{U}}^{e} \ / \ \underbrace{\textbf{U}}^{p} \colon \text{elastic/plastic stretch tensors} \\ \underbrace{\textbf{R}}^{e} \ / \ \underbrace{\textbf{R}}^{p} \colon \text{elastic (lattice) /plastic rotation tensors} \end{array}$

Constitutive equations for anisotropic elastoviscoplastic materials

Elastoviscoplastic anisotropic materials

elastic strain and stress tensor with respect to the isoclinic configuration

$$\mathbf{E}^{e} = \frac{1}{2} (\mathbf{E}^{T} \cdot \mathbf{E} - \mathbf{1}), \quad \mathbf{\Pi}^{e} = \frac{\rho_{i}}{\rho} \mathbf{E}^{-1} \cdot \mathbf{\sigma} \cdot \mathbf{E}^{-T}$$

• power of internal forces

$$\frac{1}{\rho}\boldsymbol{\sigma}:(\dot{\boldsymbol{E}}\cdot\boldsymbol{E}^{-1})=\frac{1}{\rho_{i}}(\boldsymbol{\Pi}^{e}:\dot{\boldsymbol{E}}^{e}+(\boldsymbol{E}^{T}\cdot\boldsymbol{E}\cdot\boldsymbol{\Pi}^{e}):(\dot{\boldsymbol{P}}\cdot\boldsymbol{P}^{-1}))$$

• Clausius-Duhem inequality

$$\rho(\frac{\mathbf{\Pi}^{e}}{\rho_{i}} - \frac{\partial \Psi}{\partial \underline{\mathsf{E}}^{e}}) : \dot{\underline{\mathsf{E}}}^{e} - \rho(s + \frac{\partial \Psi}{\partial T})\dot{T} + D^{res} \ge 0$$

- State variables: $(\mathbf{E}^{e}, T, \alpha)$, internal variables α
- State functions : internal energy density e(E^e, s, α) Helmholtz free energy density ψ(E^e, T, α) = e − Ts

Standard elastoviscoplastic materials

• exploitation of the second principle state laws

$$\mathbf{\Pi}^{\mathbf{e}} = \rho_i \frac{\partial \Psi}{\partial \mathbf{E}^{\mathbf{e}}}, \quad \mathbf{X} = \rho_i \frac{\partial \Psi}{\partial \alpha}, \quad \mathbf{s} = -\frac{\partial \Psi}{\partial T}$$

• residual dissipation:

$$D^{res} = \mathbf{M} : (\mathbf{\dot{P}} \cdot \mathbf{P}^{-1}) - X\dot{lpha} \ge 0$$

Mandel stress tensor:

$$\mathbf{M} := \mathbf{E}^{\mathsf{T}} \cdot \mathbf{E} \cdot \mathbf{\Pi}^{e} = \mathbf{C}^{e} \cdot \mathbf{\Pi}^{e}$$

• assume the existence of a convex dissipation potential $\Omega(\mathbf{M}, X)$

$$\dot{\mathbf{P}} \cdot \mathbf{P}^{-1} = \frac{\partial \Omega}{\partial \mathbf{M}}, \quad \dot{\alpha} = -\frac{\partial \Omega}{\partial X}$$

Constitutive equations for anisotropic elastoviscoplastic materials

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

3 Constitutive equations for anisotropic elastoviscoplastic materials

- Exercise: Playing with Schmid law
- Standard anisotropic materials

Specific constitutive equations

• Identification of material parameters

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

- state variables: elastic strain $\underline{\varepsilon}^{e}$, "dislocation density" ϱ^{s} , internal structure α^{s}
- free energy

$$\rho\psi(\underline{\varepsilon}^{e},\varrho^{s},\alpha^{s}) = \frac{1}{2}\underline{\varepsilon}^{e}:\underline{\varepsilon}^{e} + r_{0}\sum_{s=1}^{N}\varrho^{s} + \frac{1}{2}q\sum_{r,s=1}^{N}h^{rs}\varrho^{r}\varrho^{s} + \frac{1}{2}c\sum_{s=1}^{N}\alpha^{s^{2}}$$

• state laws

- state variables: elastic strain $\underline{\varepsilon}^{e}$, "dislocation density" ϱ^{s} , internal structure α^{s}
- free energy

$$\rho\psi(\underline{\varepsilon}^{e},\varrho^{s},\alpha^{s}) = \frac{1}{2}\underline{\varepsilon}^{e}:\underline{\varepsilon}^{e} + r_{0}\sum_{s=1}^{N}\varrho^{s} + \frac{1}{2}q\sum_{r,s=1}^{N}h^{rs}\varrho^{r}\varrho^{s} + \frac{1}{2}c\sum_{s=1}^{N}\alpha^{s^{2}}$$

state laws

$$\begin{split} \boldsymbol{\sigma} &= \rho \frac{\partial \psi}{\partial \boldsymbol{\varepsilon}^{e}} = \boldsymbol{c} : \boldsymbol{\varepsilon}^{e} \\ \boldsymbol{r}^{s} &= \rho \frac{\partial \psi}{\partial \boldsymbol{\varrho}^{s}} = r_{0} + q \sum_{r=1}^{N} h^{sr} \boldsymbol{\varrho}^{r} \\ \boldsymbol{x}^{s} &= \rho \frac{\partial \psi}{\partial \boldsymbol{\alpha}^{s}} = \boldsymbol{c} \boldsymbol{\alpha}^{s} \end{split}$$

Constitutive equations for anisotropic elastoviscoplastic materials

• resolved shear stress on slip system s

$$\tau^{s} = (\underline{\sigma}.\underline{\mathbf{n}}^{s}).\underline{\ell}^{s} = \underline{\sigma}: (\underline{\ell}^{s} \otimes \underline{\mathbf{n}}^{s}) = \underline{\sigma}: (\underline{\ell}^{s} \overset{sym}{\otimes} \underline{\mathbf{n}}^{s})$$

• multimechanism crystal plasticity yield criterion: Schmid law

$$f^s = |\tau^s - x^s| - r^s$$

yield limit r^s , internal stress (back-stress) x^s , for each system s

• dissipation potential $\Omega(\sigma, r^s, x^s) = \frac{K}{n+1} \sum_{s=1}^{N} \langle \frac{f^s}{K} \rangle^{n+1}$

flow and hardening rules

• resolved shear stress on slip system s

$$\tau^{s} = (\underline{\sigma}.\underline{\mathbf{n}}^{s}).\underline{\ell}^{s} = \underline{\sigma}: (\underline{\ell}^{s} \otimes \underline{\mathbf{n}}^{s}) = \underline{\sigma}: (\underline{\ell}^{s} \overset{sym}{\otimes} \underline{\mathbf{n}}^{s})$$

• multimechanism crystal plasticity yield criterion: Schmid law

$$f^s = |\tau^s - x^s| - r^s$$

yield limit r^s , internal stress (back-stress) x^s , for each system s

• dissipation potential $\Omega(\sigma, r^s, x^s) = \frac{K}{n+1} \sum_{s=1}^{N} \langle \frac{f^s}{K} \rangle^{n+1}$

• flow and hardening rules

$$\dot{\varepsilon}^{p} = \frac{\partial\Omega}{\partial\sigma} = \sum_{s=1}^{N} \dot{\gamma}^{s} \underline{\ell}^{s} \overset{sym}{\otimes} \underline{\mathbf{n}}^{s}, \quad \dot{\varrho}^{s} = -\frac{\partial\Omega}{\partial r^{s}} = \dot{v}^{s}, \quad \dot{\alpha}^{s} = -\frac{\partial\Omega}{\partial x^{s}} = \dot{\gamma}^{s}$$

with

$$\dot{v}^{s} = \langle \frac{f^{s}}{K} \rangle^{n}, \quad \dot{\gamma}^{s} = \dot{v}^{s} \operatorname{sign}(\tau^{s} - x^{s})$$

Constitutive equations for anisotropic elastoviscoplastic materials

48/71

Nonlinear hardening rules

nonlinear isotropic hardening

$$arrho^s = 1 - \exp(-bv^s)$$

 $r^s = r_0 + q\sum_{r=1}h^{sr}(1 - \exp(-bv^s))$

• nonlinear kinematic hardening

$$\dot{\alpha}^{s} = \dot{\gamma}^{s} - d\dot{v}^{s}\alpha^{s}$$

monotonic loading:

$$x^s = \frac{c}{d}(\pm 1 - \exp(-dv^s))$$

Interaction matrix

• latent hardening (two activated slip systems)

$$r^2 = r_0 + h_1 \varrho^1 + h_2 \varrho^2$$

- Taylor hardening $h^{rs} = 1$, $\forall r, s$
- interaction matrix for FCC crystals

Interaction matrix

Γ	<i>B</i> 4	B2	<i>B</i> 5	D4	D1	D6	A2	A6	A3	С5	С3	<i>C</i> 1
B4	h_1	<i>h</i> ₂	<i>h</i> ₂	h ₄	h_5	<i>h</i> 5	<i>h</i> 5	h ₆	h ₃	h_5	h ₃	h ₆
B2		h_1	<i>h</i> ₂	<i>h</i> 5	h ₃	<i>h</i> 6	h ₄	<i>h</i> 5	<i>h</i> 5	h_5	<i>h</i> 6	h ₃
B5			h_1	<i>h</i> 5	<i>h</i> 6	h ₃	<i>h</i> 5	h ₃	<i>h</i> 6	<i>h</i> 4	h_5	<i>h</i> 5
D4				h_1	<i>h</i> 2	<i>h</i> ₂	<i>h</i> 6	<i>h</i> 5	<i>h</i> 3	<i>h</i> 6	h ₃	<i>h</i> 5
D1					h_1	<i>h</i> ₂	<i>h</i> 3	<i>h</i> 5	<i>h</i> 6	h_5	h_5	h4
D6						h_1	<i>h</i> 5	h ₄	<i>h</i> 5	h ₃	<i>h</i> 6	<i>h</i> 5
A2							h_1	<i>h</i> ₂	<i>h</i> ₂	h ₆	h_5	h ₃
A6								h_1	<i>h</i> ₂	h ₃	h_5	h ₆
A3									h_1	h_5	h ₄	<i>h</i> 5
C5										h_1	<i>h</i> 2	<i>h</i> ₂
C3											h_1	<i>h</i> ₂
C1												h_1

simplified version: $h_1 = 1$, $h_2 = h_3 = h_4 = h_5 = h_6 = h$

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

3 Constitutive equations for anisotropic elastoviscoplastic materials

- Exercise: Playing with Schmid law
- Standard anisotropic materials
- Specific constitutive equations
- Identification of material parameters

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

Nickel-base single crystal superalloy at 950°C: tensile tests

< 111 >-oriented single crystal < 011 >-oriented single crystal SC16 at 950°C ($\dot{\varepsilon} = 10^{-3}s^{-1}$) SC16 at 950°C ($\dot{\varepsilon} = 10^{-3}s^{-1}$)

Nickel-base single crystal superalloy at 950°C: cyclic and creep tests

slip	k	n	ro	q	b	с	d	М	т
systems	$MPa^{1/n}$		MPa	MPa		MPa			
octahedral	700	4.7	4.6	3.9	3.7	96536	1050	314	5
cubic	1172	2.4	17.3	-4.4	2.7	77081	1056	155	10

Nickel-base single crystal superalloy at 950°C: values of parameters

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

- 3 Constitutive equations for anisotropic elastoviscoplastic materials
 - Exercise: Playing with Schmid law
 - Standard anisotropic materials
 - Specific constitutive equations
 - Identification of material parameters

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

- 3 Constitutive equations for anisotropic elastoviscoplastic materials
 - Exercise: Playing with Schmid law
 - Standard anisotropic materials
 - Specific constitutive equations
 - Identification of material parameters

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

tensile specimen plastic slip superimposed rigid body motion For small elastic strain (usual in metals), lattice rotation is given by the rotation part in the polar decomposition of the elastic deformation

$$\underline{\mathsf{E}} = \underline{\mathsf{V}}^{\mathsf{e}}.\underline{\mathsf{R}}^{\mathsf{e}} = \underline{\mathsf{R}}^{\mathsf{e}}.\underline{\mathsf{U}}^{\mathsf{e}}$$

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

- 3 Constitutive equations for anisotropic elastoviscoplastic materials
 - Exercise: Playing with Schmid law
 - Standard anisotropic materials
 - Specific constitutive equations
 - Identification of material parameters

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

Kinematics of simple glide

$$\begin{cases} x_1 = X_1 + \gamma X_2 \\ x_2 = X_2 \\ x_3 = X_3 \end{cases}, \quad \mathbf{F} = \mathbf{1} + \gamma \mathbf{\underline{e}}_1 \otimes \mathbf{\underline{e}}_2, \quad [\mathbf{F}] = \begin{bmatrix} 1 & \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Simple glide

eigenrotation around axis $\underline{\mathbf{e}}_3$ with angle $\tan \theta = -\frac{\gamma}{2}$

Rotation of material lines $\begin{pmatrix} 2 \\ C_{o} \\ \theta_{o} \\ \theta_{o} \\ 1 \\ \end{pmatrix}$

$$\mathbf{F} = \mathbf{1} + \gamma \mathbf{e}_1 \otimes \mathbf{e}_2$$

rotation of material lines:

$$\tan \theta = \tan \theta_0 + \gamma, \quad \dot{\theta} = \frac{\dot{\gamma}}{1 + (\tan \theta_0 + \gamma)^2}$$
$$< \dot{\theta}_L >= \frac{\dot{\gamma}}{\pi} \int_{-\pi/2}^{\pi/2} \frac{1}{1 + (\tan \theta_0 + \gamma)^2} d\theta_0 = \frac{\dot{\gamma}}{2(1 + \frac{\gamma^2}{4})}$$
$$< \dot{\theta}_e >= \frac{\dot{\gamma}}{\pi} \int_{-\pi/2}^{\pi/2} \frac{1}{1 + \tan^2\theta} d\theta = \frac{\dot{\gamma}}{2}$$

the corotational frame rotates without stopping! the eigen rotation stops progressively... 63/71

Simple glide for single crystals

Simple glide for single crystals

Simple glide for single crystals

Simple glide for single crystals

Simple glide for single crystals

Plan

Introduction

Prom dislocation dynamics to continuum crystal plasticity

- 3 Constitutive equations for anisotropic elastoviscoplastic materials
 - Exercise: Playing with Schmid law
 - Standard anisotropic materials
 - Specific constitutive equations
 - Identification of material parameters

Applications

- Lattice rotation
- Simple glide
- Exercise: Torsion of single crystals

Torsion of a single crystal

