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Closure problem

• universal laws : conservation laws
find the fields (ρ,σ∼ , v ) such that

∂ρ

∂t
+ div (ρv ) = 0

div σ∼ + ρf = ρv̇

i.e. 1+3=4 equations
number of unknowns : 1 (ρ) + 3 (vi ) + 6 (σij) = 10

6 equations are missing...
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Closure problem

• universal laws : conservation laws
find the fields (ρ,σ∼ , v ) such that

∂ρ

∂t
+ div (ρv ) = 0

div σ∼ + ρf = ρv̇

i.e. 1+3=4 equations
number of unknowns : 1 (ρ) + 3 (vi ) + 6 (σij) = 10

6 equations are missing...

• material-specific relations: constitutive equations
material behavior laws
6 relations σij ←→ Lij ,Fij ...
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Classification of material behavior

∆l
F

Elasticity F = k∆l

∆l
F

Viscosity F = η∆l̇

∆l
F

Plasticity F = F0sign(∆l̇) if ∆l̇ 6= 0
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Constitutive functional

• Example : Maxwell viscoelasticity

∆l
F

∆l̇(t) = ∆l̇piston(t) + ∆l̇ressort(t) =
F (t)

η
+

Ḟ (t)

k

F (t) = k

∫ t

−∞
exp(−k

η
(t − s))∆l̇ ds

the current material response depend on the total history of
deformation

• Extension to a 3D material body : Constitutive functional

σ∼(x , t) = F
0≤s≤t,Y ∈Ω0

(Φ(Y , s))
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First simplifications

• principle of determinism

σ∼(x , t) = F
0≤s≤t,Y ∈Ω0

(Φ(Y , s))

non local theory

• principle of local action

σ∼(x , t) = F
0≤s≤t,n>0

(
Φ(X , s),

∂nΦ

∂X n (X , s)

)
• simple material : first gradient theory

σ∼(x , t) = F
0≤s≤t

(
Φ(X , s),F∼(X , s)

)
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Form of the constitutive law

• Constitutive functional

σ∼(x , t) = F
0≤s≤t

(
Φ(X , s),F∼(X , s)

)
• Elastic behavior

σ∼ = FΩ0(F∼)
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Change of observer
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Transformation rules under change of observer
observer (E ,E ), another observer (E ′,E ′)
• Euclidean transformation

x ′ = Q
∼
(t).x + c (t), t ′ = t − t0

convention : Q
∼
(t0) = 1∼ (X ′ = X ), c (t0) = 0

• Transformation rules for mechanical quantities?
? deformation gradient
? strain tensors
? velocity gradient
? stress tensors
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Transformation rules under change of observer
observer (E ,E ), another observer (E ′,E ′)
• Euclidean transformation (trafo)

x ′ = Q
∼
(t).x + c (t), t ′ = t − t0

convention : Q
∼
(t0) = 1∼ (X ′ = X ), c (t0) = 0

• Objective and invariant tensors
? deformation gradient dx ′ = Q

∼
.dx F∼

′ = Q
∼
.F∼

? Cauchy–Green tensors

C∼
′ = C∼, B∼

′ = Q
∼
.B∼ .Q∼

T

? velocity gradient

L∼
′ = Q

∼
.L∼.Q∼

T+Q̇
∼
.Q
∼

T , D∼
′ = Q

∼
.D∼ .Q∼

T , W∼
′ = Q

∼
.W∼ .Q∼

T+Q̇
∼
.Q
∼

T

? stress tensor t ′ = Q
∼
.t , df ′ = σ∼

′.ds ′, σ∼
′ = Q

∼
.σ∼ .Q∼

T

consequence : the power density of internal forces is invariant
with respect to Euclidean trafo

pi ′ = σ∼
′ : D∼

′ = σ∼
′ : (Q

∼
.D∼ .Q∼

T ) = (Q
∼

T .σ∼
′.Q
∼

) : D∼
? = pi
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Form invariance of the constitutive law

How does the constitutive law transform under Euclidean trafo?

σ∼ = FΩ0(F∼)

σ∼
′ = F ′Ω0

(F∼
′)

=⇒ F ′Ω0
(F∼
′) = Q

∼
.FΩ0(Q∼

T .F∼
′).Q

∼
T

Form invariance principle (also called principle of material frame
indifference or principle of material objectivity) :

F ′Ω0
= FΩ0

the physical property (ex: stiffness) does not depend on the
observer...

=⇒ FΩ0(Q∼ .F∼) = Q
∼
.FΩ0(F∼).Q

∼
T
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Reduced form of the constitutive law
The elasticity law takes the reduced form

σ∼(X , t) = R∼(X , t).FΩ0(U∼ (X , t)).R∼
T (X , t)

or, equivalently,
Π∼ = FΠ

Ω0
(C∼)

Π∼ = FΠ
Ω0

(E∼)
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Change of reference configuration

Ω0

Ω̂0

Ω̌0

P
�

Ω̆0

P̌
�

P̆
�

Ωt

F
�

F̂
�

F̌
�

F̆
�

P∼ is an arbitrary linear
mapping (invertible but not

necessarily a rotation)

F̂∼ = F∼.P∼
−1
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Change of reference configuration
X −→ X̂

• forms of the constitutive law

σ∼(x , t) = FΩ0(F∼(X , t))

σ∼(x , t) = FΩ̂0
(F̂∼(X̂ , t))

FΩ̂0
(F̂∼) = FΩ0(F̂∼.P∼)

• two reference configurations are materially indistinguishable
if

FΩ0 = FΩ̂0

For such a P∼ , the constitutive law must satisfy

FΩ0(F∼) = FΩ0(F∼.P∼)

such a transformation P∼ is called material symmetry (even it
is not necessarily a symmetry in the mathematical sense!)
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Material symmetry group

• The set of all material symmetries with respect to a given
reference configuration Ω0 has the mathematical structure of
a group

GΩ0 ⊂ U(E )

where U(E ) ⊂ GL(E ) is the unimodular group (| detP∼ |= 1)

• Let Ω0 and Ω̂0 be two configurations of a material body, GΩ̂0

and GΩ0 the corresponding symmetry groups and P̂∼ the

deformation gradient from Ω0 to Ω̂0, then

GΩ̂0
= P̂∼ .GΩ0 .P̂∼

−1
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Isotropic elastic materials

• a material is isotropic with respect to the reference
configuration Ω0 if

GΩ0 = GO(E )

• function FΠ
Ω0

is said to be isotropic

Q
∼
.FΠ

Ω0
(C∼).Q

∼
T = FΠ

Ω0
(Q
∼
.C∼ .Q∼

T )
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Isotropic elastic materials

• a material is isotropic with respect to the reference
configuration Ω0 if

GΩ0 = GO(E )

• function FΠ
Ω0

is said to be isotropic

Q
∼
.FΠ

Ω0
(C∼).Q

∼
T = FΠ

Ω0
(Q
∼
.C∼ .Q∼

T )

• representation theorem of isotropic functions

Π∼ = α01∼ + α1C∼ + α2C∼
2

αi are arbitrary functions of the principal invariants of C∼
which gives, in the Eulerian representation,

σ∼ = β01∼ + β1B∼ + β2B∼
2
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• specific case :
GΩ0 = U(E )

• the constitutive function is therefore such that

FΩ0 = FΩ̂0
, ∀P∼ ∈ U(E )
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• specific case :
GΩ0 = U(E )

• the constitutive function is therefore such that

FΩ0 = FΩ̂0
, ∀P∼ ∈ U(E )

• decomposition de F∼ into a spherical and unimodular parts

F∼ = F∼
sph.F̄∼, F̄∼ : Ω0 −→ Ω̂0

it can be shown that FΩ0(F∼) = FΩ0(F∼
sph) = FΩ̂0

(F∼
sph)

the constitutive law takes the form σ∼ = f (J1∼)

• principle of material frame indifference

σ∼
′ = f (F∼

sph′) = f (J1∼) = σ∼

σ∼ = Q
∼
.σ∼ .Q∼

T , ∀Q
∼
∈ GO(E )

σ∼ is nothing but a homothety... Such a material is a...???
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Elastic fluids

• specific case :
GΩ0 = U(E )

• the constitutive function is therefore such that

FΩ0 = FΩ̂0
, ∀P∼ ∈ U(E )

• the constitutive law takes the form

σ∼ = −p(ρ)1∼

or the corresponding Lagrangean representation

Π∼ = JF∼
−1.σ∼ .F∼

−T = −pJC∼
−1

this is an elastic fluid!

Elastic materials 24/53



Plan

1 Closure problem in continuum mechanics and constitutive theory

2 Elastic materials
Principle of material frame indifference
Material symmetry group
A definition of fluids and solids

3 Continuum thermodynamics
Energy
Entropy

4 Hyperelastic materials
State laws
Internal constraints

5 Viscosity



A (mechanical) definition of fluids and des solids

• A material is a fluid if, for a given reference configuration Ω0,
its symmetry group coincides with the unimodular group :

GΩ0 = U(E )

The symmetry group is then invariant with respect to change
of reference configuration.
A fluid admits no priviledged reference configuration.
A fluid is isotropic with respect to any of its configurations.

• A material is a solid if there exists a configuration Ω0 for
which the symmetry group is a sub–group of the orthogonal
group :

GΩ0 ⊂ GO(E )

Such a configuration is called undistorted. It is a priviledged
configuration to write the consitutive law.
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Classification of materials
materials (non necessarily elastic) are classified with respect to their

symmetry groups

GL
�
E �

Elastic materials 27/53



Classification of materials
materials (non necessarily elastic) are classified with respect to their

symmetry groups

GL
�
E �

U
�
E � (fluides)
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Classification of materials
materials (non necessarily elastic) are classified with respect to their

symmetry groups

GL
�
E �

U
�
E � (fluides)

GO
�
E �

(solides
isotropes)
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Classification of materials
GL

�
E �

U
�
E � (fluides)

GO
�
E �

(solides
isotropes)

Cristal
�
E �

(solides anisotropes)

�

(solides tricliniques)
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Classification of materials
GL

�
E �

U
�
E � (fluides)

(impossible)

GO
�
E �

(solides
isotropes)

Cristal
�
E �

(solides anisotropes)

�

(solides tricliniques)
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Classification of materials
GL

�
E �

U
�
E � (fluides)

(impossible)

GO
�
E �

(solides
isotropes)

Cristal
�
E �

(solides anisotropes)(cristaux liquides)

�

(solides tricliniques)
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Energy balance

• kinetic energy

K :=
1

2

∫
D
ρv .v dv

• power of external forces

P := Pc + Pe =

∫
∂D

t .v ds +

∫
D
ρf .v dv

• l’internal energy E of the system, mass density e of internal
energy

E :=

∫
D
ρe(x , t) dv

• heat supply Q to the system in the form of contact heat
supply h(x , t, ∂D) and volume heat supply ρr(x , t)

Q :=

∫
∂D

h ds +

∫
D
ρr dv

heat flux vector q h(x ,n , t) = −q (x , t).n
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Energy principle

Ė + K̇ = P +Q
Taking the theorem of kinetic energy into account,

K̇ = P i + Pe + Pc

where, in the absence of discontinuities, P i = −
∫
D σ∼ : D∼ dv is the

power of internal forces, the first principle can be rewritten as

Ė = −P i +Q∫
D
ρė dv =

∫
D

σ∼ : D∼ dv −
∫

∂D
q .n ds +

∫
D
ρr dv
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Local formulation of the energy principle

From the global formulation for any sub–domain D ⊂ Ωt ...∫
D
ρė dv =

∫
D

σ∼ : D∼ dv −
∫

∂D
q .n ds +

∫
D
ρr dv

... to the local formulation at a regular point of Ωt

ρė = σ∼ : D∼ − div q + ρr
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Lagrangean formulation of the energy principle

Lagrangean representation in continuum thermodynamics

e(x , t) = e0(X , t), Q (X , t) = JF∼
−1.q

From the global formulation for any sub–domain D0 ⊂ Ω0...∫
D0

ρ0ė0 dV =

∫
D0

Π∼ : Ė∼ dV −
∫

∂D0

Q .N dS +

∫
D0

ρ0r0 dV

... to the local formulation at a regular point of Ω0

ρ0ė0 = Π∼ : Ė∼ −Div Q + ρ0r0
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Entropy principle

• entropy of the system / mass entropy density

S(D) =

∫
D
ρs dv

• entropy supply

ϕ(D) = −
∫

∂D

q

T
.n ds +

∫
D

ρr

T
dv

• global formulation of the entropy principle for any sub–domain
D ⊂ Ωt

Ṡ(D)− ϕ(D) ≥ 0

d

dt

∫
D
ρs dv +

∫
∂D

q

T
.n ds −

∫
D
ρ

r

T
dv ≥ 0
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Lagrangean formulation of the entropy principle

Lagrangean description in continuum thermodynamics

s(x , t) = s0(X , t), Q (X , t) = JF∼
−1.q

From the global formulation valid for any sub–domain D0 ⊂ Ω0...

d

dt

∫
D0

ρ0s0(X , t) dV +

∫
∂D0

Q

T
.N dS +

∫
D0

ρ0
r0
T

dV ≥ 0

... to the local formulation at a regular point Ω0

ρ0ṡ0 + Div
Q

T
− ρ0

r0
T
≥ 0
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Dissipation

• functions of state : internal energy e0(E∼, s0)
Helmholtz free energy ψ(E∼,T ) = e0 − Ts0

• Clausius–Duhem inequality (volume dissipation rate D)

D = Π∼ : Ė∼ − ρ0(ψ̇0 + Ṫ s0)−Q .
Grad T

T
≥ 0
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Dissipation

• functions of state : internal energy e0(E∼, s0)
Helmholtz free energy ψ(E∼,T ) = e0 − Ts0

• Clausius–Duhem inequality (volume dissipation rate D)

D = Π∼ : Ė∼ − ρ0(ψ̇0 + Ṫ s0)−Q .
Grad T

T
≥ 0

• Elastic materials Π∼ = FΠ
Ω0

(E∼,T ), ψ0(E∼,T )

ψ̇0 =
∂ψ0

∂E∼
: Ė∼ +

∂ψ0

∂T
Ṫ

D = (Π∼ − ρ0
∂ψ0

∂E∼
) : Ė∼ − ρ0(

∂ψ0

∂T
+ s0)Ṫ −Q .

Grad T

T
≥ 0
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State laws for hyperelastic materials

• hyperelastic relations

Π∼ = ρ0
∂ψ0

∂E∼

s0 = −∂ψ0

∂T

ψ0 is also called elastic potential (vanishing intrinsic
dissipation)

• thermal dissipation

D = −Q .
Grad T

T
= −ρ0

ρ
q .gradT ≥ 0

Fourier law (thermal constitutive equation)

Q = −K∼ (E∼,T ).Grad T

there is no thermal potential (total dissipation)
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Isotropic hyperelastic materials

• representation theorem for isotropic functions of second
order tensors

ψ0(E∼,T ) ≡ ψ0(I1, I2, I3,T )

the principal invariants of E∼ are

I1(E∼) := traceE∼, I2(E∼) :=
1

2
traceE∼

2, I3(E∼) :=
1

3
traceE∼

3

• hyperelastic constitutive equations

Π∼ = ρ0
∂ψ0

∂I1

∂I1
∂E∼

+ ρ0
∂ψ0

∂I2

∂I2
∂E∼

+ ρ0
∂ψ0

∂I3

∂I3
∂E∼

Π∼ = ρ0
∂ψ0

∂I1
1∼ + ρ0

∂ψ0

∂I2
E∼ + ρ0

∂ψ0

∂I3
E∼

2

compare with the previously established isotropic elastic law

Π∼ = α01∼ + α1E∼ + α2E∼
2
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Incompressible hyperelastic materials

• notion of internal constraint; the licit deformation states are
such that

g(C∼) = 0, ġ(C∼) =
∂g

∂C∼
: Ċ∼ = 0

• exploitation of the second principle in the presence of internal
constraint

(Π∼ − 2ρ0
∂ψ0

∂C∼
) : Ċ∼ ≥ 0

=⇒ Π∼ − 2ρ0
∂ψ0

∂C∼
= λ

∂g

∂C∼
= Π∼

R

the stress Π∼
R is the reaction to the constraint g

• incompressibility

g(C∼) = detC∼ − 1,
∂g

∂C∼
= (detC∼)C∼

−1

Π∼ = λC∼
−1 + 2ρ0

∂ψ0

∂C∼
, σ∼ = −p1∼ + 2ρF∼.

∂ψ0

∂C∼
.F∼

T
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Viscous materials

• we have generalized the “spring” behavior to 3D solids

∆l
F

F = kδl σ∼ = R∼ .FΩ0(C∼).R∼
T

• how to generalize the damping behavior?

∆l
F

F = ηl̇ σ∼ = FΩ0(D∼ )
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Viscous materials

• change of reference configuration

L∼ = Ḟ∼.F∼
−1 =

•︷︸︸︷
F̂∼.P∼ .(F̂∼.P∼)−1 = L̂∼

such materials are necessarily fluids !
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Viscous materials

• change of reference configuration

L∼ = Ḟ∼.F∼
−1 =

•︷︸︸︷
F̂∼.P∼ .(F̂∼.P∼)−1 = L̂∼

such materials are necessarily fluids !

• change of observers

Q
∼
.FΩ0(D∼ ).Q

∼
T = FΩ0(Q∼ .D∼ .Q∼

T )

FΩ0 is an isotropic function of its argument

σ∼ = α01∼ + α1D∼ + α2D∼
2

the αi are of the invariants of D∼ (and possibly of ρ)
these are Reiner–Rivlin viscous fluids (1945)

• linearization of the previous law leads to (compressible)
Navier–Stokes or Newtonian fluids

σ∼ = −p(ρ)1∼ + η1(traceD∼ )1∼ + 2η2D∼

(in the incompressible case, p is a reaction and traceD∼ = 0)
Viscosity 53/53
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