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© Elastic materials
@ Principle of material frame indifference
@ Material symmetry group
@ A definition of fluids and solids

© Continuum thermodynamics
@ Energy
@ Entropy

@ Hyperelastic materials
o State laws
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@ Viscosity



Closure problem

e universal laws : conservation laws
find the fields (p, g, v ) such that
dp

3t +div(py) = 0

dive +pf = pv

i.e. 14+3=4 equations
number of unknowns : 1 (p) + 3 (vi) + 6 (o) = 10
6 equations are missing...
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Closure problem

e universal laws : conservation laws
find the fields (p, g, v ) such that

dp . _
E-Fdlv(py) =0

dive +pof = pv
i.e. 1+3=4 equations
number of unknowns : 1 (p) + 3 (vi) + 6 (o) = 10
6 equations are missing...
e material-specific relations: constitutive equations
material behavior laws

6 relations oj; «— Lj;, Fj;.
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Classification of material behavior

7
o
Al Elasticity F = kAl

2

] H -F ¥

Al Viscosity F =nAl

7
- F | .
Al Plasticity F = Fgsign(Al) if Al#0
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Constitutive functional

e Example : Maxwell viscoelasticity

v
}/\/\/\/::

A/(t) = A]piston(t) + A}rcssort(t) =

F(t) = k/t exp(—:(t—s))mds

the current material response depend on the total history of
deformation

e Extension to a 3D material body : Constitutive functional

a(x,t) = F o (®(Y,s))
0<s<t,Y €Qq
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First simplifications

e principle of determinism

g(x,t)= F o (®(Y,s))
0<s<t,Y €Qq

non local theory

e principle of local action

o= 7 (o009 G

0<s<t,n>0

e simple material : first gradient theory

Q’(X,t): F (CD(X,S),E(K,S))

0<s<t
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Form of the constitutive law

e Constitutive functional
g(l7t) = F (q)(lﬂs)vf(l?S))

0<s<t

e Elastic behavior
g = }-Qo(E)

Elastic materials
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Change of observer

Elastic materials



Transformation rules under change of observer
observer (£, E), another observer (&', E')

e Euclidean transformation
x'=Q(t)x +c(t), t'=t—t
convention : Q(to) =1 (X' =X), ¢c(to) =0

e Transformation rules for mechanical quantities?
* deformation gradient
* strain tensors
* velocity gradient
* stress tensors
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Transformation rules under change of observer
observer (£, E), another observer (&', E')
e Euclidean transformation (trafo)
x'=Q(t)x +¢(t), t'=t—t
convention : Q(to) =1 (X' =X), c(to) =

e Objective and invariant tensors

* deformation gradient
* Cauchy—Green tensors

C'=C. B'=QBQ’
* velocity gradient

L'=QLQ"+Q.Q", D'=QDQ", W= gvyg +Q.Q7

!

2

* stress tensor t’ = Q.t, df ' =g’ ds’, o’ :Qq
consequence : the power denSIty of /nterna/ forces is invariant

with respect to Euclidean trafo
pi/ _ q_l . [N)I _ CN,_/ . (QQQT) _ (QTO_/Q) . D* _ pi

zo
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Form invariance of the constitutive law

How does the constitutive law transform under Euclidean trafo?

)
g’ = F4,(F)
= 4,(F) = Q.Fo,(Q".F).Q7

Form invariance principle (also called principle of material frame
indifference or principle of material objectivity) :

g:]:Qo(

M

.7'?20 = Fa,

the physical property (ex: stiffness) does not depend on the

observer...
— F0,(Q.F) = Q.70,(F).Q7
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Reduced form of the constitutive law

The elasticity law takes the reduced form
g(lv t) = B(l7 t)'FQo(lNJ(l’ t))'BT(l’ t)

or, equivalently,
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Change of reference configuration

Elastic madgyials

P is an arbitrary linear
mapping (invertible but not
necessarily a rotation)

F.p!

~ "~

T
Il
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Change of reference configuration

>

X —
e forms of the constitutive law
a(x,t) = Fa,(F(
g(x,t) = Fa, (E(
Foo(F) = Fau(E. '3)
e two reference configurations are materially indistinguishable
if
Fa, = Fa,
For such a P, the constitutive law must satisfy
Fao(F) = Fa,(E.P)

such a transformation P is called material symmetry (even it
is not necessarily a symmetry in the mathematical sense!)
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Material symmetry group

e The set of all material symmetries with respect to a given
reference configuration Qg has the mathematical structure of

a group

Bq, C U(E)
where U(E) C GL(E) is the unimodular group (| detP |=1)

o Let Qg and g be two configurations of a material body, (15@0

and &q, the corresponding symmetry groups and IE’ the

deformation gradient from € to o, then

B4, = P.6q,.P

-1
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Isotropic elastic materials

e a material is isotropic with respect to the reference
configuration Qg if
®q, = GO(E)

e function }'Q”O is said to be isotropic

Q.73 (C)Q7 = 73(Q.cQ")
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Isotropic elastic materials

e a material is isotropic with respect to the reference
configuration Qg if
®q, = GO(E)
e function }'Q”O is said to be isotropic
Q fﬂo( ) QT fﬂno(ggg—r)
e representation theorem of isotropic functions
N=aol+a;C+ a2g2

«j are arbitrary functions of the principal invariants of C
which gives, in the Eulerian representation,

a = Bol + 1B + 3,B?
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e specific case :
Qon = U(E)
e the constitutive function is therefore such that

Fao, = ‘7:@0’ VP € U(E)
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e specific case :
Gq, = U(E)
e the constitutive function is therefore such that
Fa, = Foy VP € U(E)
e decomposition de F into a spherical and unimodular parts
F=F™E  F:Q —Q

it can be shown that Fo,(F) = Fo,(F*") = ]:QO(ESP/’)
the constitutive law takes the form o =1f(J1)
e principle of material frame indifference

g = f(FP")=f(Jl) =g
c=Q.c.Q", VvQe GO(E)

o is nothing but a homothety... Such a material is a...777
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Elastic fluids

e specific case :
&q, = U(E)

e the constitutive function is therefore such that

Fa, = Fg, VP € U(E)

e the constitutive law takes the form

g =—p(p)1
or the corresponding Lagrangean representation
N=JFlgF "= p/C!

this is an elastic fluid!

Elastic materials
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A (mechanical) definition of fluids and des solids

e A material is a fluid if, for a given reference configuration g,
its symmetry group coincides with the unimodular group :

Gq, = U(E)

The symmetry group is then invariant with respect to change
of reference configuration.

A fluid admits no priviledged reference configuration.

A fluid is isotropic with respect to any of its configurations.

e A material is a solid if there exists a configuration g for
which the symmetry group is a sub—group of the orthogonal
group :

&q, C GO(E)

Such a configuration is called undistorted. It is a priviledged
configuration to write the consitutive law.
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Classification of materials

materials (non necessarily elastic) are classified with respect to their
symmetry groups

GL(E)
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Classification of materials

materials (non necessarily elastic) are classified with respect to their
symmetry groups

(fluides)
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Classification of materials

materials (non necessarily elastic) are classified with respect to their
symmetry groups

(solides
isotropes)
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Classification of materials

(solides tricliniques) - Crigal (E)

(solides anisotropes)
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Classification of materials

(impossibl

(solides
isotropes)

.......
-
-

- Crigal

(solides tricliniques)

(E)

(solides anisotropes)
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Classification of materials

(impossibl

(solides
isotropes)

(solides tricliniques) Crigal (E)
(cristaux liquides) (solides anisotropes)

Elastic materials
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Energy balance
kinetic energy

1
IC::/pv.vdv
2 Jp

power of external forces

P::PC+Pe:/ t.vds+/pf-vdv
oD D

I'internal energy £ of the system, mass density e of internal
energy

5::/pe(x,t)dv
D

heat supply Q to the system in the form of contact heat
supply h(x, t,0D) and volume heat supply pr(x,t)

Q= hds+/prdv
aD D

heat flux vector q h(x,n,t)=—q(x,t).n
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Energy principle

E+K=P+Q
Taking the theorem of kinetic energy into account,
K=P +P+Pe

where, in the absence of discontinuities, P/ = — Jpo :Ddvis the
power of internal forces, the first principle can be rewritten as
E=-P'+Q

/pédv:/q:de—/ q.nds+/prdv
D D oD~ D
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Local formulation of the energy principle

From the global formulation for any sub—domain D C ;...

/pédv:/g:l;)dv—/ q.nds+/prdv
D D oD~ D

... to the local formulation at a regular point of Q;

pe =ag:D—divq + pr
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Lagrangean formulation of the energy principle

Lagrangean representation in continuum thermodynamics

e(x,t) = (X, 1), Q(X,t)=JF g

From the global formulation for any sub—domain Dy C Q...

/poéodV:/ U:EdV—/ Q.Nd5+/ poro dV
Do Do 0Do Do

... to the local formulation at a regular point of (g

poéo =1T1: E— DivQ + poro
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Entropy principle
e entropy of the system / mass entropy density

am_émw

e entropy supply
q pr
o(D) = —/ =.n ds+/ — dv
op T p T
e global formulation of the entropy principle for any sub—domain
DcCQ;

(D) — (D) 2 0

)
d/ q
— psdv—l—/ .n ds —
dt Jp oD

Continuum thermodynamics
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Lagrangean formulation of the entropy principle

Lagrangean description in continuum thermodynamics

s(x,t) =s(X,t), Q(X.,t)= Jlj_l.g

From the global formulation valid for any sub—domain Dy C Q...

d Q (4}
— poso(X, t dV+/ .Nd5—|—/ po=dV >0
dt Do ( ) 0Dy T Do T

... to the local formulation at a regular point g

. Q ro
Div=—-po=2>0
poso + Div T POT_
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Dissipation
e functions of state : internal energy e(E, sp)
Helmholtz free energy ¥/(E, T) = ey — Tsp

e Clausius—Duhem inequality (volume dissipation rate D)

Grad T >0

D=T1":E—po(tho+ Tso)—Q. -
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Dissipation
e functions of state : internal energy e(E, sp)
Helmholtz free energy ¥/(E, T) = ey — Tsp
e Clausius—Duhem inequality (volume dissipation rate D)

Grad T >0

D=T1":E—po(tho+ Tso)—Q. -

e Elastic materials 1 = fgo(E T), o(E, T)

~?

. OYo = OYo .
¢0——8§.§+—8TT
B Mo, = 0o . Grad T
D—(U*POE)-E*PO(WJFSO)T*Q- T >0
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State laws for hyperelastic materials

e hyperelastic relations

O
U—POE
Ot
0T TeT

1o is also called elastic potential (vanishing intrinsic
dissipation)
e thermal dissipation
Grad T
D = — . =
Q T

_P0q erad T >0
PE
Fourier law (thermal constitutive equation)
Q =—-K(E, T).Grad T
there is no thermal potential (total dissipation)

Hyperelastic materials
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Isotropic hyperelastic materials

e representation theorem for isotropic functions of second
order tensors

Yo(E, T) = vo(h, b, 3, T)

the principal invariants of E are
1 ) 1 s
L(E) := traceE, h(E):= Etracelwi , hK(E):= gtracelwi

e hyperelastic constitutive equations
_ 3% oh 81,!)0 b 3% ok
N =15 o8 T %5 o8 T ™ok OB
o 31,1)0 37700
055t TG BTG

compare with the previously established isotropic elastic law

n = s SLg2

|:| = Ozol + a1§+a2§2
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Incompressible hyperelastic materials

e notion of internal constraint; the licit deformation states are
such that
Jg

§(0)=0. &(Q)= gt =0

e exploitation of the second principle in the presence of internal
constraint
(n- 2p0—) C >0

3% 98 R
T L

the stress M7 is the reaction to the constraint g

=11 —-2pp

e incompressibility

g -1
= — 1 —_— =
g(C) =detC—1, ac (detC)C
Do 1/10
= 2p —pl 4+ 2pF. —
=AC !+ 08C g = + 2pk
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Viscous materials

e we have generalized the “spring” behavior to 3D solids

7

o T .
A F=kil o =R.Tq(C)R

e how to generalize the damping behavior?

Y
EH‘F

Al F=nl a=Fq(D)
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Viscous materials

e change of reference configuration

. - N
L=FF'=FP.(ERP)" =L

such materials are necessarily fluids !
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Viscous materials

e change of reference configuration

=~ i
L=FF'=FP (EP)'=L

such materials are necessarily fluids !
e change of observers

Q.70,(D).Q" = 70,(Q.D-Q")

Fq, is an isotropic function of its argument
g = apl + aiD + a,D?
the «; are of the invariants of D (and possibly of p)
these are Reiner—Rivlin viscous fluids (1945)
e linearization of the previous law leads to (compressible)
Navier—Stokes or Newtonian fluids
o = —p(p)1l + ni(trace D)1 + 27,D

(in the incompressible case, p is a reaction and trace D = 0)
Viscosity 53/53
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