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Extensometry
measuring the relative displacement of two material points
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Strain field measurements

tensile test
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Strain field measurements

tensile test
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Strain field measurements

tensile test
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Strain field measurements
elongation of the gauge length

initial state deformed state
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Strain field measurements

image correlation technique : locating patterns around a grid of material
points during deformation
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Strain field measurements

image correlation technique : locating patterns around a grid of material

points during deformation
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Strain field measurements

field of ...
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Strain field measurements

displacement of points along a line
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Strain field measurements
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Notations

Euclidean tensor fields; orthonormal basis (e, €5, €3)

e zero' order tensors : scalar field f(X,t)
e first order tensors : vectors x(X,t)
X1
x =xe; [x]=|x
X3
e second order tensors : linear mapping / bilinear forms (N:(l, t)
CGi1 Co Gg
C=Cje;2e;, [Cl=| Ca Cn G
Gi1 G G
e operations between tensors with respect to an orthonormal
basis

<
jo5)
—+
(1)
=,
o
©
o
(a)
39
%.
Il
Q
<
r~
=



Volume element dV of continuum mechanics

e Notion of material point : An
infinitsimal volume dV around
X

e dV ~ Representative Volume
Element

d< Llverk L

d size of heterogeneities
Lryve size of RVE
L structural size

e we follow the material point
without considering the
particles inside the RVE...

RVE for a metal
polycrystal
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Material body M

Material body M
is a set of material
points M

(%, %)
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Reference placement in physical space

e ) is the
configuration of
M in physical
space £ with
respect to the
observer R at

M time ty

=

e material point
Me M
occupies place
X in this
configuration

e we choose it as
the reference
(Z, ) configuration
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Current configuration in physical space

o Q; is the
configuration of
material body
M in physical
space £ at time
t

e material point
Me M
occupies place x
in this
configuration

Q ol e we call it
current

configuration
(%, %)
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Current configuration in physical space

e The motion
x =®(X,t)

links Qg to Q;

e The motion is
bijective and
bi—continuous

X =o7!(x,1)

* no fission!
* no fusion!

(%, %)
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Intermediate configuration of the material body

Material placement

e The configuration

foMat0<7<t
is denoted 2, and
called
intermediate
configuration of
the material body

The motion
(D(l ) T)OSTSt
records the
deformation
history of the
material body
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Deformation of continuous media

e The motion

x =®(X,1)

links Qg to Q;

e Displacement of
material point is

uX,t)=x —-X

u(X,t)=d(X,t)-X

(%, %) . o
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Lagrangean vs. Eulerian approaches

e materials with an underlying microstructure : generally
“solids”
The volume element dV € Qg around X becomes dv € Q;
around x. dV and dv contain the same particles.
field of tensor function F(X,t)
Lagrangean approach

e materials without any underlying microstructure : generally
“fluids”
Particles can be interchanged, they are not labelled. One is
concerned with the mean velocity of particles going through
dv around the geometrical point x € ; at time t
field of tensor function  f(x,t)
Eulerian approach

e Les points de vue lagrangien et eulriens ont quivalents :
f(x,t) = F(® ' (x,1),t), F(X,t):=f(P(X,1),1)
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Deformation of a continuum medium

Q, Q¢
(£, X)
motion ¢ x =®(X, 1)
displacement field u(X,t)=x —X=9¢(X,t)— X

Deformation gradient



Deformation gradient

ZZT77777
272004

5562K)
77555250

1<

tangent linear mapping associated with ®

O(X +dX) ~0(X) = 5 dX +o(X,dX)

material line element dX initial and dx current

[0}
F(X,t):i:Grad¢:l+Gradg, x:Ed

The deformation gradient F is a local characterization of the motion
(E(X,t=0)=1)
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Deformation gradient

with respect to an orthonormal basis (e ;)i=13

Ox; duj
i = FydX, e Fy= S =y
96, b, 0P,
J — o - xS ax
x1 ax, * X i X3
90, o, 0P,
X2 8X1 1+ 8X2 2+ 8X3 ’
03\, 003 0P
_ 9%8 4 9Py —dX
dx3 0X3 ot 0Xs i X7
dx1 Fin Fi2 Fi3 X,
dw | = | Fo1 Foo Fo3 dXa
dx3 F31 Fz2 Fs3 X3

the components of F are dimensionless

Deformation gradient

F=Fje;®e;
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Transformation of a material volume element

e volume element: initial dV and current dv
dV =dX,.(dX,AdX 5) = [dX ;,dX,, dX 3] = det(dX;,dX,, dX 5)
dv = [dx,dx, dx 3] = [F.dX, F.dX,, F.dX;]
dv=JdV
J=detF >0
Jacobian of deformation

e the motion is isochoric at a point or at all points if J =1
a material is incompressible if it can undergo only isochoric
motions
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Mass conservation

pdv=podV =pJdV = pog=Jp

/ p(x,r)dv:/ p(&(X, 1), ) JdV

D(t) Dy —————
po(X)

with Dy = ¢~ 1(D(t))

Deformation gradient
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Transformation of a material surface element

(L7 77 ‘
[/ 777755
ds :Q1 /\ﬂ3 =dSN, ds :Q1 /\Q3 =dsn

the surface element is defined by orthogonal material directions
dX; and dX ;. The surface element vector dS does NOT
transform like a line element:

ds =JF".dS

dS et ds (resp. N and n) are not made of the same material
points in the initial and current configurations
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Polar decomposition of deformation gradient

For all invertible F, there exist two unique symmetric positive
definite tensors U et V and a unique orthogonal tensor R such that

F=RU=VR
IfdetF > 0, R is a rotation (i.e. detR = +1).

R polar rotation (3 degrees of freedom) R!=RT

U,V stretch tensors (6 degrees of freedom) U’ =U, V' =V
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Polar decomposition of deformation gradient

oo

A
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Transformation of a principal triad of U

e spectral decomposition of U et V

3
UV, =X\V, A>0 (nosum), U=> AV, eV,
r=1

the eigen vectors are called principal directions or principal axes
of U, and eigen values are called principal stretches

3
r:B'Mr’ \N/:ZAr!r(g!r
r=1

e A principal triad U transforms into an orthogonal triad. The
orientation of the deformed triad with respect to the initial triad is
exactly given by polar rotation R
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Homogeneous deformation

e homogeneous deformation : F(X, t) = F(t)

initial homogeneous heterogeneous

e corresponding motion / displacement field:
x () = E(£).X +¢(t)
for any pair of material points (extensometry)

x;—x,=F.(X; X))
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Pure extension
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Pure extension

x1=X1(1+A) 1+X 00

X2 = X2 F=1+)e;®e;, [F]=] 0 10

x3 = X3 0 01
R=1 U=F
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Simple glide
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Simple glide
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Simple glide

1 Y
VIHG/27 214 (/2
U= v 1+4%/2 0
2\/14 (/27 1+ ( 7/2
L 0 1 ]
1+4%/2 Y
0
V1+( 7/2 2/1+ (+/2)°
V= 1 0
2\/1 7/2 \/1+ (v/2)?
1 ]
7 0
J 1+ v/2 2y/1+ /2
R= 0
2\/1 7/2 \/1 + 7/2
0 1 |
the polar rotation is a rotation with respect to axis e 3 and angle
tanf = —2
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Cauchy—Green tensors

|
K

4
L777755L
(1775555
dx;.dx, = (F.dX;).(F.dX,) = dX;.ET F.dX, = dX ;.C.dX,

right Cauchy—Green tensor C = F'.F induces a metric on Qg

dX;.dX, = dx;.B " dx,

left Cauchy—Green tensor B = F.F" induces a metric on Q,

(C et B are symmetric positive definite, B#ACT I
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Changes in length
e length changes
ldx |2 — [|dX || = dX .(C — 1).dX =dx.(1 - B™").dx

e relative elongation
dX = [dX || M

_ lldx _ _

e interpretation of the components of C

Ner) = /G = \/FA + F3 + F4

Cy1 is the square of the relative elongation of the first basis vector
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Changes in angles

e variation of the angle between two material line elements
@1 = |@1|M17 ﬂz = ‘ﬁﬂMz

dx; =[dx;|m;, dx,=[dx,/m,

cos© =M ;. M,
M,CM,
0T ML T M A,
e glide angle ~
v:=0-40
If © = 7/2 (initially orthogonal directions)
M,;.CM,

P XM )AMS)
e interpretation of the components of C: M; =E; et
Mz = Ez
Ci2

VGG

Deformation gradient 47/86

siny =



Rigid body motion
when the distance between any two material points does not
change in the motion :

VX1, X, #0, lx1— x5l = [|X7 — X,
(F.(X1—X3))* = (X;=X,).FTF.(X;—X,) = (X;—X,).(X;—X))
— F'F=C=1

The deformation gradient is a rotation Q(t). The corresponding
motion is
x = Q)X +e(1)

10
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Strain measures

e candidates
C.BUYV
e additional rules for defining a strain measure

* symmetric and dimensionless;
* vanish for a rigid body motion and when F =1
HT) + o

* the Taylor expansion around F =1 is (H
H=F —-1=Gradu

H)

e Green—Lagrange and Almansi tensors
1 1
E=-(C-1), A:=-(1-B"!
E=5(C-1), A=3(1-87
E=(H+H +HH)
1 0u; Ou;  Ouy Ouy
E;j== J —
i =20x T ax T ox ox

e Lagrangean/Eulerian strain measures
49/86
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Hill’s strain measures
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Extensometry

B O R - S S O
— T
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Large strains / Large rotations

1
[l
' 0
:c
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Small strains / Large rotations

U~1+E, [E[<1

for slender bodies in one or two directions (beams, plates and
shells...), "large deformation” does not necessarily imply “large
strain” ...
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Large strains / Small rotations

representation of small rotations

cos¢ —sing 0 1 00 0 —¢ O
[Rl=1| sing cos¢ 0 |~|[0 1 0|+]|¢ 0 O
0 0 1 0 01 0 0 O
R~1+w
T_ _ o

~

w skew—symmetric tensor : w
54/86
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Small strains / small rotations

H=Gradu, F=1+H=1+4+c+w
1 1
e=5(H+H"), w= (H-H")
e context of infinitesimal deformation (with respect to a given

observer) :
IH = Gradu | < 1= F = O(1)

small deformation = small strain 4+ small rotation
F=1l+e+tw=(l+w)(l+eg)

small strain strain tensor gj = 2(uij+ uj)
small rotation tensor wij = 2(ujj — uj)
e Caution! one can always compute € but it has a physical meaning

only within the infinitesimal context...

F=Q=C=1 E=0 mais g:%(nggT)—;;Aom

e C~1+2, Ex~¢
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Summary: Deformation of material line, surface and
volume elements

I
e
‘Q.
P

material line element: dx

I
-
T
s'
‘o.
0

material surface element: ds

material volume element: dv = JdV
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Summary: Finite deformation

F=RU=VR

R

u

v

C=F F=U’

B:=FF =V
1

E=3(C-1)
1

A=-(1-B"!

A:=>(1-B7")

deformation gradient (det F > 0)
polar rotation (detR = 1)

right stretch tensor

left stretch tensor

right Cauchy—Green tensor

left Cauchy—Green tensor

Green—Lagrange strain measure

Almansi strain measure

Deformation gradient
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Summary: Infinitesimal deformation

fu

=¢e+w = Gradu

1
e = 5(Gradu + (Gradu)T)

w= %(Gradg — (Gradu)T)

|dx | — |dX |
|dX |

dv — dV

~ divu = tracee
dVv - ~

displacement gradient

small strain tensor

small rotation tensor

C~1+2~B

E~¢

~) ~

infinitesimal elongation

infinitesimal volume change

Deformation gradient
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Velocity field

e Notations J 56
X
x = — = —(X,t)=V(X,t
x =S =S X ) =V(X.0)

e Lagranfean/Eulerian representations
v(x,t) =V (P (x,1),t)
more generally

f(x,t):=F(X,t), avec x =®&(X,t)

e convective time derivative

F(X,t) = %F(X t) = g’;(l,t)
d of of
= =500 0+ 5 v(x, 1) = f(x,1t)
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Velocity gradient field

e instantaneous evolution of a material line element

dx = F.dX
~~ . .
dx =Ldx, with L=F.F

e velocity gradient tensor

0’® 0?P

—(X,t)= X,t

Btal(*’ ) oX ot (X, t)

= GradV(X,t) = (gradv(x,t)).F

L(x.t) = grady (x,t) = E.F !

E -
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Strain rate tensor

e instantaneous evolution of the scalar product of two material line
elements

on the one hand...
[ ]

— T
dx;.dx, =dx;.L".dx, +dx;.L.dx, = 2dx,.D.dx,

.. and on the other hand

—— —_——— . .
dx,.dx, = dX,.C.dX, =dX,.CdX, = 2dX,.E.dX,
hence ...
.1, - 1 .
E=JC=F"DF Di=(L+L7)
strain rate tensor
e elongation rate :
. d.
dx = ||dx|| m, m unit vector % = |d | =m.D.m
Idx | ~
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Slip rate

|
K

e glide angle: y=0© -0

—~—
dx;.dx, = [|dx, || [[dx | cosf = 2dx,.D.dx,
If 6 = % at time t,

1 2
omy =dx;/[[dx[, m,=dx,/[[dx,]
e particular case, m; =e;, m, =e, = 7 =2D;»

[y
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Spin tensor

e instantaneous evolution of the orientation of a material line
element m = dx /||dx ||

spin tensor

e Consequence : The orthonormal triad of material vectors
coinciding at time t with the triad of unit eigenvectors of D
transforms like a rigid body with the rotation rate W at time t

e Caution! The triad of eigenvectors of D generally does not
rotate at the rate W... (counterexample: simple glide)
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Decomposition of the velocity gradient tensor

e strain rate + spin
L=D+W

~

symmetric and skew—symmetric parts

e polar decomposition

F=RU
L=FF'=RR" +RUU 'R’
Caution! the last term is generally not symmetric... In general,
W #RR"
X

e spin vector Vy, W.y =W Ay
Wi=—Wa=3(52-52)
Wo=—Ws = %(%‘g 2;1) , W = _rotv
W3 =W = %(%‘2 %‘g)
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o O O
o O 2
o O O

Velocity gradient tensor

Simple glide

B
o 020
— | ¥
>0
0 0

o O N2
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Simple glide

1

gl . 0
0 50 VIEO/2R 2/15G/2F
_ — —
(W] = —% 0o o [RI= 2/1+(1/22  \/1+(7/2)?
gl I S
Ow = , tanfg = > Or = 21+72/4
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Single vortex

X Anim: onematchelairshort PG 183

Velocity gradient tensor



Single vortex

kinematicse

!(r,e,z, t) - TEG
™r

Current lines are circles arount the vortex center

velocity gradient

L=—- (e, @ept+teg®e,)

27r?

irrotational flow

W=0

~

circulation of v around O $v.eyrdd =T
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Vorticimeter

Velocity gradient tensor



Vorticimeter (1)

e unit directions characterising the cross m; et m,

m;=Lm; —(m;.D.m,)m,
my;=Lm, - (m,.D.m;)m,

e Evolution of the angle between one match and a fixed
direction in space a

\3

—sinp1¢1 =mia=alm; - (m;Dm;)m,.a

The choice of a does not matter if we are interested in ¢.
Take

7r .
po=(a=m;,m,)= 5 = p2=m;.L.m,
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Vorticimeter (2)

e For a rigid cross (m;.m, = 0 at each time), the spin of the
cross is the mean value of the spin of the matches :

_ w =m,W.m,
X X X
= my.(WAm;) =W A(m; Am,)=W .e,
e The spin of the rigid cross is exactly that of the spin tensor of
the fluid. The vorticimeter can used to measure W.

e For a simple vortex, W = 0. The cross does not rotate...
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Analogy D «— ¢

strain rate D
(general case)

small strain €
(infinitesimal context)

symmetric
gradient = 2(gradv +gradv) | €= 3(Gradu + Gradu)
operator D T(vij+vii) eij = 3(uij + uj;)
volume
aj dv —dV
change d—; =divv = traceD Vd;v ~ Divu = tracee
relative
longati 2 —mD A M.eM ~ A1
elongation N m.D.m M. M 3

Velocity gradient tensor
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Principle of virtual power

Power of external forces acting on material domain D C Q;
P(v™)+Pe(v) =/ L!*der/ pf v * dv
oD D
e Power of acceleration forces
Piv*) = / pa.v*dv
D

Power of internal forces, stress tensor

Pi(v*):= —/ p) dv, p) =g :D* ~ MPa.s™t = Wm3
D

Principle of virtual power, Yv* (regular), VD C Q;
PE(v*) +P(v*) + P(v*) =P(v*)

—/g:Q*dv+/ tv* ds—i—/pfy*dv:/pg.g*dv
D oD D D
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Principle of virtual power

e Principle of virtual power (regular case, no shock wave)

Pi(v*) + Pe(u*) + Pe(v*) = P?(v*)

—/g:Q*dv+/ t.v*ds+/pf.v*dv:/pa.v*dv
D D D D

e equivalent to the field equations (balance of momentum and

moment of momentum)

82/86

Stresses



Plan

© Stresses

@ Nominal and Piola—Kirchhoff stress tensor



Nominal stress tensor

e Lagrangean version of the field equations

/pgdv:/ g.gds—l—/pfdv
D aD D

/ pAdV=[ SN d5+/ poF dV
Do 0Dy Do

e nominal stress tensor or Boussinesq stress tensor S
nds=JF ".NdS

tds=TsdS=SNdS, avec S:=Jg.F '
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Piola—Kirchhoff stress tensor

e power density of internal forces

/g:de:/D:EdV
D D

N=JFlgF  =Fs
Piola—Kirchhoff stress tensor I1
e mass density of power of internal forces
g:D N:E
P po
conjugate stress—strain measures

e transport of the traction vector

TdS:=Fltds=F'TsdS=MNNGdS
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Remark on transport rules

ace tangent
esF)lnltlal 9

Stresses

espace tangent
actuel

tds
I'IMdS

|
zn ZTI

Mandel stress ten-
sor

86,/86
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