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Space and observers

e Change of observer :
observer (€, E), space point x, another observer (&', E')
Galilean/Euclidean transformations (trafo)

x = Q(t).x +c(t)

e objective quantities

scalars
m =m
vectors
u’ =Q(t).u
tensors
T=u®v
1—/ — !/ ®71 — QIQT
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Transport rules

invariariance of the inner product of pulled-back tensors

A:B=1r1p(A): Terp-7(B) = 7rrE(A) : TE-1p-7(B).
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Objective derivation

time derivative of a rigid vector followed by a moving observer

— Q-QT-!,
it is non zero!
Define then
Du' =10’ — W.u'
with the spin of the continuum Q Q

for T =u ® v, one defines

T/ =u/ovtucv’

hence
T/ =

~

Z—|

+TW-W.T

called Jaumann derivative
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Converctive derivatives

push forward—time derivative—pull back

TW =FE TR =T -LT+TL

Note that

the associated objective derivative
10 = J F(myp1p-r(T)°ET =T - LT - TLT + TTrL

is called Truesdells derivative.
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Derivation in an objective local frame

objective local frame: family of observers
Ex where &£ is the priviledged local
frame at x, and Qx the associated rota-

tion. Local frame are objective if
_ T
95/ - Ql 9

time derivative of T in &x :

r o ran
D:xT=0] (0, TQ])Q,
D€I = I + Igg, - 85,1-
where SNZ& = Q;Qx

Objective derivation, local objective frames

L* E
Q
N)_( )—( E/
X
Ex = Ex’
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Corotational and polar observers

e Corotational frame: there is a unique family of objective local
frames £ such that, at each material point and each time,
the spin tensor with respect to this observer vanishes;

vx €Q, W=QQ"+Qw.Q’
in order to have W' = 0, one must have
-Q7.Q,=0/.9, =W (@, (1) =Q,(x.1)
the corresponding objective derivative is
DeeT=Q1(Q.TQNQ =T+TW-W.T
i.e. Jaumann derivative!
e Polar frame : polaire decomposition
F=RU=VR
QgR = BT
this frame depends on the reference configuration
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A few unacceptable constitutive laws...

Why are the following illicit constitutive relations?
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Hyperelasticity

, oV, . oV .
*' =M -pyg) E-pls+55)T 20
Yo
n = po(?ig
_ 9%
Y
oo
a6~ °

other strain measures can be used. Eulerian form:

ov

‘Z:208T3-L3

(anisotropy...)
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Example: elastic law which is not hyperelastic

lasticite : strain dependence, no dissipation, reversible

tg a )
W(E, — Eg) = /t /008% : Edt = [potho(E, T)]i = potbo(Eg, Te)—poto(E 4,

This elastic law is not hyperelastic

_« 2y, 920 _, 0
n= 2(trace§ )1, ol =2 ol =0

to see it, consider two strain paths, with A: 0 — 1 :

0
/\2
0

[E,(M] = v [E,(M] =

o o >
o > O
o O o
o o >
O O o

tg . 2 41
le/ 20\\dt = 2o, W2:/ T2+ AM(1+ 2\ A dt = 0®

ta ta

The work done depends on the strain path...
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Hypoelasticity

IS

= f(D)

where o is an objective derivative.
major defect: generally not hyperelastic, with the known
consequences...
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Anisotropic plasticity at finite strain

existence of a triad of directors

F = FCFF

intermediate stress-released configuration isoclinic (local, without
physical reality (kinematic hardening, viscoplasticity))

archtype : le monocristal [Mandel 1973]
the rotation of the directors is defined by the plastic spin : this is
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Standard generalized materials (1)

e elastic deformation and stress tensor pulled—back to the
intermediate configuration:

Ee — 7(Fe_FeT . 1)7 ne — &Fe—l.q_Ee—T

1 1 -e

g (FE1)=—(N°:E + (F".F.0°): (F.F* 1))
p pi
e Clausius-Duhem inequality:
ne ov. .. ov . - ov
= . E VT —p— i >
state laws:

ne_ovo v o
pi  OES " Paa T T oT
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Standard generalized materials (2)

e intrinsic dissipation : D =M : F°.FP71 — X : &
Mandel stress tensor:

M= T e L
I 7
e dissipation potential
- 00 o
FPRP == a=_—_
~ ~ 8'\!" g 85
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Formulating constitutive equations in objective local

frames
Take a constitutive model of the form

where g* Q Q*T et D* = Q* Q*T are the stress tensor and
the strain rate pushed forward in an objectlve local frame.

Example : corotational frame, isotropic case
= A(Tr D)1 + 2uD°
and pull it back again in the current frame:
QT°Q° = g7 = A(Tr D)1 + 24D
where the Jaumann derivative comes in.

advantage : f arbitrary (anisotropic)... inconvenient: generally
hypoelastic...
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Elastoviscoplastic constitutive laws in objective local

frames

( - -
E=€°+¢F e=¢"+¢’
el = f(g, @) ¢e=Q'.DQ, & =f(s )

— NT ~ —
g=C :¢° s=Q.2¢.Q s=C :e°
& = h(a, £P) & = h(a, ")
\

. T
e corotational frame: Q tel que Q .Q =W

e polar frame: Q =R
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Simple glide
2

F=1+7e,®e,

rotation of material line elements:

tan® = tan 6, 0 =
anf=tanbo + 7, 1+ (tanb + )

/2 )
A

<, >=-1 / dfy = ———
m 1 + (tanfy + 7)2 2
Lttt ) 21+ %)
/2
; ¥ 1 v
O >= — ———df = —
< Pe> s / 1 + tan20 2
—m/2
endless rotation of the corotation frame... saturation of the polar frame...
27/34
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Simple glide and elasticity

e Lagrangean formulation
N= 24E +\TrE 1

I et E respectively are the second Piola-Kirchhoff stress
tensor and the Green—Lagrange strain tensor.

e Eulerian formulation
g = 2u logV +ATr(logV) 1
V comes from the polar decomposition F = VR
e formulation based on objective local frames
s =2ue + Mrel
= Q (corotational)
~c

R (polarrotation)

O O
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Simple glide and elasticity
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Simple glide in plasticity

rigid plastic case using the corotational frame :

e criterion f(s;,R,X)=h(s—X)—R
) 2 3
p=1/3D:D L(s—X)=1/5 (% —X): (s —X)
e flow rule e= [ g
€= P o
e evolution law for kinematic hardening
.2 .
X=3C& -DpX
e solution:
o011 = —0p = DZL—M(I — exp(—%’y)(cos'y + % sin7y))
C D .. l(c D D . R
o= eXP(—ﬁW) siny + m(l - eXP(—%“f)(COSV + Nk 7))+ NG
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Simple glide and plasticity
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Simple glide and plasticity
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Conclusions and recommendations

applications : forming, fracture... other?

e no religion on the choice of strain measures nor objective
derivatives...

e experimental results are needed for identification...
e anisotropy evolution

e efficiency: objective local frames
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