Elastoviscoplasticity at finite strain

Samuel Forest

Centre des Matriaux/UMR 7633
Ecole des Mines de Paris/CNRS
BP 87, 91003 Evry, France
Samuel.Forest@ensmp.fr

Plan

(1) Objective derivation, local objective frames
(2) Finite deformation elastoviscoplasticity

- Elasticity, Hypoelasticity, Hyperelasticity
- Multiplicative decomposition
- Formulation in objective local frames
- Example: simple glide
(3) Conclusions et recommandations

Plan

(1) Objective derivation, local objective frames
(2) Finite deformation elastoviscoplasticity

- Elasticity, Hypoelasticity, Hyperelasticity
- Multiplicative decomposition
- Formulation in objective local frames
- Example: simple glide

3 Conclusions et recommandations

Space and observers

Objective derivation local-objectivelffames

Space and observers

Space and observers

Space and observers

- Change of observer : observer (\mathcal{E}, E), space point $\underline{\mathbf{x}}$, another observer $\left(\mathcal{E}^{\prime}, E^{\prime}\right)$ Galilean/Euclidean transformations (trafo)

$$
\underline{\mathbf{x}}^{\prime}=\underset{\sim}{\mathbf{Q}}(t) \cdot \underline{\mathbf{x}}+\underline{\mathbf{c}}(t)
$$

- objective quantities scalars

$$
m^{\prime}=m
$$

vectors

$$
\underline{\mathbf{u}}^{\prime}=\underset{\sim}{\mathbf{Q}}(t) \cdot \underline{\mathbf{u}}
$$

tensors

$$
\begin{gathered}
\underset{\sim}{\mathbf{T}}=\underline{\mathbf{u}} \otimes \underline{\mathbf{v}} \\
{\underset{\sim}{\mathbf{T}}}^{\prime}=\underline{\mathbf{u}}^{\prime} \otimes \underline{\mathbf{v}}^{\prime}=\underset{\sim}{\mathbf{Q}} \cdot \underset{\sim}{\mathbf{T}} \cdot{\underset{\sim}{\mathbf{Q}}}^{T}
\end{gathered}
$$

- invariant quantities

$$
m^{\prime}=m, \quad{\underset{\sim}{\mathbf{T}}}^{\prime}=\underset{\sim}{\mathbf{T}}
$$

Transport rules

$$
\begin{aligned}
& \tau_{F^{-1}}(\mathbf{T})={\underset{\sim}{\mid}}^{-1} \cdot \underset{\sim}{T} \cdot \underset{\sim}{\mathbf{F}}
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{F^{T} F^{-T}}(\mathbf{T})={\underset{\sim}{\mathbf{F}}}^{T} \cdot \boldsymbol{\sim}_{\sim}^{\mathbf{T}} \cdot \mathbf{F}^{-T} \\
& \tau_{F} T_{F}(\mathbf{T})={\underset{\sim}{c}}^{T} . \mathbf{T}_{\sim} \cdot \mathbf{F} .
\end{aligned}
$$

invariariance of the inner product of pulled-back tensors

$$
\underset{\sim}{\mathbf{A}}: \underset{\sim}{\mathbf{B}}=\tau_{F^{-1} F}(\underset{\sim}{\mathbf{A}}): \tau_{F^{\top} F^{-T}}(\underset{\sim}{\mathbf{B}})=\tau_{F^{\top} F}(\underset{\sim}{\mathbf{A}}): \tau_{F^{-1} F^{-\tau}}(\underset{\sim}{\mathbf{B}}) .
$$

Objective derivation

time derivative of a rigid vector followed by a moving observer

$$
\underline{\dot{\mathbf{u}}}^{\prime}=\dot{\mathbf{Q}} \cdot{\underset{\sim}{\mathbf{Q}}}^{T} \cdot \underline{\mathbf{u}}^{\prime}
$$

it is non zero!

Define then

$$
D^{J} \underline{\mathbf{u}}^{\prime}=\underline{\mathbf{u}}^{\prime}-\underset{\sim}{\mathbf{W}} \cdot \underline{\mathbf{u}}^{\prime}
$$

with the spin of the continuum $\underset{\sim}{\mathbf{W}}=\dot{\mathbf{Q}} \cdot \underset{\sim}{\mathbf{Q}}{ }^{T}$
for $\underset{\sim}{\mathbf{T}}=\underline{\mathbf{u}} \otimes \underline{\mathbf{v}}$, one defines

$$
{\underset{\sim}{\mathbf{T}}}^{J}=\underline{\mathbf{u}}^{J} \otimes \underline{\mathbf{v}}+\underline{\mathbf{u}} \otimes \underline{\mathbf{v}}^{J}
$$

hence

$$
{\underset{\sim}{\mathbf{T}}}^{J}=\underset{\sim}{\mathbf{T}}+\underset{\sim}{\mathbf{T}} \cdot \underset{\sim}{\mathbf{W}}-\underset{\sim}{\mathbf{W}} \cdot \underset{\sim}{\mathbf{T}}
$$

called Jaumann derivative

Converctive derivatives

push forward-time derivative-pull back

$$
\begin{aligned}
& {\underset{\sim}{\mathbf{T}}}^{(2)}=\underset{\sim}{\mathbf{F}}\left({\underset{\sim}{\mathbf{F}}}^{-1} \underset{\sim}{\mathbf{T}} \underset{\sim}{-T}\right) \cdot{\underset{\sim}{\mathbf{F}}}^{T}=\underset{\sim}{\mathbf{T}}-\underset{\sim}{\mathbf{L}} \mathbf{T}-{\underset{\sim}{\mathbf{L}}}^{T} \underset{\sim}{\mathbf{T}}
\end{aligned}
$$

$$
\begin{aligned}
& {\underset{\sim}{\mathbf{T}}}^{(4)}=\underset{\sim}{\mathbf{F}^{-T}}\left(\underset{\sim}{\mathbf{F}^{T}} \underset{\sim}{\mathbf{T F}} \underset{\sim}{\mathbf{F}}\right){\underset{\sim}{\mid}}^{-1}=\underset{\sim}{\dot{\mathbf{T}}}+{\underset{\sim}{\mathbf{L}}}^{T} \underset{\sim}{\mathbf{T}}+\underset{\sim}{\mathbf{T}} \mathbf{L} .
\end{aligned}
$$

Note that

$$
\begin{gathered}
{\underset{\sim}{\mathbf{T}}}^{J}=\frac{1}{2}\left({\underset{\sim}{\mathbf{T}}}^{(1)}+{\underset{\sim}{\mathbf{T}}}^{(3)}\right) \\
\tau_{J F^{-1} F^{-T}}(\mathbf{T})=\underset{\sim}{\mathbf{T}}{\underset{\sim}{\mid}}^{-1} \underset{\sim}{\mathbf{T}}{\underset{\sim}{r}}^{-T}
\end{gathered}
$$

the associated objective derivative

$$
{\underset{\sim}{\mathbf{T}}}^{(5)}=\frac{1}{J} \underset{\sim}{\mathbf{F}}\left(\tau_{J F^{-1} F^{-T}}(\underset{\sim}{\mathbf{T}})\right)^{\bullet}{\underset{\sim}{\mid}}^{T}=\underset{\sim}{\mathbf{T}}-\underset{\sim}{\mathbf{L} \mathbf{T}}-\underset{\sim}{\mathbf{T}} \mathbf{L}^{T}+\underset{\sim}{\mathbf{T}} \operatorname{Tr} \underset{\sim}{\mathbf{L}}
$$

is called Truesdells derivative.

Derivation in an objective local frame

objective local frame: family of observers $\mathcal{E}_{\mathbf{X}}$ where $\mathcal{E}_{\mathbf{X}}$ is the priviledged local frame at $\underline{\mathbf{x}}$, and $\underset{\sim}{\mathbf{Q}} \underline{\mathbf{x}}$ the associated rotation. Local frame are objective if

$$
{\underset{\sim}{\mathbf{Q}}}_{\underline{\mathbf{x}}^{\prime}}=\underset{\sim}{\mathbf{Q}} \underline{\mathbf{x}}_{\sim}^{\mathbf{Q}^{T}}
$$

time derivative of $\underset{\sim}{\mathbf{T}}$ in $\mathcal{E}_{\underline{\mathbf{x}}}$:

$$
\begin{aligned}
& D_{\mathcal{E}, \underline{\mathbf{x}}} \underset{\sim}{\mathbf{T}}={\underset{\sim}{\mathbf{Q}}}_{\underline{\mathbf{x}}}^{T} \overbrace{\left(\underset{\sim}{\mathbf{Q}} \underset{\sim}{\mathbf{T}}{\underset{\sim}{\mathbf{Q}}}^{T}\right)}^{\bullet}{\underset{\sim}{\mathbf{Q}}}_{\underline{\mathbf{x}}} \\
& D_{\mathcal{E}} \underset{\sim}{\mathbf{T}}=\underset{\sim}{\boldsymbol{\top}}+\underset{\sim}{\mathbf{T}}{\underset{\sim}{\mathcal{E}}}^{\mathcal{E}_{l}}-\underset{\sim}{\boldsymbol{\mathcal { E }}_{l}} \mathcal{\sim}_{\sim}^{\mathbf{T}}
\end{aligned}
$$

where ${\underset{\sim}{\boldsymbol{\Omega}}}_{\mathcal{E}_{l}}=\dot{\mathbf{Q}}_{\underline{\mathbf{x}}}^{T}{\underset{\underline{\mathbf{Q}}}{\underline{\mathbf{x}}}}^{\underline{x}}$

Corotational and polar observers

- Corotational frame: there is a unique family of objective local frames $\mathcal{E}_{\underline{\boldsymbol{x}}}^{\mathcal{C}}$ such that, at each material point and each time, the spin tensor with respect to this observer vanishes;

$$
\forall \underline{\mathbf{x}} \in \Omega, \quad{\underset{\sim}{\mathbf{W}}}^{\prime}=\underset{\sim}{\mathbf{Q}} \cdot{\underset{\sim}{\mathbf{Q}}}^{T}+\underset{\sim}{\mathbf{Q}} \cdot \underset{\sim}{\mathbf{W}} \cdot{\underset{\sim}{\mathbf{Q}}}^{T}
$$

in order to have $\mathbf{W}^{\prime}=0$, one must have
$-{\underset{\sim}{\mathbf{Q}}}_{c}^{T} \cdot \dot{\mathbf{Q}}_{c}=\dot{\mathbf{Q}}_{\sim}^{T} \cdot{\underset{\sim}{\mathbf{Q}}}_{c}=\underset{\sim}{\mathbf{W}}\left({\underset{\sim}{\mathbf{Q}}}_{c \underline{\mathbf{x}}}(t)={\underset{\sim}{\mathbf{Q}}}_{c}(\underline{\mathbf{x}}, t)\right)$
the corresponding objective derivative is

$$
D_{\mathcal{E}^{c}} \underset{\sim}{\mathbf{T}}={\underset{\sim}{\mathbf{Q}}}_{c}^{T} \cdot\left(\underset{\sim}{\mathbf{Q}} \cdot \underset{\sim}{\mathbf{T}} \cdot{\underset{\sim}{Q}}_{c}^{T}\right) \cdot \underset{\sim}{\mathbf{Q}}=\underset{\sim}{\dot{\mathbf{T}}}+\underset{\sim}{\mathbf{T}} \cdot \underset{\sim}{\mathbf{W}}-\underset{\sim}{\mathbf{W}}
$$

i.e. Jaumann derivative!

- Polar frame : polaire decomposition

$$
\begin{gathered}
\underset{\sim}{\mathbf{F}}=\underset{\sim}{\mathbf{R}} . \underset{\sim}{\mathbf{U}}=\underset{\sim}{\mathbf{V}} . \underset{\sim}{\mathbf{R}} \\
{\underset{\sim}{\mathbf{Q}}}_{\mathcal{E}_{R}}={\underset{\sim}{\mathbf{R}}}^{T}
\end{gathered}
$$

this frame depends on the reference configuration

A few unacceptable constitutive laws...

Why are the following illicit constitutive relations?

$$
\begin{gathered}
\underset{\sim}{\boldsymbol{\sigma}}=\eta \underline{\mathbf{x}} \otimes \underline{\mathbf{x}} \\
\underset{\sim}{\boldsymbol{\sigma}}=\eta \underline{\mathbf{v}} \otimes \underline{\mathbf{v}} \\
\underset{\sim}{\mathbf{B}}=\eta t^{n} \underset{\sim}{\boldsymbol{\sigma}}=\eta \underset{\sim}{\mathbf{D}}
\end{gathered}
$$

Plan

(1) Objective derivation, local objective frames
(2) Finite deformation elastoviscoplasticity

- Elasticity, Hypoelasticity, Hyperelasticity
- Multiplicative decomposition
- Formulation in objective local frames
- Example: simple glide

3 Conclusions et recommandations

Plan

(1) Objective derivation, local objective frames
(2) Finite deformation elastoviscoplasticity

- Elasticity, Hypoelasticity, Hyperelasticity
- Multiplicative decomposition
- Formulation in objective local frames
- Example: simple glide

3 Conclusions et recommandations

Hyperelasticity

$$
\Phi^{i}=\left(\underset{\sim}{\boldsymbol{\sim}}-\rho \frac{\partial \Psi}{\partial \underset{\sim}{\mathbf{E}}}\right): \underset{\sim}{\dot{E}}-\rho\left(s+\frac{\partial \Psi}{\partial T}\right) \dot{T} \geq 0
$$

$$
\begin{aligned}
\underset{\sim}{\boldsymbol{\Pi}} & =\rho_{0} \frac{\partial \psi_{0}}{\partial \underline{\mathbf{E}}} \\
\eta_{0} & =-\frac{\partial \psi_{0}}{\partial T} \\
\frac{\partial \psi_{0}}{\partial \underline{\mathbf{G}}} & =0
\end{aligned}
$$

other strain measures can be used. Eulerian form:

$$
\underset{\sim}{\sigma}=2 \rho \frac{\partial \Psi}{\partial \underset{\sim}{\mathcal{B}}} \cdot \underset{\sim}{B}
$$

(anisotropy...)

Example: elastic law which is not hyperelastic

lasticite : strain dependence, no dissipation, reversible

$$
W\left(\underset{\sim}{\mathbf{E}_{A}} \rightarrow \underset{\sim}{\mathbf{E}_{B}}\right)=\int_{t_{A}}^{t_{B}} \rho_{0} \frac{\partial \psi}{\partial \underset{\sim}{\mathbf{E}}}: \underset{\sim}{\dot{\mathbf{E}}} d t=\left[\rho_{0} \psi_{0}(\underset{\sim}{\mathbf{E}}, T)\right]_{A}^{B}=\rho_{0} \psi_{0}\left({\underset{\sim}{B}}_{B}, T_{B}\right)-\rho_{0} \psi_{0}\left({\underset{\sim}{E}}^{\mathbf{E}^{\prime}},\right.
$$

This elastic law is not hyperelastic

$$
\underset{\sim}{\boldsymbol{\Pi}}=\frac{\alpha}{2}\left(\operatorname{trace} \underset{\sim}{\mathbf{E}^{2}}\right) \underset{\sim}{\mathbf{1}}, \quad \frac{\partial \alpha_{0}}{\partial I_{2}}=2 \neq \frac{\partial \alpha_{1}}{\partial I_{1}}=0
$$

to see it, consider two strain paths, with $\lambda: 0 \longrightarrow 1$:

$$
\begin{gathered}
{\left[\mathbb{E}_{1}(\lambda)\right]=\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[{\underset{\sim}{2}}_{2}(\lambda)\right]=\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda^{2} & 0 \\
0 & 0 & 0
\end{array}\right],} \\
W_{1}=\int_{t_{A}}^{t_{B}} 2 \alpha \lambda \dot{\lambda} d t=\frac{2}{3} \alpha, \quad W_{2}=\int_{t_{A}}^{t_{B}} \frac{\alpha}{2}\left(\lambda^{2}+\lambda^{4}\right)(1+2 \lambda) \dot{\lambda} d t=\frac{41}{60} \alpha
\end{gathered}
$$

The work done depends on the strain path...

Hypoelasticity

$$
\underset{\sim}{\underset{\sim}{r}}=f(\mathbf{D})
$$

where $\underset{\sim}{\sigma}$ is an objective derivative. major defect: generally not hyperelastic, with the known consequences...

Plan

(1) Objective derivation, local objective frames
(2) Finite deformation elastoviscoplasticity

- Elasticity, Hypoelasticity, Hyperelasticity
- Multiplicative decomposition
- Formulation in objective local frames
- Example: simple glide

3 Conclusions et recommandations

Anisotropic plasticity at finite strain

existence of a triad of directors

$$
\underset{\sim}{\mathbf{F}}={\underset{\sim}{\mathbf{F}}}^{e} \cdot{\underset{\sim}{\mid}}^{p}
$$

intermediate stress-released configuration isoclinic (local, without physical reality (kinematic hardening, viscoplasticity)) archtype : le monocristal
[Mandel 1973] the rotation of the directors is defined by the plastic spin : this is

Standard generalized materials (1)

- elastic deformation and stress tensor pulled-back to the intermediate configuration:

$$
{\underset{\sim}{\mathbf{E}}}^{e}=\frac{1}{2}\left(\underset{\sim}{\mathbf{F}} \cdot \underset{\sim}{\boldsymbol{F}^{e T}}-\underset{\sim}{\mathbf{1}}\right), \quad \underset{\sim}{\boldsymbol{\underset { T } { e }}}{ }^{e}=\frac{\rho_{i}}{\rho}{\underset{\sim}{\mathbf{F}}}^{e-1} \cdot \underset{\sim}{\sigma} \cdot{\underset{\sim}{\mathbf{F}}}^{e-T}
$$

- work of internal forces
- Clausius-Duhem inequality:

$$
\rho\left(\frac{\boldsymbol{\Pi}^{e}}{\rho_{i}}-\frac{\partial \Psi}{\partial \underset{\sim}{\mathbf{E}^{e}}}\right):{\underset{\sim}{\dot{\mathbf{E}}}}^{e}-\rho\left(s+\frac{\partial \Psi}{\partial T}\right) \dot{T}-\rho \frac{\partial \Psi}{\partial \underset{\sim}{\boldsymbol{\alpha}}}: \dot{\sim}
$$

state laws:

$$
\frac{\boldsymbol{\sim}^{e}}{\rho_{i}}=\frac{\partial \Psi}{\partial{\underset{\sim}{\mathbf{E}}}^{e}}, \quad \underset{\sim}{\mathbf{X}}=\rho \frac{\partial \Psi}{\partial \underset{\sim}{\boldsymbol{\alpha}}}, \quad s=-\frac{\partial \Psi}{\partial T}
$$

Standard generalized materials (2)

- intrinsic dissipation : $D=\underset{\sim}{\mathbf{M}}:{\underset{\sim}{\underset{\sim}{\dot{F}}}}^{p} \cdot \underset{\sim}{p}{ }^{p-1}-\underset{\sim}{\mathbf{X}}: \underset{\sim}{\dot{\boldsymbol{\alpha}}}$ Mandel stress tensor:

$$
\underset{\sim}{\mathbf{M}}:={\underset{\sim}{\mathbf{F}}}^{e T} \cdot \underset{\sim}{\boldsymbol{F}^{e}} \cdot \frac{\boldsymbol{\Pi}^{e}}{\rho_{i}}
$$

- dissipation potential

$$
{\underset{\sim}{\dot{\boldsymbol{F}}}}^{p} \cdot{\underset{\sim}{\boldsymbol{F}}}^{p-1}=\frac{\partial \Omega}{\partial \underset{\sim}{\mathbf{M}}}, \quad \underset{\sim}{\dot{\boldsymbol{\alpha}}}=\frac{\partial \Omega}{\partial \underset{\sim}{\mathbf{X}}}
$$

Plan

(1) Objective derivation, local objective frames
(2) Finite deformation elastoviscoplasticity

- Elasticity, Hypoelasticity, Hyperelasticity
- Multiplicative decomposition
- Formulation in objective local frames
- Example: simple glide

3 Conclusions et recommandations

Formulating constitutive equations in objective local
 frames

Take a constitutive model of the form

$$
{\dot{\underset{\sim}{\dot{\sim}}}}^{*}=f\left({\underset{\sim}{\mathbf{D}}}^{*}\right)
$$

where ${\underset{\sim}{\boldsymbol{\sigma}}}^{*}={\underset{\sim}{\mathbf{Q}}}^{*} \underset{\sim}{\boldsymbol{\sigma}}{\underset{\sim}{\mathbf{Q}}}^{* T}$ et ${\underset{\sim}{\mathbf{D}}}^{*}={\underset{\sim}{\mathbf{Q}}}^{*}{\underset{\sim}{\mathbf{D}}}_{\underline{\mathbf{Q}}}{ }^{* T}$ are the stress tensor and the strain rate pushed forward in an objective local frame.

Example : corotational frame, isotropic case

$$
\dot{\boldsymbol{\sigma}}^{c}=\lambda\left(\operatorname{Tr}{\underset{\sim}{\mathbf{D}}}^{c}\right) \underset{\sim}{\mathbf{1}}+2 \mu{\underset{\sim}{\mathbf{D}}}^{c}
$$

and pull it back again in the current frame:

$$
{\underset{\sim}{\mathbf{Q}}}^{c T} \dot{\sim}_{\sim}^{c} \underline{\sim}^{c}={\underset{\sim}{\boldsymbol{\sigma}}}^{J}=\lambda(\operatorname{Tr} \underset{\sim}{\mathbf{D}}) \underset{\sim}{\mathbf{1}}+2 \mu \underset{\sim}{\mathbf{D}}
$$

where the Jaumann derivative comes in.
advantage : f arbitrary (anisotropic)... inconvenient: generally hypoelastic...

Elastoviscoplastic constitutive laws in objective local frames

- corotational frame: $\underset{\sim}{\mathbf{Q}}$ tel que ${\underset{\sim}{\mathbf{Q}}}^{T} \cdot \underset{\sim}{\mathbf{Q}}=\underset{\sim}{\mathbf{W}}$
- polar frame: $\underset{\sim}{\mathbf{Q}}=\underset{\sim}{\mathbf{R}}$

Plan

(1) Objective derivation, local objective frames
(2) Finite deformation elastoviscoplasticity

- Elasticity, Hypoelasticity, Hyperelasticity
- Multiplicative decomposition
- Formulation in objective local frames
- Example: simple glide

3 Conclusions et recommandations

Simple glide

$$
\underset{\sim}{\mathbf{F}}=\underset{\sim}{\mathbf{1}}+\gamma \underline{\mathbf{e}}_{1} \otimes \underline{\mathbf{e}}_{2}
$$

rotation of material line elements:

$$
\begin{gathered}
\tan \theta=\tan \theta_{0}+\gamma, \quad \dot{\theta}=\frac{\dot{\gamma}}{1+\left(\tan \theta_{0}+\gamma\right)^{2}} \\
<\dot{\theta}_{L}>=\frac{\dot{\gamma}}{\pi} \int_{-\pi / 2}^{\pi / 2} \frac{1}{1+\left(\tan \theta_{0}+\gamma\right)^{2}} d \theta_{0}=\frac{\dot{\gamma}}{2\left(1+\frac{\gamma^{2}}{4}\right)} \\
<\dot{\theta}_{e}>=\frac{\dot{\gamma}}{\pi} \int_{-\pi / 2}^{\pi / 2} \frac{1}{1+\tan ^{2} \theta} d \theta=\frac{\dot{\gamma}}{2}
\end{gathered}
$$

endless rotation of the corotation frame... saturation of the polar frame...

Simple glide and elasticity

- Lagrangean formulation

$$
\underset{\sim}{\boldsymbol{I}}=2 \mu \underset{\sim}{\mathbf{E}}+\lambda \operatorname{Tr} \underset{\sim}{\mathbf{E}} \underset{\sim}{\mathbf{1}}
$$

$\prod_{\sim}^{\text {I }}$ et $\underset{\sim}{\mathbf{E}}$ respectively are the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor.

- Eulerian formulation

$$
\underset{\sim}{\boldsymbol{\sigma}}=2 \mu \log \underset{\sim}{\mathbf{V}}+\lambda \operatorname{Tr}(\log \underset{\sim}{\mathbf{V}}) \underset{\sim}{\mathbf{1}}
$$

$\underset{\sim}{\mathbf{V}}$ comes from the polar decomposition $\underset{\sim}{\mathbf{F}}=\underset{\sim}{\text { V }} \underset{\sim}{R}$

- formulation based on objective local frames

$$
\begin{aligned}
& \underset{\sim}{\mathbf{s}}=2 \mu \underset{\sim}{\mathbf{e}}+\lambda \operatorname{Tr} \underset{\sim}{\mathbf{e}} \underset{\sim}{\mathbf{1}} \\
& \underset{\sim}{\mathbf{Q}}=\underset{\sim}{\mathbf{Q}} \quad(\text { corotational }) \\
& \underset{\sim}{\mathbf{Q}}=\underset{\sim}{\mathbf{R}} \quad(\text { polarrotation })
\end{aligned}
$$

Simple glide and elasticity

Simple glide in plasticity

rigid plastic case using the corotational frame :

- criterion

$$
f(\underset{\sim}{\mathbf{s}}, R, \underset{\sim}{\mathbf{X}})=J_{2}(\underset{\sim}{\mathbf{s}}-\underset{\sim}{\mathbf{X}})-R
$$

$$
\dot{p}=\sqrt{\frac{2}{3} \underset{\sim}{\mathbf{D}}: \underset{\sim}{\mathbf{D}}} \quad J_{2}(\mathbf{s}-\underset{\sim}{\mathbf{X}})=\sqrt{\frac{3}{2}\left(\mathbf{s}^{\operatorname{dev}}-\underset{\sim}{\mathbf{X}}\right):\left(\mathbf{s}^{\operatorname{dev}}-\underset{\sim}{\mathbf{X}}\right)}
$$

- flow rule

$$
\underset{\sim}{\dot{\mathbf{e}}}=\dot{p} \frac{\partial f}{\partial \mathbf{s}_{\sim}^{s}}
$$

- evolution law for kinematic hardening

$$
\underset{\sim}{\dot{\mathbf{X}}}=\frac{2}{3} C{\underset{\sim}{\dot{e}}}^{p}-D \dot{p} \underset{\sim}{\mathbf{X}}
$$

- solution:
$\left\{\begin{array}{l}\sigma_{11}=-\sigma_{22}=\frac{C}{D^{2}+3}\left(1-\exp \left(-\frac{D}{\sqrt{3}} \gamma\right)\left(\cos \gamma+\frac{D}{\sqrt{3}} \sin \gamma\right)\right) \\ \sigma_{12}=\frac{C}{3} \exp \left(-\frac{D}{\sqrt{3}} \gamma\right) \sin \gamma+\frac{D C}{\sqrt{3}\left(D^{2}+3\right)}\left(1-\exp \left(-\frac{D}{\sqrt{3}} \gamma\right)\left(\cos \gamma+\frac{D}{\sqrt{3}} \sin \gamma\right)\right)+\frac{R}{\sqrt{3}}\end{array}\right.$

Simple glide and plasticity

Simple glide and plasticity

Plan

(1) Objective derivation, local objective frames
(2) Finite deformation elastoviscoplasticity

- Elasticity, Hypoelasticity, Hyperelasticity
- Multiplicative decomposition
- Formulation in objective local frames
- Example: simple glide
(3) Conclusions et recommandations

Conclusions and recommendations

applications: forming, fracture... other?

- no religion on the choice of strain measures nor objective derivatives...
- experimental results are needed for identification...
- anisotropy evolution
- efficiency: objective local frames

