Deformation and fracture of metal foams : Experiments and simulations

J.-S. Blazy, Th. Dillard S. Forest, J.-D. Bartout, Y. Bienvenu, Y. Chastel

Centre des Matériaux and CEMEF - Ecole des Mines de Paris / CNRS

Aluminium and Nickel Foams

Continuum plasticity model for foams

elliptic criterion : $f(\sigma) = \sqrt{\frac{3}{2}C s} : s + F(trace \sigma)^2 - R(p)$ (cf. powder metallurgy)

normality rule :

$$\dot{\boldsymbol{\varepsilon}}^{p} = \dot{p} \frac{\partial f}{\partial \boldsymbol{\sigma}} = \dot{p} \frac{\frac{3}{2}C\boldsymbol{s} + F \operatorname{Trace} \boldsymbol{\sigma}}{\hat{\sigma}} \frac{1}{\hat{\sigma}}$$

$$\hat{\sigma} = \sqrt{\frac{3}{2}C\,\underline{s}:\underline{s} + F\,(trace\ \underline{\sigma})^2}$$

plastic multiplier : $\dot{p} = \sqrt{\frac{2}{3C}} \dot{e}^p : \dot{e}^p + \frac{1}{9F} trace (\dot{e}^p)^2$ lateral contraction :

$$\nu_p = \frac{C/2 - F}{C + F}$$

Mesh dependence for localization band formation

Metal foam as a micromorphic continuum : The microfoam model

Degrees of freedom at material point

displacement vector $\underline{\boldsymbol{u}}$, microdeformation tensor $\boldsymbol{\chi}$

the microdeformation field is generally not compatible [Mindlin, 1964] [Eringen, 1964]

Deformation measures

strain tensor
$$\boldsymbol{\varepsilon} = (\underline{\boldsymbol{u}} \otimes \boldsymbol{\nabla} + \boldsymbol{\nabla} \otimes \underline{\boldsymbol{u}})/2$$

relative deformation tensor $\underline{e} = \underline{u} \otimes \nabla - \chi$ microdeformation gradient $\underline{K} = \chi \otimes \nabla$

Power density of internal forces / generalized stress tensors

$$p^{(i)} = \mathbf{\sigma} : \mathbf{\dot{e}} + \mathbf{s} : \mathbf{\dot{e}} + \mathbf{M} : \mathbf{\dot{K}}$$

Balance of momentum

$$(\boldsymbol{\sigma} + \boldsymbol{s}) \cdot \boldsymbol{\nabla} = 0$$

Balance of micromorphic momentum

$$\underline{\underline{M}}_{\underline{\sim}} \cdot \nabla + \underline{\underline{s}} = 0$$

Boundary conditions (traction and double traction vectors)

$$\underline{t} = (\underline{\sigma} + \underline{s}) . \underline{n}, \quad \underline{T} = \underline{M} . \underline{n}$$

Variational formulation for finite element implementation

$$\int_{V} p^{(i)} dV = \int_{\partial V} \left(\underline{\boldsymbol{t}} \cdot \underline{\boldsymbol{\dot{n}}} + \boldsymbol{T} : \boldsymbol{\dot{\chi}} \right) \, dS$$

The microfoam model : Constitutive equations

Strain partition

$${oldsymbol{arepsilon}} = {oldsymbol{arepsilon}}^e + {oldsymbol{arepsilon}}^p, \quad {oldsymbol{e}} = {oldsymbol{arepsilon}}^e + {oldsymbol{arepsilon}}^p, \quad {oldsymbol{K}} = {oldsymbol{K}}^e + {oldsymbol{K}}^p, \quad {oldsymbol{K}} = {oldsymbol{arepsilon}}^e + {oldsymbol{K}}^p,$$

Linear elasticity

$$oldsymbol{\sigma} = \mathop{m{c}}\limits_{lpha}:\mathop{m{\varepsilon}}\limits_{lpha}^e, \quad \mathop{m{s}}\limits_{lpha} = \mathop{m{a}}\limits_{lpha}:\mathop{m{e}}\limits_{lpha}^e, \quad \mathop{m{M}}\limits_{lpha} = \mathop{m{A}}\limits_{lpha}:\mathop{m{K}}\limits_{lpha}^e$$

simplified moduli as proposed by [Shu et al., 1999] $\underline{M}_{\sim} = l_c^2 \underbrace{\mathbf{c}}_{\sim} : \underbrace{\mathbf{K}}_{\sim}^e$ characteristic length l_c

when $||\underline{a}_{\widetilde{\omega}}||$ is very large, and if $\underline{e}^p = 0$, then $\underline{u} \otimes \nabla \simeq \chi$ (second gradient theory)

Yield criterion

$$f(\boldsymbol{\sigma}) = \sigma_{eq} - R$$

$$\sigma_{eq} = \left(\frac{3}{2}C\boldsymbol{\sigma}^{\text{dev}} : \boldsymbol{H} : \boldsymbol{\sigma}^{\text{dev}} + F(\boldsymbol{P} : \boldsymbol{\sigma})^2 + a_1 \boldsymbol{s}^{\text{dev}} : \boldsymbol{s}^{\text{dev}} + a_2 \boldsymbol{s}^{\text{dev}} : \boldsymbol{s}^{\text{devT}} + a_3 (\text{Tr} \, \boldsymbol{s})^2 + b_1 \boldsymbol{M} : \boldsymbol{M} \right)^{\frac{1}{2}}$$

Normality rule

$$\dot{\boldsymbol{\varepsilon}}^{p} = \dot{p} \frac{\partial f}{\partial \boldsymbol{\sigma}}, \quad \dot{\boldsymbol{\varepsilon}}^{p} = \dot{p} \frac{\partial f}{\partial \boldsymbol{s}}, \quad \dot{\boldsymbol{K}}^{p} = \dot{p} \frac{\partial f}{\partial \boldsymbol{M}}$$

Microfoam 1 : $a_1 = a_2 = a_3 = b_1 = 0$, $||\underline{a}||$ very large constrained microdeformation (second gradient), linear relationship between gradient of microdeformation and hyperstress tensor

Finite size localization band

$$\sigma_{eq} = \sqrt{C+F} |\sigma_{22}|, \quad \dot{\varepsilon}_{22}^{p} = \dot{p}\sqrt{C+F}, \quad \dot{p} = \frac{2\mu\sqrt{C+F}\dot{\varepsilon}_{22}}{2\mu(C+F)+H}$$

$$\begin{cases} (\sigma_{22} + s_{22})_{,2} = 0, \quad S_{222,2} + s_{22} = 0\\ \sigma_{22} = 2\mu(\varepsilon_{22} - \varepsilon_{22}^{p}) = \frac{2\mu}{2\mu(C+F)+H}(H\varepsilon_{22} + R_{0}\sqrt{C+F})\\ s_{22} = 2\mu(\varepsilon_{22} - \chi_{22}), \quad S_{222} = A\chi_{22,2} \end{cases}$$

Finalement

$$\chi_{22,222} - \frac{2\mu\bar{H}}{A(\bar{H}+2\mu)}\chi_{22,2} = 0, \quad \bar{H} = \frac{2\mu H}{2\mu(C+F) + H}$$

Longueur d'onde

$$\frac{1}{\omega} = \sqrt{\frac{A(\bar{H} + 2\mu)}{2\mu|\bar{H}|}}$$

Finite size localization band

Industrial applications

battery applications : portable computers, mobile phones ...

➡ positive electrode base (Ni-Cd, Ni-M-H batteries)

- good electrical conductivity
- high content of electrolyte (96% of voids)

Nickel foam process (NiTECH)

polyurethane foam (coils)

magnetron nickel sputtering (P.V.D)

heat treatment

- pyrolysis
- annealing

electrolysis

RD : coiling direction

Microstructure of nickel foams

relative densities (ρ/ρ_{Ni}) : 0,024 to 0,035

×1000 #19

20pm -Norm 4

5kV 14mm @MAP CDM ENSMP

Cell size ~ 500 μm

Strut length ~ $180 \,\mu m$

Strut thickness ~ 10 μ m

Grain size ~ 8 µm

NORM 4

×50 #19

Morphology of the cells

Obtained by microtomography at E.S.R.F. (Grenoble)

2D section

3D reconstruction of the cell

Shape of the cell :

pentagonal, hexagonal and quadrilateral faces

Geometry aspect ratio between RD and TD : R = a/b = 1,3

e(%)

Foam : a compressible material

Photomechanical device

Rectangular grid :

77 lines x 19 rows

→ 1463 points

High resolution C.C.D. camera (1300x1030)

Standard lens 35-70 mm

Non coherent light (spot 30 W)

Digital correlation method

Principle :

search the grey level distribution of the neighbourhood of each point of the grid in photography 2

Inter-correlation function :

$$\boldsymbol{j}_{\mathrm{Im1,Im2}}(u,v) = \sum_{u=-\infty}^{+\infty} \sum_{v=-\infty}^{+\infty} \mathrm{Im1}(x,y) \mathrm{Im2}(x+u,y+v)$$

 C_s : correlation size Chosen resolution : 136 μ m/pix

collaboration Ecole des Mines d'Alès (P. Ienny)

collaboration Ecole des Mines d'Alès (P. Ienny)

collaboration Ecole des Mines d'Alès (P. Ienny)

Anisotropic Compressible Continuum Plasticity Model

Yield criterion

$$f(\boldsymbol{\sigma}) = \sigma_{eq} - R, \quad \sigma_{eq} = \left(\frac{3}{2}C\boldsymbol{\sigma}^{\text{dev}} : \boldsymbol{H}_{\approx} : \boldsymbol{\sigma}^{\text{dev}} + F(\boldsymbol{P}_{\approx} : \boldsymbol{\sigma})^2\right)^{\frac{1}{2}}$$

$$[H] = \begin{bmatrix} h_a & 0 & 0 & 0 & 0 & 0 \\ 0 & h_b & 0 & 0 & 0 & 0 \\ 0 & 0 & h_c & 0 & 0 & 0 \\ 0 & 0 & 0 & h_d & 0 & 0 \\ 0 & 0 & 0 & 0 & h_e & 0 \\ 0 & 0 & 0 & 0 & 0 & h_f \end{bmatrix}, \quad [P] = \begin{bmatrix} p & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & r \end{bmatrix}$$

Normality rule

$$\dot{\boldsymbol{\varepsilon}}^{p} = \dot{p} \frac{\partial f}{\partial \boldsymbol{\sigma}} = \dot{p} \left(\frac{3}{2} C \boldsymbol{H}_{\boldsymbol{\alpha}} : \boldsymbol{\sigma}^{\text{dev}} + F(\boldsymbol{P} : \boldsymbol{\sigma}) \boldsymbol{P} \right)$$

Consistency condition (cumulative plastic strain p)

$$\dot{p} = \frac{\frac{\partial f}{\partial \boldsymbol{\sigma}} : \boldsymbol{E} : \boldsymbol{\dot{\varepsilon}}}{\frac{\partial f}{\partial \boldsymbol{\sigma}} : \boldsymbol{E} : \frac{\partial f}{\partial \boldsymbol{\sigma}} + \frac{\partial R}{\partial p}}$$

Nonlinear isotropic hardening

$$R = R_0 + Hp + Q(1 - \exp(-bp))$$

 \implies parameters to identify : $C, F, \mathbf{H}_{\simeq}, \mathbf{P}, R_0, H, Q, b$

Parameter identification

С	F	R ₀ (MPa)	Q (MPa)	b	H (MPa)	h _a	h _b	h _c	h _d	h _e	h _f
1	6,8.10-4	0,30	0,37	3,3	8,17	0,41	1,8	1,75	1,45	1	1

p	q	r		
1	37	23		

Strain field around a hole

Comparison between F.E. method and digital image correlation

Fluctuations not depicted by the continuum model

Validity of the continuum model

0.01231 0.03692 0.06154 0.06615 0.1108 0.1354 0.16 0 0.02462 0.04923 0.07385 0.09846 0.1231 0.1477

Quantitative result along a horizontal line during deformation

Hole radius = 2 mm

Hole size effect

Hole radius = 2 mm

Hole radius = 4 mm

Hole size effect

Hole radius = 1 mm

FE simulation of hole size effect in micromorphic elasticity

tension of a foam plate with a hole (axial strain component $\varepsilon_{22}/\varepsilon_{22}^{\infty}$) with $l_c = 0.31$ mm

FE simulation of hole size effect in micromorphic elasticity

FE simulation of hole size effect in nickel foams

tension of a foam plate with a hole (axial strain component ε_{22}) with $l_c = 0.1$ mm

classical plasticity microfoam R = 4 mm microfoam R = 1 mm

FE simulation of hole size effect in nickel foams

Fracture of nickel foams

simple fracture criterion

$$p = p_{crit} = 0.08$$

limited scatter in p_{crit} softening law for $p > p_{crit}$

$$R = R(p > p_{crit})$$

Tension of a cracked plate

crack length : 10 mm

Tension of a cracked plate : Simulation within classical plasticity

Tension of a cracked plate : Simulation within classical plasticity

strain component ε_{11}

Tension of a cracked plate : Simulation within classical plasticity

strain component ε_{11}

strain component ε_{11}

influence of mesh size on the overall curves

influence of mesh size on the local field ε_{11} 23562 dofs 9654 dofs

3054 dofs

influence of the characteristic length on fracture : $l_c^2 = a_8/\mu$ with $\mu = 166.7$ MPa

New applications of open-cell foams

alloyed foams :

nickel base superalloy foams for DPF applications

(cooperation Mines de Paris / IFAM Dresden)

New applications of open-cell foams

alloyed foams :

nickel base superalloy foams for DPF applications

(cooperation Mines de Paris / IFAM Dresden)

Creep of nickel and alloyed foams

Microstructural mechanics of nickel foams

