Introduction au calcul de microstructures

Samuel Forest, Georges Cailletaud

Centre des Matériaux/UMR 7633 Ecole des Mines de Paris/CNRS BP 87, 91003 Evry, France Samuel.Forest@ensmp.fr

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Représentation des microstructures

Microstructures réelles

Modèles aléatoires

2 Mécanique des microstructures

- Conditions aux limites sur la cellule élémentaire
- Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Matériaux composites

Composites à matrice métallique

Long fiber composites SiC–Ti (fiber diameter : 500 μ m)

Morphologie polycristalline

zinc coating

shape memory alloy Cu-Zn-Al

Microstructures biphasées

Titanium alloy Ti6242 nickel-base s

nickel-base single crystal superalloy

Caractérisation des revêtements

revêtement de tôle galvanisée analyse EBSD

géometrie 2D mais modes de déformation 3D!

Matériaux multicristallins

Matériaux quasi-transparents

Materiau A Materiau B microscopie confocale $250 \times 250 \times 30 \ \mu m^3$

Représentation des microstructures

11/115

Influence de la morphologie sur les propriétés élastiques

Calcul de microstructures

Matériaux à fort contraste de propriétés

mousse d'aluminum

mousse de nickel

Tomographie aux rayons X

15/115

- Microstructures réelles
- Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Modèles aléatoires pour les matériaux composites

schémas booléens (morphologie mathématique)

Modèles aléatoires pour les polycristaux

Mosaïques de Voronoi

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Objectifs du calcul de microstructures

Comportement mécanique des matériaux hétérogènes

- compréhension des mécanismes locaux de déformation et de rupture
- ★ influence de la morphologie des phases : calcul de VER
- k lien avec les méthodes d'homogénéisation :
 - * tester les estimations disponibles
 - * faire des prédictions avec un minimum d'approximations, en respectant les bornes!
 - * cas des constituants à fort contraste de propriétés
- informations supplémentaires : variance des champs, dispersion, hétérogénéités locales

• Calcul de petites structures

- mini-éprouvettes, couches minces, matériaux à gros grains, MEMS
- ⋆ zones de concentration de contraintes
- Endommagement des matériaux gouverné par les valeurs maximales, non par les valeurs moyennes

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Notion de Milieu Homogène Equivalent

• Contraintes et déformations locales

$$\sigma({\mathbf x}) = \mathop{\mathbf{c}}_{\approx}({\mathbf x}) : \mathop{\varepsilon}({\mathbf x})$$

• Contraintes et déformations globales

$$\sum_{\sim} = \frac{1}{V} \int_{V} \underbrace{\sigma}{} dV = < \underbrace{\sigma}{} >, \quad \underbrace{\mathsf{E}}{} = \frac{1}{V} \int_{V} \underbrace{\varepsilon}{} dV = < \underbrace{\varepsilon}{} >$$

 Tenseurs de concentration si l'on sait résoudre le problème sur V à E imposé, ∃A tel que

$$arepsilon({f x\,})={f A\over pprox}({f x\,}):{f E\over pprox})$$

• Loi de comportement macroscopique

$$\sum_{\infty} = <\underline{\mathbf{c}} : \underline{\mathbf{c}} > = <\underline{\mathbf{c}} : \underline{\mathbf{c}} : \underline{\mathbf{c}} > = <\underline{\mathbf{c}} : \underline{\mathbf{A}} : \underline{\mathbf{E}} > = \underline{\mathbf{C}}^{eff} : \underline{\mathbf{E}}$$
$$\underline{\mathbf{C}}^{eff} = <\underline{\mathbf{c}} : \underline{\mathbf{A}} >$$

ce n'est pas la moyenne des modules!

Comment imposer une déformation moyenne à un volume?

- Conditions de déformations homogènes au contour (*kinematic uniform boundary conditions*, KUBC)
- Conditions de contraintes homogènes au contour (*traction uniform boundary conditions*, SUBC)
- Conditions de périodicité
- Conditions mixtes

Conditions de déformations homogènes au contour (KUBC)

$$\underline{\mathbf{u}} = \underbrace{\mathbf{E}}_{\sim} \cdot \underline{\mathbf{x}}, \quad \forall \underline{\mathbf{x}} \in \partial V, \qquad u_i = E_{ij} \, x_j$$
$$< \underline{\varepsilon} > = \frac{1}{V} \int_V \underline{\varepsilon} \, dV = \underline{\mathbf{E}}$$

Preuve (théorème de la divergence) :

$$< \varepsilon_{ij} > = \frac{1}{V} \int_{V} u_{(i,j)} \, dV = \frac{1}{V} \int_{\partial V} u_{(i} n_{j)} dS$$
$$= E_{(ik} \frac{1}{V} \int_{\partial V} x_k n_{j)} \, dS = E_{(ik} \frac{1}{V} \int_{V} x_{k,j)} \, dV$$
$$= E_{(ik} \, \delta_{kj)} = E_{ij}$$

Moyenne du travail des forces internes :

 σ^* un champ de contrainte statiquement admissible (à divergence nulle) ε' un champ de déformation compatible satisfaisant les conditions aux limites KUBC

$$< \underline{\sigma}^{\star}: \underline{\varepsilon}' > = \sum_{\sim}: \underline{\mathsf{E}}$$

où le tenseur de contrainte macroscopique est défini par $\sum\limits_{\sim} = < \sigma^{\star} >$

Théorème de la divergence

Stokes, Gauss ...

$$\int_{V} u_{,i} \, dV = \int_{\partial V} u \, n_{i} \, dV$$

où $u_{i} = \frac{\partial u}{\partial x_i}$

$$1D: \int_{a}^{b} u'(x) dx = [u]_{a}^{b}$$

return

Conditions de contraintes homogènes au contour (SUBC)

$$\underline{\mathbf{t}} = \underline{\sigma} \cdot \underline{\mathbf{n}} = \underline{\boldsymbol{\Sigma}} \cdot \underline{\mathbf{n}}, \quad \forall \underline{\mathbf{x}} \in \partial V, \qquad t_i = \Sigma_{ij} n_j \\ < \underline{\sigma} > = \frac{1}{V} \int_V \underline{\sigma} \ dV = \underline{\boldsymbol{\Sigma}}$$

Preuve (divergence theorem) :

$$<\sigma_{ij}> = \frac{1}{V}\int_{V}\sigma_{ij}\,dV = \frac{1}{V}\int_{V}\sigma_{ik}\delta_{kj}\,dV = \frac{1}{V}\int_{V}(\sigma_{ik}\,x_{j})_{,k}\,dV$$
$$= \frac{1}{V}\int_{\partial V}\sigma_{ik}x_{j}n_{k}dS = \frac{1}{V}\int_{\partial V}\Sigma_{ik}x_{j}n_{k}dS = \Sigma_{ij}$$

Moyenne du travail des forces internes :

 $\underline{\sigma}^{\star}$ un champ de contrainte statiquement admissible (à divergence nulle) et satisfaisant les conditions aux limites SUBC

 ε' un champ de déformation compatible

$$< \underline{\sigma}^{\star}: \underline{\varepsilon}' > = \sum_{\widetilde{\omega}}: \underline{\mathsf{E}}$$

où la déformation macroscopique est définie par ${\bf E}=<{\bf e}'>$ Mécanique des microstructures

31/115

 $\underline{\mathbf{u}} = \underline{\mathbf{E}} . \underline{\mathbf{x}} + \underline{\mathbf{v}} \quad \text{où } \underline{\mathbf{v}} \text{ est une fluctuation périodique}$

$$\underline{\mathbf{v}}(\underline{\mathbf{x}}^+) = \underline{\mathbf{v}}(\underline{\mathbf{x}}^-), \quad \underline{\mathbf{u}}(\underline{\mathbf{x}}^+) - \underline{\mathbf{u}}(\underline{\mathbf{x}}^-) = \underline{\mathbf{E}}.(\underline{\mathbf{x}}^+ - \underline{\mathbf{x}}^-)$$

⇒ <u>u</u> n'est pas périodique!!!

$$\begin{split} \underline{\sigma}(\underline{\mathbf{x}}^{-}).\underline{\mathbf{n}}^{-} &= -\underline{\sigma}(\underline{\mathbf{x}}^{+}).\underline{\mathbf{n}}^{+}, \quad (\underline{\mathbf{n}}^{-} = -\underline{\mathbf{n}}^{+}) \\ &< \underline{\varepsilon} >= \underline{\mathbf{E}} \\ \\ \text{Preuve}: &< v_{i,j} >= \frac{1}{V} \int_{V} v_{i,j} \ dV = \frac{1}{V} \int_{\partial V} v_{i} n_{j} \ dS = 0 \\ \\ \text{Moyenne du travail des forces internes :} \qquad &< \underline{\sigma}: \underline{\varepsilon} >= \underline{\mathbf{\Sigma}}: \underline{\mathbf{E}} \\ \text{où la déformation macroscopique est définie par} \qquad & \underline{\mathbf{\Sigma}} = < \underline{\sigma} > \end{split}$$

Mécanique des microstructures

Exemple

calculer les propriétés effectives élastique d'un composite dans l'approximation périodique...

$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & 0 \\ c_{12} & c_{22} & c_{23} & 0 \\ c_{13} & c_{23} & c_{33} & 0 \\ 0 & 0 & 0 & c_{44} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{12} \end{bmatrix}$

propriétés effectives

$$\begin{bmatrix} \Sigma_{11} \\ \Sigma_{22} \\ \Sigma_{33} \\ \Sigma_{12} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 \\ C_{12} & C_{22} & C_{23} & 0 \\ C_{13} & C_{23} & C_{33} & 0 \\ 0 & 0 & 0 & C_{44} \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \\ 2E_{12} \end{bmatrix}$$

Extension simple

imposer $< \varepsilon >$, calculer $< \sigma >$...

Cisaillement simple

Représentation des microstructures

- Microstructures réelles
- Modèles aléatoires

2 Mécanique des microstructures

• Conditions aux limites sur la cellule élémentaire

Bornes

- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions
Elasticité non linéaire

• potentiel d'élasticité local convexe

$$arphi = W'(arepsilon) = rac{\partial W}{\partial arepsilon}$$

• potentiel d'élasticité global convexe

$$\mathbf{\Sigma} = W^{\mathsf{eff}'}(\mathbf{E}) = rac{\partial W^{\mathsf{eff}}}{\partial \mathbf{E}}$$

• potentiel dual local convexe

$$egin{aligned} arepsilon &= W^{st'}(arphi) = rac{\partial W^st}{\partial arphi} \ W^st(arphi) &= \max_{arepsilon} (arphi : arepsilon - W(arepsilon)) \end{aligned}$$

• potentiel dual global convexe

$$\mathbf{E} = \frac{\partial W^{eff*}}{\partial \mathbf{\Sigma}}$$

Théorème de l'énergie potentielle

problème aux limites

div
$$\underline{\sigma} + \underline{\mathbf{f}} = 0$$

 $\underline{\sigma} = W'(\underline{\varepsilon})$
 $\underline{\mathbf{u}} = \underline{\mathbf{u}}^d \quad \forall \underline{\mathbf{x}} \in \partial V$

Le théorème de l'énergie potentielle stipule alors que la solution \underline{u} sur V minimise l'énergie potentielle \mathcal{F} :

$$\mathcal{F}(\underline{\mathbf{u}}') = \int_{V} (W(\underline{\varepsilon}') - \underline{\mathbf{f}} \, \underline{\mathbf{u}}') \, dV$$

par rapport aux champs de déplacement cinématiquement admissibles $\underline{\mathbf{u}}'$. On dit que $\underline{\mathbf{u}}'$ est cinématiquement admissible s'il vérifie les conditions aux limites $\underline{\mathbf{u}} = \underline{\mathbf{u}}^d$ sur ∂V

Conséquence du théorème de l'énergie potentielle

conditions aux limites homogènes au contour en déformation $\underline{\mathbf{u}}^{\,d} = \underline{\mathbf{E}}.\underline{\mathbf{x}} \quad \forall \underline{\mathbf{x}} \in \partial V$

$$\frac{1}{2} \int_{V} \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon} \, dV = \frac{1}{2} \int_{V} \boldsymbol{\sigma} : \boldsymbol{\varepsilon} \, dV = V \frac{1}{2} \boldsymbol{\Sigma} : \boldsymbol{E} = \frac{1}{2} V \boldsymbol{E} : \boldsymbol{C} : \boldsymbol{E}$$
$$\leq \frac{1}{2} \int_{V} \boldsymbol{\varepsilon}' : \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon}' \, dV$$

fonction test

 $\underline{\mathbf{u}}' = \underline{\mathbf{E}} \cdot \underline{\mathbf{x}} \quad \forall \underline{\mathbf{x}} \in V$

$$\mathbf{E}: \mathbf{\underline{C}}: \mathbf{\underline{E}} \leq \mathbf{\underline{E}} < \mathbf{\underline{c}} >: \mathbf{\underline{E}}, \quad \forall \mathbf{\underline{E}}$$

borne supérieure de Voigt pour les propriétés effectives

Théorème de l'énergie complémentaire

problème aux limites

$$\begin{aligned} \operatorname{div} \boldsymbol{\sigma} + \underline{\mathbf{f}} &= 0 \\ \boldsymbol{\varepsilon} &= W^{*'}(\boldsymbol{\sigma}) \\ \underline{\mathbf{T}} &= \boldsymbol{\sigma} \cdot \underline{\mathbf{n}} = \underline{\mathbf{T}}^{d} \quad \forall \underline{\mathbf{x}} \in \partial V \end{aligned}$$

La solution en contrainte σ minimise alors la fonctionnelle :

$$\mathcal{F}^*({\mathrm{\hspace{-.02cm} \overline{o}}}^*) = \int_V W^*({\mathrm{\hspace{-.02cm} \overline{o}}}^*) \, dV$$

pour tout champ de contrainte $\underline{\sigma}^*$ statiquement admissible (i.e. autoéquilibré (div $\underline{\sigma}^* + \underline{\mathbf{f}} = 0$) et vérifiant les conditions aux limites $\underline{\sigma}^* \cdot \underline{\mathbf{n}} = \underline{\mathbf{T}}^{d}$)

Conséquence du théorème de l'énergie complémentaire

conditions aux limites homogènes au contour en contraintes $\underline{\mathbf{T}}^{d} = \sum_{\sim} \underline{\mathbf{x}} \quad \forall \underline{\mathbf{x}} \in \partial V$ $\frac{1}{2} \int_{V} \underline{\sigma} : \underbrace{\mathbf{s}}_{\sim} : \underline{\sigma} \ dV = \frac{1}{2} V \underbrace{\mathbf{\Sigma}}_{\sim} : \underbrace{\mathbf{S}}_{\sim} : \sum_{\sim} \leq \frac{1}{2} \int_{V} \underline{\sigma}^{*} : \underbrace{\mathbf{s}}_{\sim} : \underline{\sigma}^{*} \ dV$ fonction test $\underline{\sigma}^{*} = \sum_{\sim}$

$$\sum_{\mathbf{x}} : \sum_{\mathbf{x}} : \sum_{\mathbf{x}} \le \sum_{\mathbf{x}} : < \sum_{\mathbf{x}} >: \sum_{\mathbf{x}}, \quad \forall \Sigma_{\mathbf{x}}$$

borne inférieure de Reuss

Application à l'élasticité linéaire isotrope

• bornes pour le module de cisaillement

$$<rac{1}{\mu}>^{-1}\leq\mu^{ extsf{eff}}\leq<\mu>$$

$$<\mu>=f\mu_1+(1-f)\mu_2, \quad <rac{1}{\mu}>=frac{1}{\mu_1}+(1-f)rac{1}{\mu_2}$$

• bornes pour le module de compressibilité

$$<rac{1}{k}>^{-1}\leq k^{ ext{eff}}\leq < k>$$

bornes non optimales pour le module d'Young

$$\langle E^{-1}
angle^{-1} \leq E^h \leq (rac{1}{3} \langle \mu
angle^{-1} + rac{1}{9} \langle k^{-1}
angle)^{-1}$$

Bornes de Hashin/Shtrikman en élasticité isotrope

hypothèse supplémentaire : répartition isotrope des phases bornes supérieures de HS

$$\begin{split} k^{HS+} &= \left(f_1 k_1 + \frac{f_2 k_2}{1 + \alpha_1 \frac{k_2 - k_1}{k_1}} \right) \left(f_1 + \frac{f_2}{1 + \alpha_1 \frac{k_2 - k_1}{k_1}} \right)^{-1} \\ \mu^{HS+} &= \left(f_1 \mu_1 + \frac{f_2 \mu_2}{1 + \beta_1 \frac{\mu_2 - \mu_1}{k_1}} \right) \left(f_1 + \frac{f_2}{1 + \beta_1 \frac{\mu_2 - \mu_1}{\mu_1}} \right)^{-1} \\ \alpha &= \frac{3k}{3k + 4\mu}, \quad \beta = \frac{6(k + 2\mu)}{5(3k + 4\mu)} \end{split}$$

Fuseau de Hill

mélange isotrope de deux phases isotropes et incompressibles ($\mu_1=70000$ MPa et $\mu_2=4000$ MPa)

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Maillage de microstructures (1)

réseaux de poutres

Morphologie des cellules d'une mousse

Maillage de microstructures (2)

Calcul parallèle (1)

64 PC bipro Pentium IV 768 Mo 30 Go

Calcul parallèle (2)

Méthode de décomposition de domaine

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Propriétés apparentes, propriétés effectives (1)

Calcul du module d'Young apparent en SUBC pour un volume de microstructure : $\underbrace{\bm{C}}_{SUBC}^{app}$

Volumes élémentaires représentatifs

Propriétés apparentes, propriétés effectives (2)

Calcul du module d'Young apparent en SUBC pour un volume de microstructure et pour une partition du volume en 16 sous-volumes

Propriétés apparentes, propriétés effectives (3)

Calcul du module d'Young apparent en SUBC pour un volume de microstructure et pour une partition du volume en 16 sous-volumes

Propriétés apparentes, propriétés effectives (4)

Premier théorème de Huet :

Volumes élémentaires représentatifs

Propriétés apparentes, propriétés effectives (5)

Premier théorème de Huet :

$$\overline{\mathbf{C}}_{\overset{app}{\underset{SUBC}{\otimes}}}^{app} \leq \mathbf{C}_{\overset{SUBC}{\underset{SUBC}{\otimes}}}^{app} \leq \mathbf{C}_{\overset{Rpp}{\underset{KUBC}{\otimes}}}^{app} \leq \overline{\mathbf{C}}_{\overset{Rpp}{\underset{KUBC}{\otimes}}}^{app}$$
$$\text{avec } \overline{\mathbf{C}}_{\overset{SUBC}{\underset{SUBC}{\otimes}}}^{app} = \frac{1}{n} \sum_{i=1,n} \mathbf{C}_{\overset{SUBC}{\underset{SUBC}{\otimes}}}^{app,i}$$

Propriétés apparentes, propriétés effectives (6)

Premier théorème de Huet :

$$\overline{\underline{\mathsf{C}}_{\overset{app}{\underset{SUBC}{SUBC}}}^{app}} \leq \underline{\mathsf{C}}_{\overset{SUBC}{\underset{SUBC}{SUBC}}}^{app} \leq \overline{\underline{\mathsf{C}}}_{\overset{app}{\underset{KUBC}{KUBC}}}^{app} \leq \overline{\underline{\mathsf{C}}}_{\overset{app}{\underset{KUBC}{KUBC}}}^{app}$$

avec $\overline{\underline{\mathsf{C}}}_{\overset{supp}{\underset{SUBC}{SUBC}}}^{app} = \frac{1}{n} \sum_{i=1,n} \underline{\mathsf{C}}_{\overset{supp}{\underset{SUBC}{SUBC}}}^{app,i}$
Second théorème de Huet :

Vers une définition du VER

- **1** "sufficiently large, sufficiently small..." $I \ll I_{RVE} \ll L_{\omega}$
- les propriétés apparentes ne dépendent plus du type de conditions aux limites appliquées au volume (définition déterministe)
 [Sab, 1992]
- If the smallest material volume element of the composite for which the usual spatially constant "overall modulus" macroscopic constitutive representation is a sufficiently accurate model to represent the mean constitutive response"

[Drugan, Willis, 1996]

- question pratique : peut-on estimer les propriétés effectives en calculant sur des volumes plus petits que la taille déterministe du VER?
 - \implies oui, avec une approche statistique [Kanit et al., 2003]

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires

2 Mécanique des microstructures

- Conditions aux limites sur la cellule élémentaire
- Bornes

3 Volumes élémentaires représentatifs

- Outils numériques du calcul de microstructures
- Propriétés apparentes, propriétés effectives

• VER pour des biphasés élastiques et pour les polycristaux

- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Mosaïques de Voronoi

Volumes élémentaires représentatifs

61/115

Module de cisaillement

Volumes élémentaires représentatifs

62/115

Module de cisaillement

Module de cisaillement

Volumes élémentaires représentatifs

VER et portée intégrale

Z(x) une variable aléatoire (fraction volumique, module d'Young...) La variance $D_Z^2(V)$ de la propriété apparente Z pour un volume V est de la forme

$$D_Z^2(V) = D_Z^2 \frac{A_3}{V}$$

où D_Z^2 est la variance locale (ponctuelle) de Z: $D_Z^2 = P(1 - P)$ pour la fraction volumique (Z = P) $D_\mu^2 = P(1 - P)(\mu_1 - \mu_2)^2$ pour un biphasé et A_3 s'appelle *portée intégrale*

Pour la fraction volumique (Z = P) et les mosaïques de Voronoi, $A_3 = 1.18$

[Gilbert, 1962]

Définition statistique du VER

Pour une nombre suffisant de réalisations n, la propriété apparente moyenne \overline{Z} est dans l'intervalle de confiance

$$Z^{\text{eff}} \pm rac{2D_Z(V)}{\sqrt{n}}$$

La précision relative sur la moyenne est donc (théorie de l'échantillonnage) The relative precision on the mean is therefore :

$$\epsilon_{rel} = \frac{2D_Z(V)}{\sqrt{n}Z^{eff}} = \frac{2D_Z\sqrt{\left(\frac{A_3}{V}\right)^{\alpha}}}{\sqrt{n}Z^{eff}}$$

Pour une précision donnée et un nombre de réalisations, la taille du VER est définie par

$$V_{\rm RVE} = A_3 \, \left(\frac{4D_Z^2}{n\epsilon_{rel}^2 Z^{eff}} \right)$$

Volumes élémentaires représentatifs

Taille de VER pour les mosaïques de Voronoi

ϵ_{rel} (%)	μ	k	λ	Р
1	71253	13340	5504	2000
5	2850	534	220	80

 V_{RVE} pour n = 10, conditions aux limites périodiques $V_{RVE}(\mu) > V_{RVE}(k) > V_{RVE}(\lambda) > V_{RVE}(P)$ $V_{RVE}(1\%) > V_{RVE}(5\%)$

ϵ_{rel} (%)	μ	λ	k	Р
1	1300	765	400	150
5	52	30	16	6

Nombre de réalisations pour V (sans biais) = 125, conditions aux limites périodiques $n_\mu > n_\lambda > n_k > n_P$

La taille de VER dépend de ...

VER pour le polycristal de cuivre isotrope

$$\begin{split} \mathcal{C}_{11} &= 168400 \text{ MPa}, \quad \mathcal{C}_{12} = 121400 \text{ MPa}, \quad \mathcal{C}_{44} = 75390 \text{ MPa}, a = 2\mathcal{C}_{44}/(\mathcal{C}_{11} - \mathcal{C}_{12}) = 3.2\\ \mathcal{D}_{\mu}^2 &= <(\mathbf{c}:\mathbf{c})_{1212} > - < c_{1212} >^2, \quad < c_{1212} > = \frac{1}{5}(\mathcal{C}_{11} - \mathcal{C}_{12} + 3\mathcal{C}_{44})\\ &< (\mathbf{c}:\mathbf{c})_{1212} > = \frac{1}{35}(-6\mathcal{C}_{44}\mathcal{C}_{12} - 4\mathcal{C}_{12}\mathcal{C}_{11} + 2\mathcal{C}_{12}^2 + 2\mathcal{C}_{11}^2 + 6\mathcal{C}_{11}\mathcal{C}_{44} + 15\mathcal{C}_{44}^2) \end{split}$$

VER et couches minces

C.L. périodiques ou mixtes

l'épaisseur suffisent!

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions
Polycristaux élastoplastiques

Agrégats polycristallins : échelle macroscopique

Homogénéisation en non linéaire : l'exemple du polycristal

```
74/115
```

Agrégats polycristallins : réponse moyenne par grain

Homogénéisation en non linéaire : l'exemple du polycristal

```
75/115
```

Agrégats polycristallins : échelle intragranulaire, grain 1

Homogénéisation en non linéaire : l'exemple du polycristal

Agrégats polycristallins : échelle intragranulaire, grain 2

Homogénéisation en non linéaire : l'exemple du polycristal

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Ingrédients des schémas simplifiés de l'homogénéisation

Grandeurs macroscopiques

$$\boldsymbol{\Sigma}, \boldsymbol{E}, \boldsymbol{E}^p$$

• Grandeurs moyennes par phase

$$\underline{\sigma}^{\rm g},\underline{\varepsilon}^{\rm pg},\gamma^{\rm sg}$$

• Modèle de Taylor

$$\mathfrak{g}^{pg} = extsf{E}^{p} \Longrightarrow ilde{\sigma}^{g}
eq \Sigma_{\sim}$$

Modèle statique

$$\sigma^{g} = \sum_{\tilde{\omega}} \Longrightarrow \varepsilon^{pg} \neq \mathbf{E}^{p}$$

Estimations autocohérentes

$$\underline{\sigma}^{g} \neq \underline{\Sigma}, \quad \underline{\varepsilon}^{pg} \neq \underline{E}^{p}$$

Homogénéisation en non linéaire : l'exemple du polycristal

Schéma autocohérent

Règles de changement d'échelle

• approximations sécantes, tangentes

$$\dot{\Sigma} = \mathop{\mathsf{L}}_{\approx}^{eff} : \dot{E}$$

• estimations de Lin, Kröner (proches de Taylor)

$$\dot{\sigma} = \dot{\Sigma} + \mu (\dot{E}^{p} - \dot{\varepsilon}^{p})$$

• estimation de Berveiller et Zaoui

$$\underline{\boldsymbol{\sigma}} = \underline{\boldsymbol{\Sigma}} + \mu \alpha (\underline{\boldsymbol{\mathsf{E}}}^{\boldsymbol{p}} - \underline{\boldsymbol{\varepsilon}}^{\boldsymbol{p}})$$

coefficient d'accommodation élastoplastique α variant typiquement de 1 à 0.01

• limitations : élastoviscoplasticité, chargements radiaux et monotones, pas de morphologie réelle, interaction limitée entre grains, estimations des hétérogénéités...

Identification des règles de changement d'échelle

$$\mathbf{E} = \mathbf{E}^{e} + \mathbf{E}^{p}, \quad \mathbf{\Sigma} = \mathbf{C} : \mathbf{E}^{e}, \quad \mathbf{\Sigma} = \sum_{g=1}^{N_{g}} f_{g} \, \mathbf{c}^{g}, \quad \dot{\mathbf{E}}^{p} = \sum_{g=1}^{N_{g}} f_{g} \, \dot{\mathbf{c}}^{pg}$$

 $\underline{\sigma}^{g} \longrightarrow \dot{\underline{\varepsilon}}^{pg}$ selon les lois de comportement de la plasticité cristalline

un exemple de règle de transition d'échelle paramétrée efficace :

$$\underline{\sigma}^{g} = \sum_{\sim}^{g} + C\left(\underline{B} - \underline{\beta}^{g}\right), \quad \underline{B} = \sum_{g=1}^{N_{g}} f_{g} \underline{\beta}^{g}, \quad \dot{\underline{\beta}}^{g} = \dot{\underline{\varepsilon}}^{pg} - D\dot{\varepsilon}^{pg}_{eq} \underline{\beta}^{g}$$

vartiables d'accommodation intragranulaire $\stackrel{\mathcal{A}}{_\sim}$ avec une loi d'évolution non linéaire

paramètres de changement d'échelle : $C, D \neq$ paramètres matériau

procédure d'identification, approche inverse

Homogénéisation en non linéaire : l'exemple du polycristal

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Notion de rotation de réseau cristallin

Evolution de texture (C.F.C.)

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (traction $F_{33} = 1.7$)

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (compression $F_{33} = 0.3$)

Evolution de texture (C.F.C.)

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (laminage $F_{33} = 0.66$)

planes : {111}

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (laminage $F_{33} = 0.43$)

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (laminage $F_{33} = 0.43$)

planes : {200}

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.)

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (laminage $F_{33} = 0.88$)

planes : {111}

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (laminage $F_{33} = 0.43$)

planes : {111}

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (laminage $F_{33} = 0.43$)

planes : {200}

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (matériau anisotrope)

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (torsion $F_{12} = 0.55$)

planes : {111}

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (torsion $F_{12} = 0.77$)

planes : {111}

Homogénéisation en non linéaire : l'exemple du polycristal

Evolution de texture (C.F.C.) (torsion $F_{12} = 1.00$)

planes : {111}

Homogénéisation en non linéaire : l'exemple du polycristal

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures

6 Conclusions

Limites de l'homogénéisation classique

• non séparabilité des échelles : structures à gros grains

 $I < L_{VER} < L_{\omega}$

la taille des hétérogénéités est de l'ordre de grandeur de la longueur d'onde de variation des champs appliqués

- effet de taille de constituants : taille de grain, taille de particule, de fibre la mécanique des milieux continus classique est insensible à la taille absolue des constituants...
- un remède : la mécanique des milieu continus généralisés

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures
- 6 Conclusions

Champ de déplacement local polynomial

MHS de type Cosserat, cellule élémentaire 2D et carrée :

$$\underline{\mathbf{U}}(\underline{\mathbf{x}}) = <\underline{\mathbf{u}}>, \quad \underline{\mathbf{\Phi}}(\underline{\mathbf{x}}) = \frac{6}{l^2} < (\underline{\mathbf{y}} - \underline{\mathbf{x}}) \times \underline{\mathbf{u}}>$$

champ local polynomial de degré 3:

$$\begin{cases} u_1^* = B_{11}y_1 + B_{12}y_2 - C_{23}y_2^2 + 2C_{13}y_1y_2 + D_{12}(y_2^3 - 3y_1^2y_2) \\ u_2^* = B_{12}y_1 + B_{22}y_2 - C_{13}y_1^2 + 2C_{23}y_1y_2 - D_{12}(y_1^3 - 3y_1y_2^2) \end{cases}$$

Lien entre les coefficients du polynôme et les déformations macroscopiques

$$E_{ij} = B_{ij}/I, \quad \Phi - \Omega = \frac{D_{12}}{10I}$$
$$\underline{\mathbf{K}} = -\frac{2C_{13}}{I^2}\underline{\mathbf{e}}_1 + \frac{2C_{23}}{I^2}\underline{\mathbf{e}}_2$$

Conditions de Hill-Mandel généralisées

$$\langle \boldsymbol{\sigma} : \boldsymbol{\varepsilon}(\underline{\mathbf{u}}^{*}) \rangle = \boldsymbol{\Sigma} : \underline{\mathbf{E}} + \underline{\mathbf{M}} : \underline{\mathbf{K}}$$
$$\boldsymbol{\Sigma}^{s} = \langle \boldsymbol{\sigma} \rangle, \quad \overset{\times}{\boldsymbol{\Sigma}} = \langle 60y_{1}y_{2}(\sigma_{22} - \sigma_{11}) - 30\sigma_{12}(y_{1}^{2} - y_{2}^{2}) \rangle$$
$$M_{31} = \langle -\sigma_{11}y_{2} \rangle, \quad M_{32} = \langle \sigma_{22}y_{1} \rangle$$

Cas périodique:

$$\underline{\mathbf{u}} = \underline{\mathbf{u}}^* + \underline{\mathbf{v}}$$

 $\underline{\mathbf{v}}$ ne doit pas contribuer à $\underline{\mathbf{E}}$ et $\underline{\mathbf{K}}$ ni à l'énergie: $\int_{\partial V} \underline{\mathbf{t}} \cdot \underline{\mathbf{v}} \ dS = 0$ cas particulier: $\underline{\mathbf{v}}^+ = \underline{\mathbf{v}}^-, \quad \underline{\mathbf{t}}^+ = -\underline{\mathbf{t}}^-$

Propriétés élastiques effectives du MHS de Cosserat

Homogénéisation périodique classique

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

Homogénéisation périodique classique

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

Homogénéisation périodique classique

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation
extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

extension et cisaillement simples moyens imposés

Les frontières de l'homogénéisation

courbure moyenne imposée

 $K_{31} = -1$

$$M_{31} = < -\sigma_{11}y_2 >$$

107/115

courbure moyenne imposée

 $K_{31} = -1$

$$M_{31} = < -\sigma_{11}y_2 >$$

107/115

courbure moyenne imposée

 $K_{31} = -1$

$$M_{31} = < -\sigma_{11}y_2 >$$

courbure moyenne imposée

 $K_{31} = -1$

$$M_{31} = < -\sigma_{11}y_2 >$$

courbure moyenne imposée

 $K_{31} = -1$

$$M_{31} = < -\sigma_{11}y_2 >$$

107/115

courbure moyenne imposée

 $K_{31} = -1$

$$M_{31} = < -\sigma_{11}y_2 >$$

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

107/115

courbure moyenne imposée

 $K_{31} = -1$

$$M_{31} = < -\sigma_{11}y_2 >$$

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

107/115

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

107/115

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

107/115

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

Construction d'un milieu homogène de substitution de Cosserat

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

Les frontières de l'homogénéisation

Construction d'un milieu homogène de substitution de Cosserat

courbure moyenne imposée

$$K_{31} = -1$$

$$M_{31} = < -\sigma_{11}y_2 >$$

Les frontières de l'homogénéisation

Construction d'un milieu homogène de substitution de Cosserat

courbure moyenne imposée

 $K_{31} = -1$

$$M_{31} = < -\sigma_{11}y_2 >$$

Les frontières de l'homogénéisation

109/115

110/115

conditions aux limites supplémentaires (encastrement 2D/3D)!

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures

6 Conclusions

Effet de taille de grain dans les polycristaux

Plan

- Représentation des microstructures
 - Microstructures réelles
 - Modèles aléatoires
- 2 Mécanique des microstructures
 - Conditions aux limites sur la cellule élémentaire
 - Bornes
- 3 Volumes élémentaires représentatifs
 - Outils numériques du calcul de microstructures
 - Propriétés apparentes, propriétés effectives
 - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
 - Hétérogénéités dans un polycristal
 - Modèles simplifiés de l'homogénéisation
 - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
 - Les structures "à gros grains"
 - Effets de taille absolue de microstructures

6 Conclusions

Conclusions

- taille de VER : 1 gros calcul = N plus petits + CL périodiques
- modèles simplifiés de l'homogénéisation pour le dimensionnement des composites (linéaires, non linéaires)
- optimisation de la morphologie des phases pour une propriété visée, déjà en cours pour les stratifiés, redoutable en 3D imagerie 3D + morphologie mathématique
- effets d'échelles dans les matériaux et les structures (joint de culasse, chambres de combustion multiperforées...)
- endommagement, rupture durée de vie des matériaux hétérogènes