#### Introduction au calcul de microstructures

#### Samuel Forest, Georges Cailletaud

Centre des Matériaux/UMR 7633 Ecole des Mines de Paris/CNRS BP 87, 91003 Evry, France Samuel.Forest@ensmp.fr





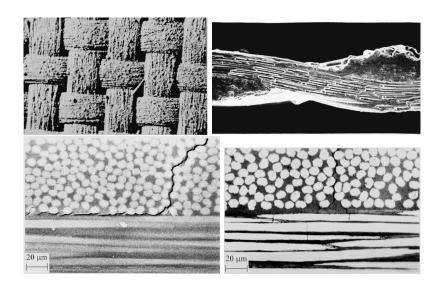


- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

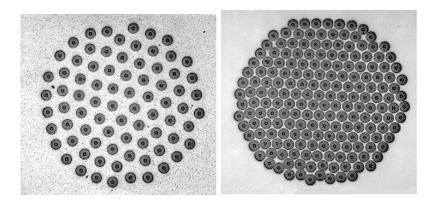
- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- 2 Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

## Matériaux composites



## Composites à matrice métallique



Long fiber composites SiC-Ti (fiber diameter : 500  $\mu$ m)

## Morphologie polycristalline

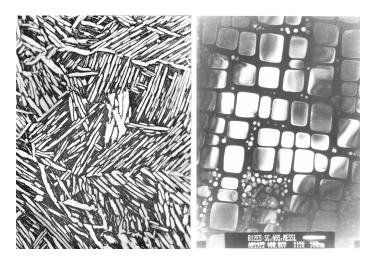




zinc coating

shape memory alloy Cu-Zn-Al

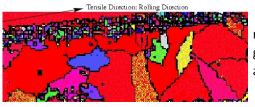
### Microstructures biphasées



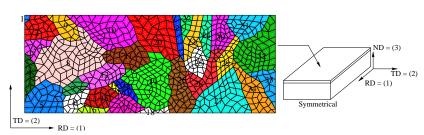
Titanium alloy Ti6242

nickel-base single crystal superalloy

#### Caractérisation des revêtements

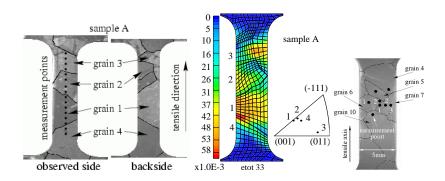


revêtement de tôle galvanisée analyse EBSD

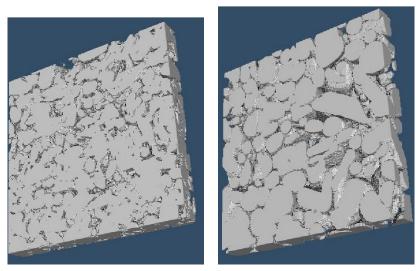


géometrie 2D mais modes de déformation 3D!

#### Matériaux multicristallins

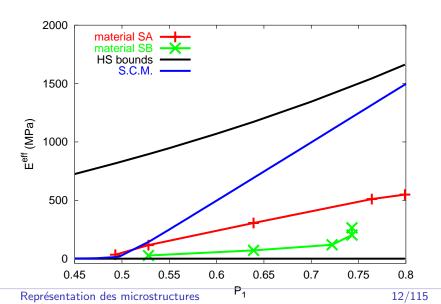


### Matériaux quasi-transparents

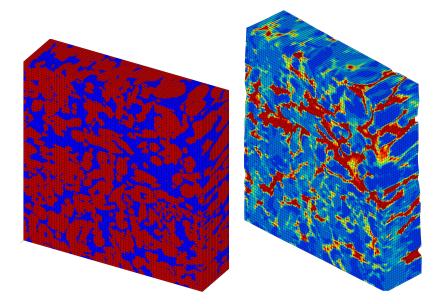


Materiau A Materiau B microscopie confocale  $250 \times 250 \times 30 \ \mu m^3$ 

## Influence de la morphologie sur les propriétés élastiques

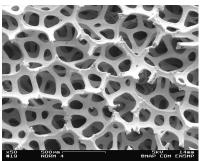


#### Calcul de microstructures



## Matériaux à fort contraste de propriétés

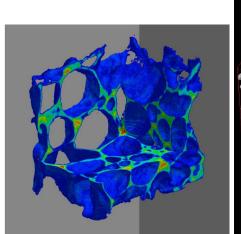


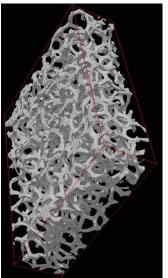


mousse d'aluminum

mousse de nickel

## Tomographie aux rayons X



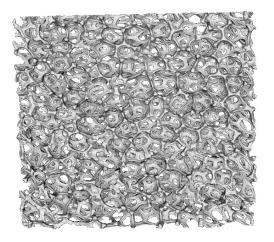


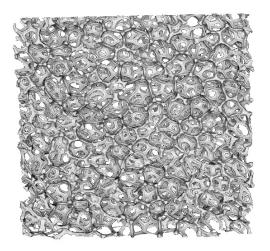
manip 🛂

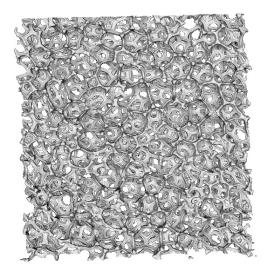


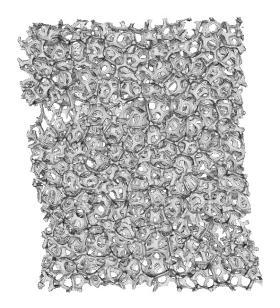


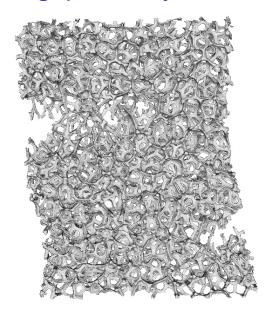






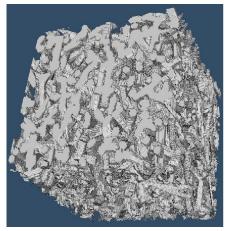


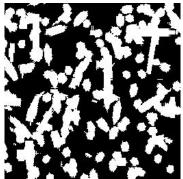




- 1 Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

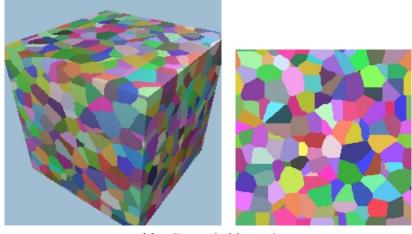
## Modèles aléatoires pour les matériaux composites





schémas booléens (morphologie mathématique)

## Modèles aléatoires pour les polycristaux



Mosaïques de Voronoi

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

#### Objectifs du calcul de microstructures

#### Comportement mécanique des matériaux hétérogènes

- compréhension des mécanismes locaux de déformation et de rupture
- \* influence de la morphologie des phases : calcul de VER
- \* lien avec les méthodes d'homogénéisation :
  - \* tester les estimations disponibles
  - \* faire des prédictions avec un minimum d'approximations, en respectant les bornes!
  - \* cas des constituants à fort contraste de propriétés
- informations supplémentaires : variance des champs, dispersion, hétérogénéités locales

#### Calcul de petites structures

- mini-éprouvettes, couches minces, matériaux à gros grains, MEMS
- \* zones de concentration de contraintes
- Endommagement des matériaux gouverné par les valeurs maximales, non par les valeurs moyennes

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

#### Notion de Milieu Homogène Equivalent

Contraintes et déformations locales

$$\underline{\sigma}(\underline{\mathbf{x}}) = \underline{\underline{\mathbf{c}}}(\underline{\mathbf{x}}) : \underline{\varepsilon}(\underline{\mathbf{x}})$$

• Contraintes et déformations globales

$$\mathbf{\Sigma} = \frac{1}{V} \int_{V} \mathbf{\sigma} \, dV = <\mathbf{\sigma}>, \quad \mathbf{E} = \frac{1}{V} \int_{V} \mathbf{\varepsilon} \, dV = <\mathbf{\varepsilon}>$$

Tenseurs de concentration
 si l'on sait résoudre le problème sur V à E imposé, ∃A tel que

$$\varepsilon(\underline{\mathbf{x}}\,) = \overset{\bullet}{\sim} (\underline{\mathbf{x}}\,) : \overset{\bullet}{\sim}$$

• Loi de comportement macroscopique

$$\sum_{\infty} = \langle \underbrace{\mathbf{c}}_{\infty} : \underbrace{\mathbf{c}}_{\infty} \rangle = \langle \underbrace{\mathbf{c}}_{\infty} : \underbrace{\mathbf{A}}_{\infty} : \underbrace{\mathbf{E}}_{\infty} \rangle = \underbrace{\mathbf{C}}_{\infty}^{\text{eff}} : \underbrace{\mathbf{E}}_{\infty}$$

$$\underbrace{\mathbf{C}}_{\infty}^{\text{eff}} = \langle \underbrace{\mathbf{c}}_{\infty} : \underbrace{\mathbf{A}}_{\infty} \rangle$$

ce n'est pas la moyenne des modules!

## Comment imposer une déformation moyenne à un volume?

- Conditions de déformations homogènes au contour (kinematic uniform boundary conditions, KUBC)
- Conditions de contraintes homogènes au contour (traction uniform boundary conditions, SUBC)
- Conditions de périodicité
- Conditions mixtes

#### Conditions de déformations homogènes au contour (KUBC)

$$\underline{\mathbf{u}} = \underline{\mathbf{E}}.\underline{\mathbf{x}}, \quad \forall \underline{\mathbf{x}} \in \partial V, \qquad u_i = E_{ij} x_j$$
$$<\underline{\varepsilon}> = \frac{1}{V} \int_V \underline{\varepsilon} \, dV = \underline{\mathbf{E}}$$

Preuve (théorème de la divergence) :

$$\langle \varepsilon_{ij} \rangle = \frac{1}{V} \int_{V} u_{(i,j)} dV = \frac{1}{V} \int_{\partial V} u_{(i} n_{j)} dS$$
$$= E_{(ik} \frac{1}{V} \int_{\partial V} x_{k} n_{j)} dS = E_{(ik} \frac{1}{V} \int_{V} x_{k,j)} dV$$
$$= E_{(ik} \delta_{kj)} = E_{ij}$$

Moyenne du travail des forces internes :

 $\underline{\sigma}^{\star}$  un champ de contrainte statiquement admissible (à divergence nulle)  $\underline{\varepsilon}'$  un champ de déformation compatible satisfaisant les conditions aux limites KUBC

$$<\underline{\sigma}^{\star}:\underline{\varepsilon}'>=\Sigma:\mathsf{E}$$

où le tenseur de contrainte macroscopique est défini par  $\sum_{\alpha} = < \sigma^{\star} >$ 

## Théorème de la divergence

Stokes, Gauss ...

$$\int_V u_{,i} \, dV \, = \, \int_{\partial V} \, u \, n_i \, dV$$

où 
$$u_{,i} = \frac{\partial u}{\partial x_i}$$

$$1D: \int_a^b u'(x) dx = [u]_a^b$$

return

# Conditions de contraintes homogènes au contour (SUBC)

$$\underline{\mathbf{t}} = \underline{\boldsymbol{\sigma}}.\underline{\mathbf{n}} = \sum_{\boldsymbol{\kappa}}.\underline{\mathbf{n}}, \quad \forall \underline{\mathbf{x}} \in \partial V, \qquad t_i = \sum_{ij} n_j$$
$$<\underline{\boldsymbol{\sigma}} > = \frac{1}{V} \int_{V} \underline{\boldsymbol{\sigma}} \ dV = \sum_{\boldsymbol{\kappa}}$$

Preuve (divergence theorem):

$$\langle \sigma_{ij} \rangle = \frac{1}{V} \int_{V} \sigma_{ij} \, dV = \frac{1}{V} \int_{V} \sigma_{ik} \delta_{kj} \, dV = \frac{1}{V} \int_{V} (\sigma_{ik} x_{j})_{,k} \, dV$$

$$= \frac{1}{V} \int_{\partial V} \sigma_{ik} x_{j} n_{k} dS = \frac{1}{V} \int_{\partial V} \Sigma_{ik} x_{j} n_{k} dS = \Sigma_{ij}$$

Moyenne du travail des forces internes :

 $\underline{\sigma}^{\star}$  un champ de contrainte statiquement admissible (à divergence nulle) et satisfaisant les conditions aux limites SUBC

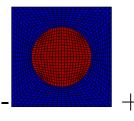
 $\varepsilon'$  un champ de déformation compatible

$$<\underline{\sigma}^{\star}:\underline{\varepsilon}'>=\sum_{\sim}:E$$

où la déformation macroscopique est définie par  $\mathbf{E}=<\underline{\varepsilon}'>$ 

## Conditions de périodicité

 $\underline{\mathbf{u}} = \underline{\mathbf{E}}.\underline{\mathbf{x}} + \underline{\mathbf{v}}$  où  $\underline{\mathbf{v}}$  est une fluctuation périodique



$$\underline{\mathbf{v}}(\underline{\mathbf{x}}^{+}) = \underline{\mathbf{v}}(\underline{\mathbf{x}}^{-}), \quad \underline{\mathbf{u}}(\underline{\mathbf{x}}^{+}) - \underline{\mathbf{u}}(\underline{\mathbf{x}}^{-}) = \mathbf{E}.(\underline{\mathbf{x}}^{+} - \underline{\mathbf{x}}^{-})$$

⇒ u n'est pas périodique!!!

$$\underline{\sigma}(\underline{\mathbf{x}}^{-}).\underline{\mathbf{n}}^{-} = -\underline{\sigma}(\underline{\mathbf{x}}^{+}).\underline{\mathbf{n}}^{+}, \quad (\underline{\mathbf{n}}^{-} = -\underline{\mathbf{n}}^{+})$$

$$<\stackrel{\sim}{arepsilon}>=\stackrel{\sf E}{arepsilon}$$

Preuve : 
$$\langle v_{i,j} \rangle = \frac{1}{V} \int_{V} v_{i,j} \ dV = \frac{1}{V} \int_{\partial V} v_{i} n_{j} \ dS = 0$$

Moyenne du travail des forces internes :

où la déformation macroscopique est définie par 
$$\sum_{\kappa} = <\kappa >$$

 $<\sigma:arepsilon>=\mathbf{\Sigma}:\mathsf{E}$ 

## **Exemple**

calculer les propriétés effectives élastique d'un composite dans l'approximation périodique...

#### propriétés locales

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & 0 \\ c_{12} & c_{22} & c_{23} & 0 \\ c_{13} & c_{23} & c_{33} & 0 \\ 0 & 0 & 0 & c_{44} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{12} \end{bmatrix}$$

#### propriétés effectives

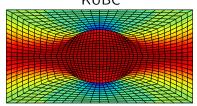
$$\begin{bmatrix} \Sigma_{11} \\ \Sigma_{22} \\ \Sigma_{33} \\ \Sigma_{12} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 \\ C_{12} & C_{22} & C_{23} & 0 \\ C_{13} & C_{23} & C_{33} & 0 \\ 0 & 0 & 0 & C_{44} \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \\ 2E_{12} \end{bmatrix}$$

### **Extension simple**

imposer  $< \varepsilon >$ , calculer  $< \sigma >$ ...

$$\mathbf{E} = \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

**KUBC** 

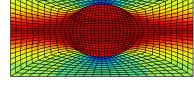


$$\Sigma_{11} = C_{11}$$
 $\Sigma_{22} = C_{12}$ 

$$\Sigma_{33} = C_{13}$$

$$\sum_{12} = 0$$

 $\begin{array}{ccc} \Sigma_{12} & = & 0 \\ \text{conditions de périodicité} \end{array}$ 

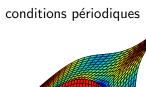


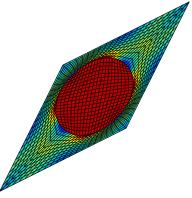
### Cisaillement simple

$$\mathbf{E} = \left[ \begin{array}{ccc} 0 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

$$\Sigma_{11} = \Sigma_{22} = \Sigma_{33} = 0$$
 $\Sigma_{12} = C_{44}$ 

conditions homogènes au contour





- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

#### Elasticité non linéaire

potentiel d'élasticité local convexe

$$\underline{\sigma} = W'(\underline{\varepsilon}) = \frac{\partial W}{\partial \varepsilon}$$

potentiel d'élasticité global convexe

$$\mathbf{\Sigma} = W^{\mathsf{eff}'}(\mathbf{E}) = \frac{\partial W^{\mathsf{eff}}}{\partial \mathbf{E}}$$

potentiel dual local convexe

$$\begin{split} & \underline{\varepsilon} = W^{*'}(\underline{\sigma}) = \frac{\partial W^*}{\partial \underline{\sigma}} \\ & W^*(\underline{\sigma}) = \max_{\underline{\varepsilon}} (\underline{\sigma} : \underline{\varepsilon} - W(\underline{\varepsilon})) \end{split}$$

potentiel dual global convexe

$$\mathbf{\bar{E}} = \frac{\partial W^{\text{eff}*}}{\partial \mathbf{\Sigma}}$$

## Théorème de l'énergie potentielle

problème aux limites

$$\operatorname{div} \underline{\sigma} + \underline{\mathbf{f}} = 0$$

$$\underline{\sigma} = W'(\underline{\varepsilon})$$

$$\underline{\mathbf{u}} = \underline{\mathbf{u}}^{d} \quad \forall \underline{\mathbf{x}} \in \partial V$$

Le théorème de l'énergie potentielle stipule alors que la solution  $\underline{\mathbf{u}}$  sur V minimise l'énergie potentielle  $\mathcal{F}$ :

$$\mathcal{F}(\underline{\mathbf{u}}') = \int_{V} (W(\underline{\varepsilon}') - \underline{\mathbf{f}} \cdot \underline{\mathbf{u}}') \, dV$$

par rapport aux champs de déplacement cinématiquement admissibles  $\underline{\mathbf{u}}'$ . On dit que  $\underline{\mathbf{u}}'$  est cinématiquement admissible s'il vérifie les conditions aux limites  $\mathbf{u} = \mathbf{u}^d$  sur  $\partial V$ 

# Conséquence du théorème de l'énergie potentielle

conditions aux limites homogènes au contour en déformation  $\mathbf{u}^d = \mathbf{E}.\mathbf{x} \quad \forall \mathbf{x} \in \partial V$ 

$$\frac{1}{2} \int_{V} \underline{\varepsilon} : \underline{\mathbf{c}} : \underline{\varepsilon} \, dV = \frac{1}{2} \int_{V} \underline{\sigma} : \underline{\varepsilon} \, dV = V \frac{1}{2} \underline{\Sigma} : \underline{\mathbf{E}} = \frac{1}{2} V \underline{\mathbf{E}} : \underline{\mathbf{C}} : \underline{\mathbf{E}} \\
\leq \frac{1}{2} \int_{V} \underline{\varepsilon}' : \underline{\mathbf{c}} : \underline{\varepsilon}' \, dV$$

fonction test

$$\underline{\mathbf{u}}' = \mathbf{E} \cdot \underline{\mathbf{x}} \quad \forall \underline{\mathbf{x}} \in V$$

$$\label{eq:energy_energy} \underline{\mathbf{E}}:\underline{\mathbf{C}}:\underline{\mathbf{E}}\,\leq\,\underline{\mathbf{E}}:<\underline{\mathbf{c}}>:\underline{\mathbf{E}},\quad\forall\underline{\mathbf{E}}$$

borne supérieure de Voigt pour les propriétés effectives

## Théorème de l'énergie complémentaire

problème aux limites

La solution en contrainte  $\sigma$  minimise alors la fonctionnelle :

$$\mathcal{F}^*(\sigma^*) = \int_V W^*(\sigma^*) dV$$

pour tout champ de contrainte  $\underline{\sigma}^*$  statiquement admissible (i.e. autoéquilibré  $(\operatorname{div}\underline{\sigma}^* + \underline{\mathbf{f}} = 0)$  et vérifiant les conditions aux limites  $\underline{\sigma}^*.\underline{\mathbf{n}} = \underline{\mathbf{T}}^d$ )

# Conséquence du théorème de l'énergie complémentaire

conditions aux limites homogènes au contour en contraintes

$$\underline{\mathbf{T}}^{d} = \sum_{\sim} \underline{\mathbf{x}} \quad \forall \underline{\mathbf{x}} \in \partial V$$

$$\frac{1}{2}\int_{V} \underline{\sigma} : \underline{\mathbf{s}} : \underline{\sigma} \ dV = \frac{1}{2}V\underline{\mathbf{\Sigma}} : \underline{\mathbf{S}} : \underline{\mathbf{\Sigma}} \leq \frac{1}{2}\int_{V} \underline{\sigma}^* : \underline{\mathbf{s}} : \underline{\sigma}^* \ dV$$

fonction test

$$oldsymbol{arphi}^* = \sum_{\sim}$$

$$\mathbf{\Sigma}: \mathbf{S}: \mathbf{\Sigma} \leq \mathbf{\Sigma}: < \mathbf{S} >: \mathbf{\Sigma}, \quad \forall \mathbf{\Sigma}$$

borne inférieure de Reuss

## Application à l'élasticité linéaire isotrope

bornes pour le module de cisaillement

$$<\frac{1}{\mu}>^{-1} \le \mu^{\text{eff}} \le <\mu>$$
 $<\mu>=f\mu_1+(1-f)\mu_2, <\frac{1}{\mu}>=f\frac{1}{\mu_1}+(1-f)\frac{1}{\mu_2}$ 

• bornes pour le module de compressibilité

$$<\frac{1}{k}>^{-1} \le k^{\text{eff}} \le < k>$$

bornes non optimales pour le module d'Young

$$\langle E^{-1} \rangle^{-1} \leq E^h \leq \left(\frac{1}{3} \langle \mu \rangle^{-1} + \frac{1}{9} \langle k^{-1} \rangle\right)^{-1}$$

# Bornes de Hashin/Shtrikman en élasticité isotrope

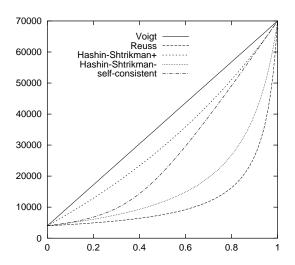
hypothèse supplémentaire : répartition isotrope des phases bornes supérieures de HS

$$k^{HS+} = \left( f_1 k_1 + \frac{f_2 k_2}{1 + \alpha_1 \frac{k_2 - k_1}{k_1}} \right) \left( f_1 + \frac{f_2}{1 + \alpha_1 \frac{k_2 - k_1}{k_1}} \right)^{-1}$$

$$\mu^{HS+} = \left( f_1 \mu_1 + \frac{f_2 \mu_2}{1 + \beta_1 \frac{\mu_2 - \mu_1}{k_1}} \right) \left( f_1 + \frac{f_2}{1 + \beta_1 \frac{\mu_2 - \mu_1}{\mu_1}} \right)^{-1}$$

$$\alpha = \frac{3k}{3k + 4\mu}, \quad \beta = \frac{6(k + 2\mu)}{5(3k + 4\mu)}$$

#### Fuseau de Hill



mélange isotrope de deux phases isotropes et incompressibles ( $\mu_1 = 70000 \text{MPa}$  et  $\mu_2 = 4000 \text{MPa}$ )

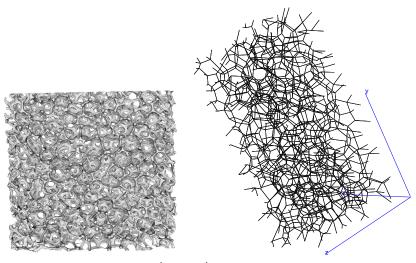
#### **Plan**

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

#### **Plan**

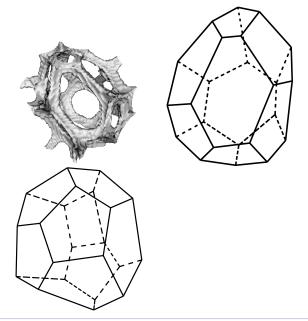
- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- 2 Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- (Conclusions

# Maillage de microstructures (1)

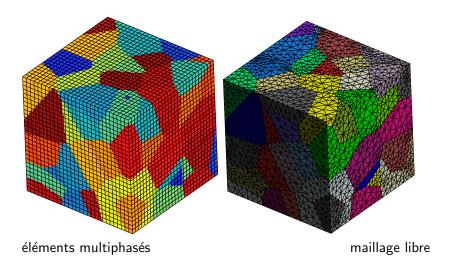


réseaux de poutres

# Morphologie des cellules d'une mousse



# Maillage de microstructures (2)

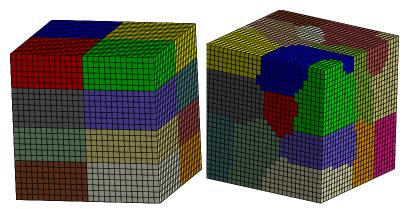


# Calcul parallèle (1)



64 PC bipro Pentium IV 768 Mo 30 Go

# Calcul parallèle (2)

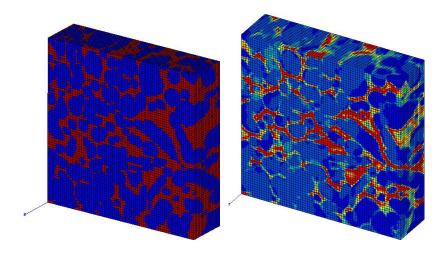


Méthode de décomposition de domaine

#### **Plan**

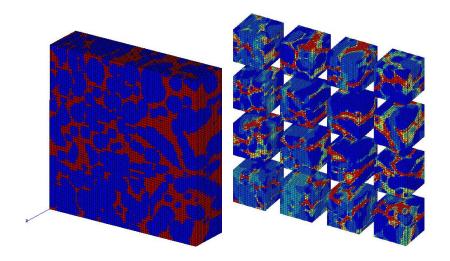
- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- 2 Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

## Propriétés apparentes, propriétés effectives (1)



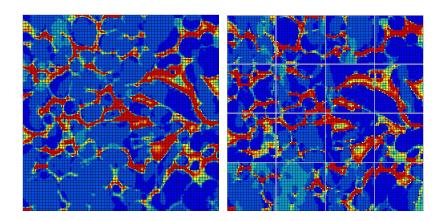
Calcul du module d'Young apparent en SUBC pour un volume de microstructure :  $\mathbf{C}^{app}_{SUBC}$ 

# Propriétés apparentes, propriétés effectives (2)



Calcul du module d'Young apparent en SUBC pour un volume de microstructure et pour une partition du volume en 16 sous-volumes

## Propriétés apparentes, propriétés effectives (3)



Calcul du module d'Young apparent en SUBC pour un volume de microstructure et pour une partition du volume en 16 sous-volumes

# Propriétés apparentes, propriétés effectives (4)

Premier théorème de Huet :

$$\overline{\mathbf{C}_{SUBC}^{app}} \leq \mathbf{C}_{SUBC}^{app}$$

avec 
$$\overline{\mathbb{C}}_{SUBC}^{app} = \frac{1}{n} \sum_{i=1,n} \mathbf{C}_{SUBC}^{app,i}$$

$$\begin{array}{c} 1200 \\ 1000 \\ \hline \\ \frac{2}{8} \\ 600 \\ 400 \\ 200 \\ 100000 \end{array}$$

$$\begin{array}{c} 1200 \\ 600 \\ 400 \\ 200 \\ 100000 \end{array}$$

$$\begin{array}{c} 1200 \\ 600 \\ 400 \\ 100000 \end{array}$$

$$\begin{array}{c} 1200 \\ 600 \\ 400 \\ 100000 \end{array}$$

$$\begin{array}{c} 1200 \\ 100000 \\ 100000 \end{array}$$

## Propriétés apparentes, propriétés effectives (5)

Premier théorème de Huet :

$$\overline{\underline{\pmb{C}}_{SUBC}^{app}} \leq \underline{\pmb{C}}_{SUBC}^{app} \leq \underline{\pmb{C}}_{KUBC}^{app} \leq \overline{\underline{\pmb{C}}_{KUBC}^{app}}$$

avec 
$$\overline{\mathbb{C}_{SUBC}^{app}} = \frac{1}{n} \sum_{i=1, p} \mathbb{C}_{SUBC}^{app, i}$$

## Propriétés apparentes, propriétés effectives (6)

Premier théorème de Huet :

$$\overline{\underline{\overset{app}{C}^{app}}} \leq \underline{\overset{C}{C}^{app}} \leq \underline{\overset{C}{C}^{app}} \leq \underline{\overset{C}{\overset{app}{C}^{app}}} \leq \overline{\overset{C}{\overset{app}{C}^{app}}}$$

avec 
$$\overline{\mathbb{C}_{SUBC}^{app}} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{C}_{SUBC}^{app,i}$$

Second théorème de Huet :

$$\overline{\underline{\textbf{C}}_{\lesssim SUBC}^{\textit{app}}} \leq \underline{\textbf{C}}_{\lesssim}^{\textit{eff}} \leq \overline{\underline{\textbf{C}}_{\lesssim}^{\textit{app}}}_{\textit{KUBC}}$$

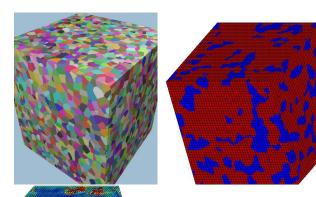
#### Vers une définition du VER

- "sufficiently large, sufficiently small..."  $I \ll I_{RVE} \ll L_{\omega}$
- les propriétés apparentes ne dépendent plus du type de conditions aux limites appliquées au volume (définition déterministe)
   [Sab, 1992]
- "the smallest material volume element of the composite for which the usual spatially constant "overall modulus" macroscopic constitutive representation is a sufficiently accurate model to represent the mean constitutive response"
  - [Drugan, Willis, 1996]
- question pratique : peut-on estimer les propriétés effectives en calculant sur des volumes plus petits que la taille déterministe du VER?
  - ⇒ oui, avec une approche statistique [Kanit et al., 2003]

#### **Plan**

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

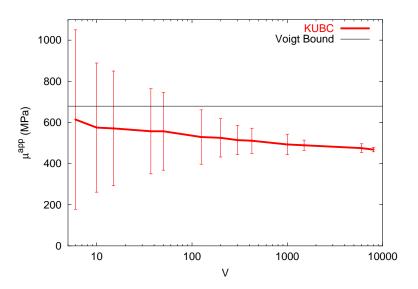
## Mosaïques de Voronoi



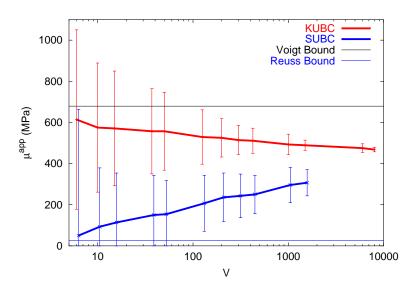
phase dure : E=2500 MPa,  $\nu=0.3$   $\lambda=2.44$  W/mK, phase molle : E=25 MPa,  $\nu=0.49$ 

 $\lambda = 0.0244~\mathrm{W/mK}$ ,

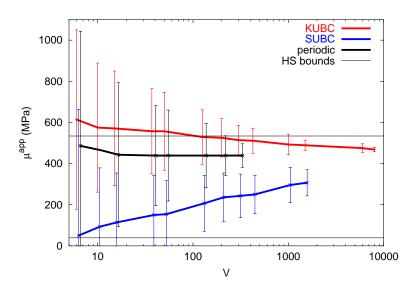
#### Module de cisaillement



#### Module de cisaillement



#### Module de cisaillement



## VER et portée intégrale

Z(x) une variable aléatoire (fraction volumique, module d'Young...)

La variance  $D_Z^2(V)$  de la propriété apparente Z pour un volume V est de la forme

$$D_Z^2(V) = D_Z^2 \frac{A_3}{V}$$

où  $D_Z^2$  est la variance locale (ponctuelle) de Z:

$$D_Z^2 = P(1-P)$$
 pour la fraction volumique  $(Z=P)$ 

 $D_{\mu}^{\overline{2}}=P(1-P)(\mu_1-\mu_2)^2$  pour un biphasé

et A<sub>3</sub> s'appelle portée intégrale

Pour la fraction volumique (Z = P) et les mosaïques de Voronoi,  $A_3 = 1.18$ 

[Gilbert, 1962]

### Définition statistique du VER

Pour une nombre suffisant de réalisations n, la propriété apparente moyenne  $\bar{Z}$  est dans l'intervalle de confiance

$$Z^{eff} \pm \frac{2D_Z(V)}{\sqrt{n}}$$

La précision relative sur la moyenne est donc (théorie de l'échantillonnage) The relative precision on the mean is therefore :

$$\epsilon_{rel} = \frac{2D_Z(V)}{\sqrt{n}Z^{eff}} = \frac{2D_Z\sqrt{\left(\frac{A_3}{V}\right)^{\alpha}}}{\sqrt{n}Z^{eff}}$$

Pour une précision donnée et un nombre de réalisations, la taille du VER est définie par

$$V_{\text{RVE}} = A_3 \left( \frac{4D_Z^2}{n\epsilon_{rel}^2 Z^{eff}} \right)$$

## Taille de VER pour les mosaïques de Voronoi

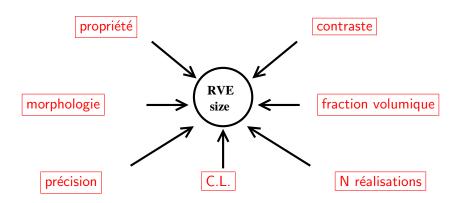
| $\epsilon_{rel}$ (%) | $\mu$ | k     | λ    | Р    |
|----------------------|-------|-------|------|------|
| 1                    | 71253 | 13340 | 5504 | 2000 |
| 5                    | 2850  | 534   | 220  | 80   |

$$V_{RVE}$$
 pour  $n=10$ , conditions aux limites périodiques  $V_{RVE}(\mu) > V_{RVE}(k) > V_{RVE}(\lambda) > V_{RVE}(P)$   $V_{RVE}(1\%) > V_{RVE}(5\%)$ 

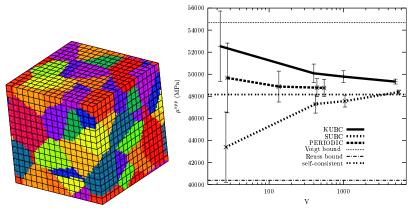
| $\epsilon_{rel}$ (%) | $\mu$ | λ   | k   | Р   |
|----------------------|-------|-----|-----|-----|
| 1                    | 1300  | 765 | 400 | 150 |
| 5                    | 52    | 30  | 16  | 6   |

Nombre de réalisations pour V (sans biais) = 125, conditions aux limites périodiques  $n_{l l} > n_{\lambda} > n_{k} > n_{P}$ 

## La taille de VER dépend de ...

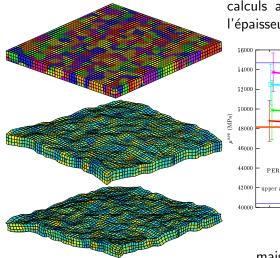


## VER pour le polycristal de cuivre isotrope



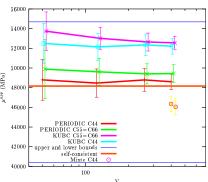
$$\begin{split} C_{11} &= 168400 \text{ MPa}, \quad C_{12} = 121400 \text{ MPa}, \quad C_{44} = 75390 \text{ MPa}, \\ D_{\mu}^2 &= <(\mathbf{c}:\mathbf{c})_{1212}> - < c_{1212}>^2, \quad < c_{1212}> = \frac{1}{5}(C_{11}-C_{12}+3C_{44}) \\ &<(\mathbf{c}:\mathbf{c})_{1212}> = \frac{1}{35}(-6C_{44}C_{12}-4C_{12}C_{11}+2C_{12}^2+2C_{11}^2+6C_{11}C_{44}+15C_{44}^2) \end{split}$$

#### VER et couches minces



C.L. périodiques ou mixtes

calculs avec un grain dans l'épaisseur...



... mais trois grains dans l'épaisseur suffisent!

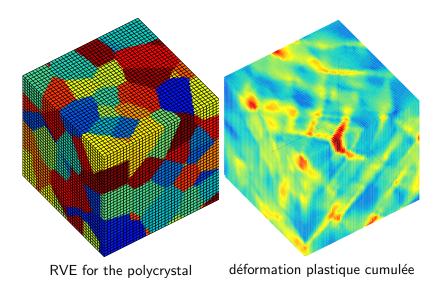
#### **Plan**

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

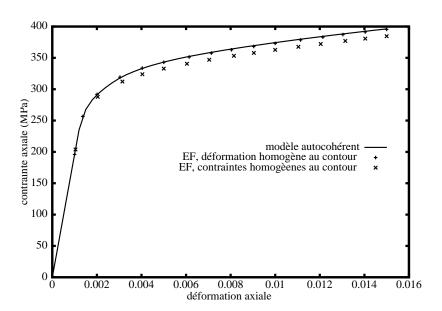
#### **Plan**

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

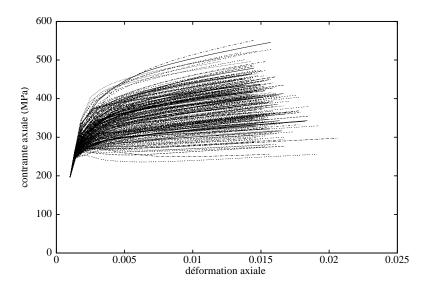
#### Polycristaux élastoplastiques



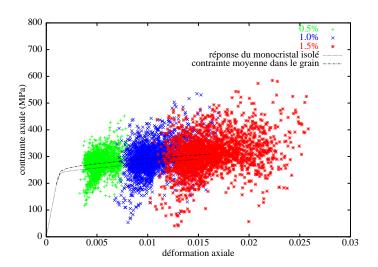
#### Agrégats polycristallins : échelle macroscopique



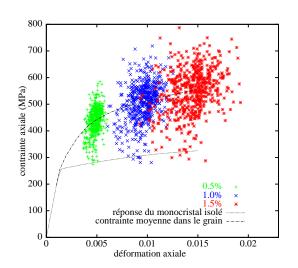
## Agrégats polycristallins : réponse moyenne par grain



# Agrégats polycristallins : échelle intragranulaire, grain 1



# Agrégats polycristallins : échelle intragranulaire, grain 2



#### **Plan**

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

# Ingrédients des schémas simplifiés de l'homogénéisation

• Grandeurs macroscopiques

$$\Sigma$$
, E, E<sup>p</sup>

• Grandeurs moyennes par phase

$$\sigma^{g}, \varepsilon^{pg}, \gamma^{sg}$$

Modèle de Taylor

$$oldsymbol{arepsilon}^{
ho g} = \mathbf{E}^{
ho} \Longrightarrow oldsymbol{\sigma}^{
ho} 
eq oldsymbol{\Sigma}$$

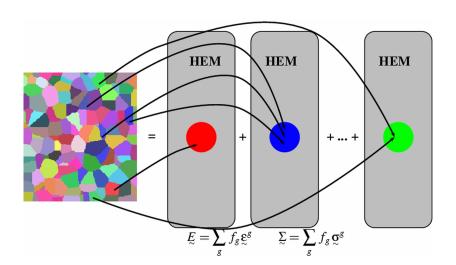
Modèle statique

$$\overset{\circ}{\alpha}^{g} = \overset{\Sigma}{\Sigma} \Longrightarrow \overset{\varepsilon}{\varepsilon}^{pg} \neq \overset{\mathsf{E}}{\Sigma}^{p}$$

Estimations autocohérentes

$$\sigma^{g} \neq \Sigma$$
,  $\varepsilon^{pg} \neq \mathbf{E}^{p}$ 

#### Schéma autocohérent



#### Règles de changement d'échelle

approximations sécantes, tangentes

$$\dot{\Sigma} = \overset{\mathbf{L}}{\overset{\mathrm{eff}}{\sim}} : \dot{\mathbf{E}}$$

• estimations de Lin, Kröner (proches de Taylor)

$$\dot{\sigma} = \dot{\Sigma} + \mu (\dot{E}^p - \dot{\varepsilon}^p)$$

• estimation de Berveiller et Zaoui

$$\sigma = \mathbf{\Sigma} + \mu \alpha (\mathbf{E}^p - \boldsymbol{\varepsilon}^p)$$

coefficient d'accommodation élastoplastique  $\alpha$  variant typiquement de 1 à  $0.01\,$ 

• limitations : élastoviscoplasticité, chargements radiaux et monotones, pas de morphologie réelle, interaction limitée entre grains, estimations des hétérogénéités...

#### Identification des règles de changement d'échelle

$$\mathbf{E} = \mathbf{E}^{e} + \mathbf{E}^{p}, \quad \mathbf{\Sigma} = \mathbf{C} : \mathbf{E}^{e}, \quad \mathbf{\Sigma} = \sum_{\sigma=1}^{N_{g}} f_{g} \, \underline{\sigma}^{g}, \quad \dot{\mathbf{E}}^{p} = \sum_{\sigma=1}^{N_{g}} f_{g} \, \dot{\underline{\varepsilon}}^{pg}$$

 $\underline{\sigma}^g \longrightarrow \dot{\underline{\varepsilon}}^{pg}$  selon les lois de comportement de la plasticité cristalline un exemple de règle de transition d'échelle paramétrée efficace :

$$\underline{\sigma}^{g} = \underline{\Sigma} + C\left(\underline{B} - \underline{\beta}^{g}\right), \quad \underline{B} = \sum_{g=1}^{N_{g}} f_{g} \underline{\beta}^{g}, \quad \dot{\underline{\beta}}^{g} = \dot{\underline{\varepsilon}}^{pg} - D\dot{\varepsilon}_{eq}^{pg} \underline{\beta}^{g}$$

vartiables d'accommodation intragranulaire  $\underset{\sim}{\mathcal{B}}$  avec une loi d'évolution non linéaire

paramètres de changement d'échelle :  $C, D \neq$  paramètres matériau procédure d'identification, approche inverse

Homogénéisation en non linéaire : l'exemple du polycristal

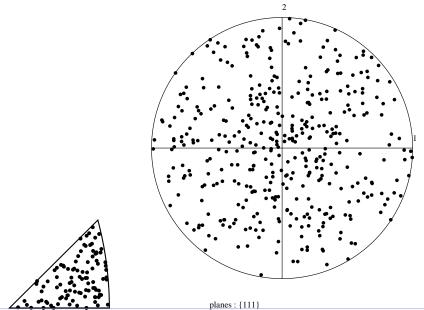
#### **Plan**

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

#### Notion de rotation de réseau cristallin

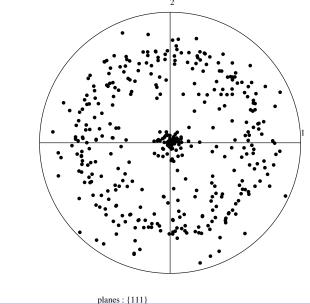


#### Evolution de texture (C.F.C.)



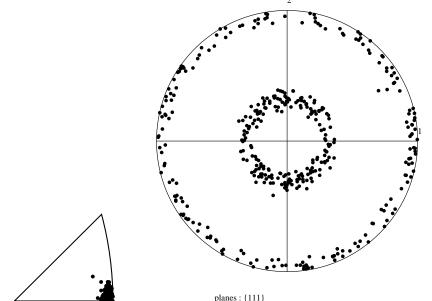
Homogénéisation en non linéaire : l'exemple du polycristal

### **Evolution de texture (C.F.C.)** (traction $F_{33} = 1.7$ )

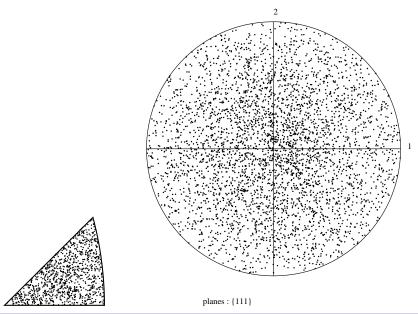


Homogénéisation en non linéaire : l'exemple du polycristal

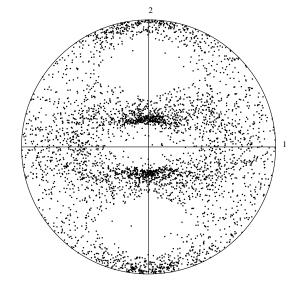
# Evolution de texture (C.F.C.) (compression $F_{33} = 0.3$ )



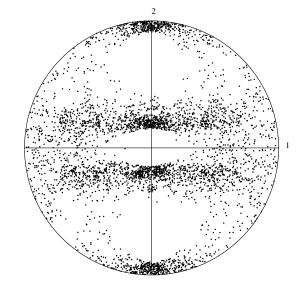
#### Evolution de texture (C.F.C.)



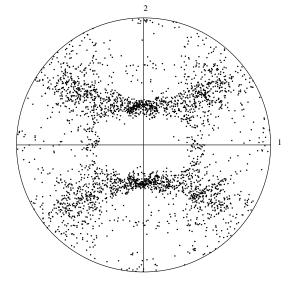
### Evolution de texture (C.F.C.) (laminage $F_{33} = 0.66$ )



#### Evolution de texture (C.F.C.) (laminage $F_{33} = 0.43$ )

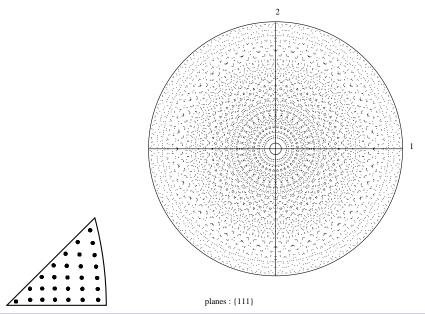


# Evolution de texture (C.F.C.) (laminage $F_{33} = 0.43$ )

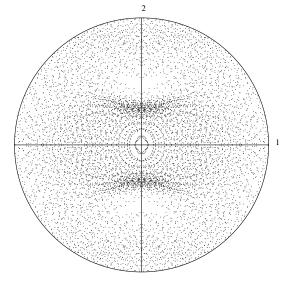


planes : {200}

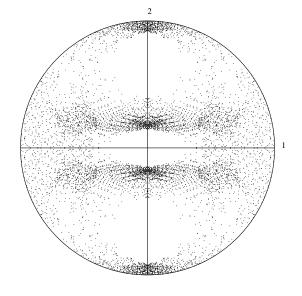
#### Evolution de texture (C.F.C.)



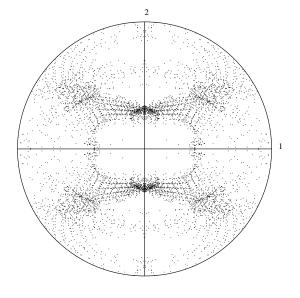
# Evolution de texture (C.F.C.) (laminage $F_{33} = 0.88$ )



### Evolution de texture (C.F.C.) (laminage $F_{33} = 0.43$ )

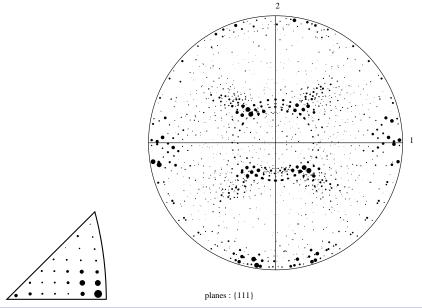


### Evolution de texture (C.F.C.) (laminage $F_{33} = 0.43$ )

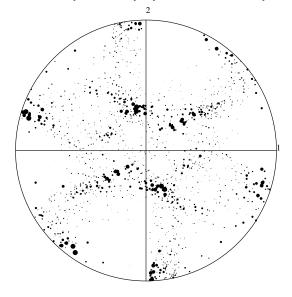


planes :  $\{200\}$ 

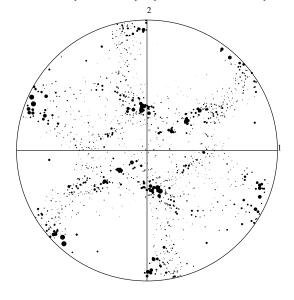
#### Evolution de texture (C.F.C.) (matériau anisotrope)



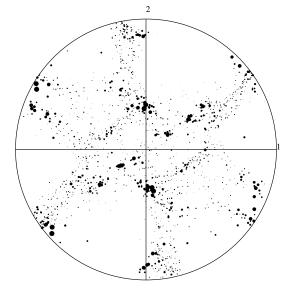
#### Evolution de texture (C.F.C.) (torsion $F_{12} = 0.55$ )



#### Evolution de texture (C.F.C.) (torsion $F_{12} = 0.77$ )



### Evolution de texture (C.F.C.) (torsion $F_{12} = 1.00$ )



#### **Plan**

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

#### Limites de l'homogénéisation classique

non séparabilité des échelles : structures à gros grains

$$I < L_{VFR} < L_{\omega}$$

la taille des hétérogénéités est de l'ordre de grandeur de la longueur d'onde de variation des champs appliqués

- effet de taille de constituants : taille de grain, taille de particule, de fibre
   la mécanique des milieux continus classique est insensible à la taille absolue des constituants...
- un remède : la mécanique des milieu continus généralisés

#### **Plan**

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- 2 Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

#### Champ de déplacement local polynomial

MHS de type Cosserat, cellule élémentaire 2D et carrée :

$$\underline{\mathbf{U}}(\underline{\mathbf{x}}) = <\underline{\mathbf{u}}>, \quad \underline{\mathbf{\Phi}}(\underline{\mathbf{x}}) = \frac{6}{l^2} < (\underline{\mathbf{y}}-\underline{\mathbf{x}}) \times \underline{\mathbf{u}}>$$

champ local polynomial de degré 3:

$$\begin{cases} u_1^* = B_{11}y_1 + B_{12}y_2 - C_{23}y_2^2 + 2C_{13}y_1y_2 + D_{12}(y_2^3 - 3y_1^2y_2) \\ u_2^* = B_{12}y_1 + B_{22}y_2 - C_{13}y_1^2 + 2C_{23}y_1y_2 - D_{12}(y_1^3 - 3y_1y_2^2) \end{cases}$$

Lien entre les coefficients du polynôme et les déformations macroscopiques

$$E_{ij} = B_{ij}/I, \quad \Phi - \Omega = \frac{D_{12}}{10I}$$

$$\underline{\mathbf{K}} = -\frac{2C_{13}}{\Omega}\underline{\mathbf{e}}_1 + \frac{2C_{23}}{\Omega}\underline{\mathbf{e}}_2$$

#### Conditions de Hill-Mandel généralisées

$$\langle \underline{\sigma} : \underline{\varepsilon}(\underline{\mathbf{u}}^*) \rangle = \underline{\Sigma} : \underline{\mathsf{E}} + \underline{\mathsf{M}} : \underline{\mathsf{K}}$$

$$\underline{\Sigma}^s = \langle \underline{\sigma} \rangle, \quad \overset{\times}{\Sigma} = \langle 60y_1y_2(\sigma_{22} - \sigma_{11}) - 30\sigma_{12}(y_1^2 - y_2^2) \rangle$$

$$M_{31} = \langle -\sigma_{11}y_2 \rangle, \quad M_{32} = \langle \sigma_{22}y_1 \rangle$$

Cas périodique:

$$\mathbf{u} = \mathbf{u}^* + \mathbf{v}$$

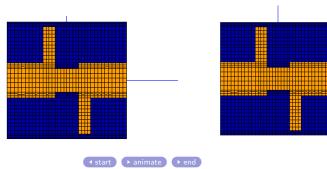
 $\underline{\mathbf{v}}$  ne doit pas contribuer à  $\underline{\mathbf{E}}$  et  $\underline{\mathbf{K}}$  ni à l'énergie:  $\int_{\partial V} \underline{\mathbf{t}} \cdot \underline{\mathbf{v}} \ dS = 0$  cas particulier:  $\underline{\mathbf{v}}^+ = \underline{\mathbf{v}}^-, \quad \underline{\mathbf{t}}^+ = -\underline{\mathbf{t}}^-$ 

# Propriétés élastiques effectives du MHS de Cosserat

$$\begin{bmatrix} \Sigma_{11} \\ \Sigma_{22} \\ \Sigma_{12} \\ \Sigma_{21} \\ M_{31} \\ M_{32} \end{bmatrix} = \begin{bmatrix} Y_{1111} & Y_{1122} & 0 & 0 & 0 & 0 & 0 \\ Y_{1122} & Y_{1111} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & Y_{1212} & Y_{1221} & 0 & 0 & 0 \\ 0 & 0 & Y_{1221} & Y_{2121} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{3131} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{3232} \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{22} \\ E_{12} \\ E_{21} \\ K_{31} \\ K_{32} \end{bmatrix}$$

#### Homogénéisation périodique classique

extension et cisaillement simples moyens imposés

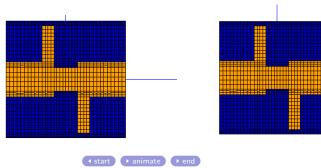


$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$

#### Homogénéisation périodique classique

extension et cisaillement simples moyens imposés

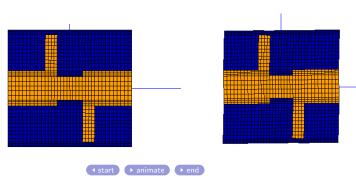


$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$

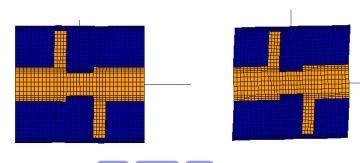
#### Homogénéisation périodique classique

extension et cisaillement simples moyens imposés



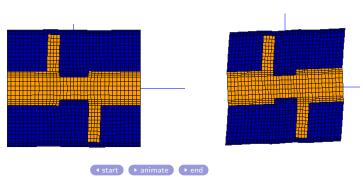
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



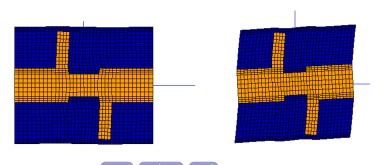
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



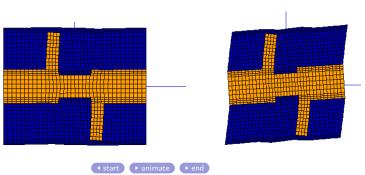
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



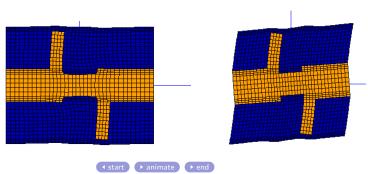
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



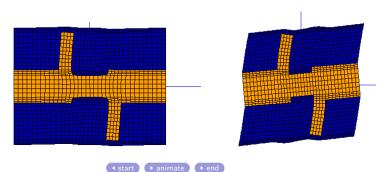
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



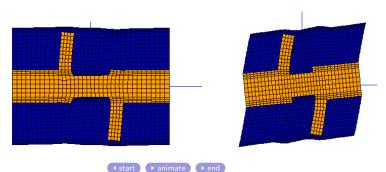
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



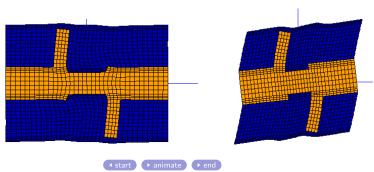
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



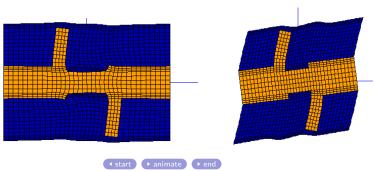
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



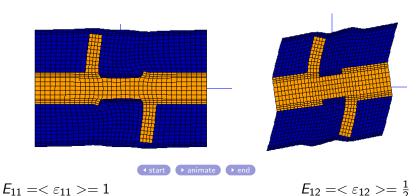
$$E_{11} = <\varepsilon_{11}> = 1$$

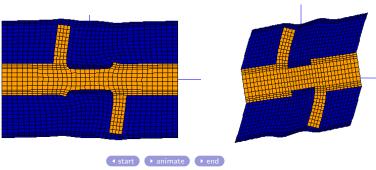
$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



$$E_{11} = <\varepsilon_{11}> = 1$$

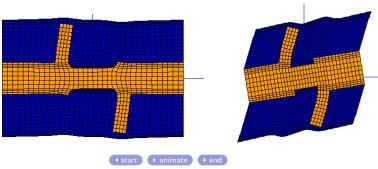
$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$





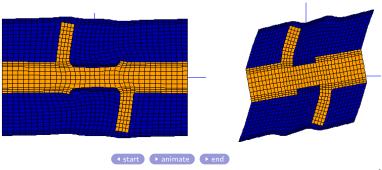
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



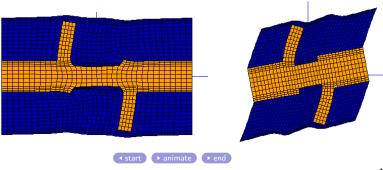
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



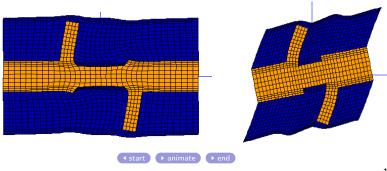
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



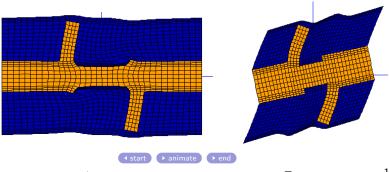
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



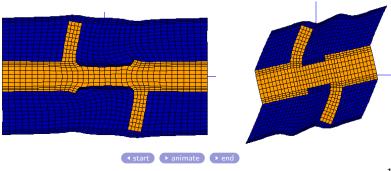
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



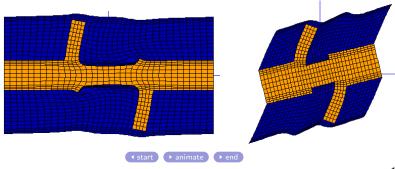
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



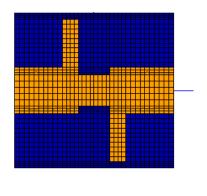
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



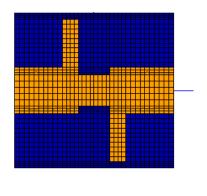
$$E_{11} = <\varepsilon_{11}> = 1$$

$$E_{12} = <\varepsilon_{12}> = \frac{1}{2}$$



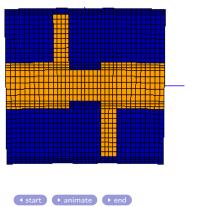
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



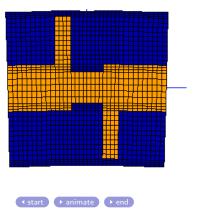
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



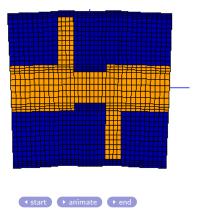
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



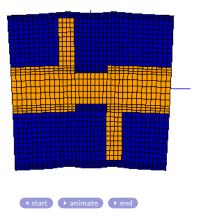
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



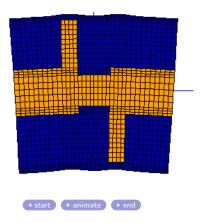
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



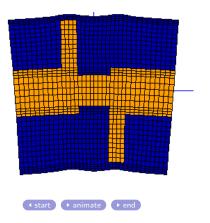
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



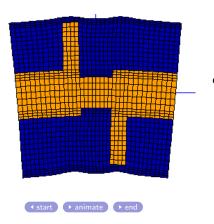
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



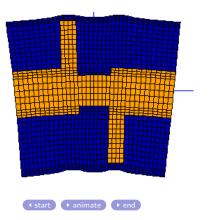
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



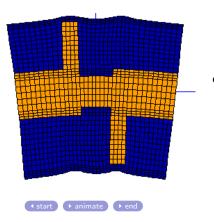
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



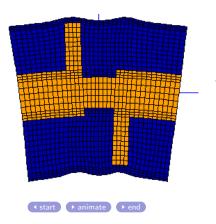
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



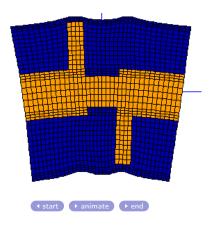
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



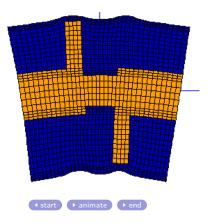
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



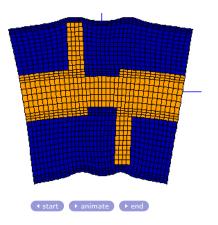
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



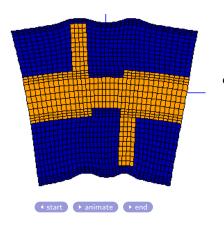
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



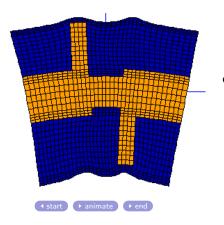
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



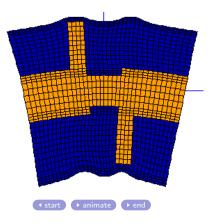
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



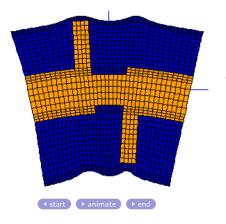
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



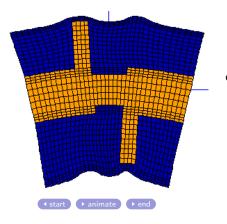
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



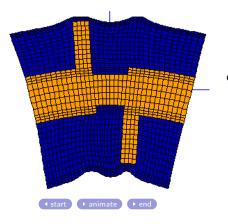
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$



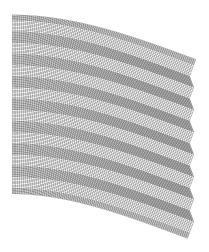
$$K_{31} = -1$$

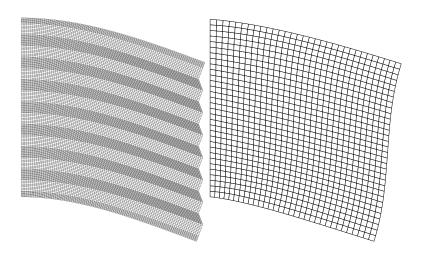
$$M_{31} = <-\sigma_{11}y_2>$$

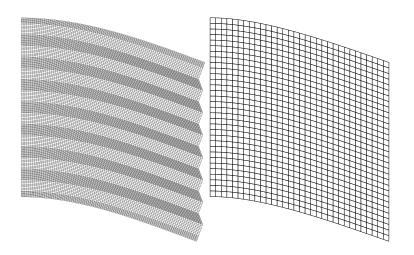


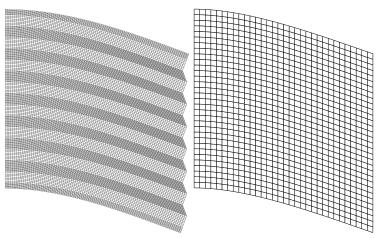
$$K_{31} = -1$$

$$M_{31} = <-\sigma_{11}y_2>$$







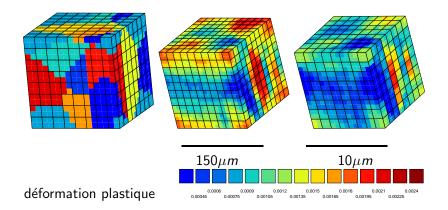


conditions aux limites supplémentaires (encastrement 2D/3D)!

#### **Plan**

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- 2 Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

### Effet de taille de grain dans les polycristaux



#### **Plan**

- Représentation des microstructures
  - Microstructures réelles
  - Modèles aléatoires
- 2 Mécanique des microstructures
  - Conditions aux limites sur la cellule élémentaire
  - Bornes
- 3 Volumes élémentaires représentatifs
  - Outils numériques du calcul de microstructures
  - Propriétés apparentes, propriétés effectives
  - VER pour des biphasés élastiques et pour les polycristaux
- 4 Homogénéisation en non linéaire : l'exemple du polycristal
  - Hétérogénéités dans un polycristal
  - Modèles simplifiés de l'homogénéisation
  - Cas des transformations finies : évolution de texture
- 5 Les frontières de l'homogénéisation
  - Les structures "à gros grains"
  - Effets de taille absolue de microstructures
- 6 Conclusions

#### **Conclusions**

- taille de VER : 1 gros calcul = N plus petits + CL périodiques
- modèles simplifiés de l'homogénéisation pour le dimensionnement des composites (linéaires, non linéaires)
- optimisation de la morphologie des phases pour une propriété visée, déjà en cours pour les stratifiés, redoutable en 3D imagerie 3D + morphologie mathématique
- effets d'échelles dans les matériaux et les structures (joint de culasse, chambres de combustion multiperforées...)
- endommagement, rupture durée de vie des matériaux hétérogènes

Conclusions 115/115