Gappy POD and GNAT

David Amsallem

Stanford University

February 05, 2014

David Amsallem Gappy POD and GNAT



Outline

e Nonlinear partial differential equations

¢ An issue with the model reduction of nonlinear equations

e The gappy proper orthogonal decomposition

The discrete empirical interpolation method (DEIM)

e The Gauss-Newton with approximated tensors method (GNAT)
Two applications
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Nonlinear PDE

e Parametrized partial differential equation (PDE)
LOV,x,t; 1) =0
e Associated boundary conditions
B(W, xgc,t; ) =0
e Initial condition

Wo(x) = Wic(x, )

W = W(x,t) € R?: state variable
x € Q C RY, d < 3: space variable
t > 0: time variable

p € D C RP: parameter vector
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Discretization of nonlinear PDE

e The PDE is then discretized in space by one of the following methods
o Finite Differences approximation
e Finite Element method
e Finite Volumes method
e Discontinuous Galerkin method
e Spectral method....

e This leads to a system of Ny, = ¢ x Ngpace Ordinary differential equations
(ODEs)

dw

2 f(w, t:
o (w,t; )

in terms of the discretized state variable
w=w(t;u) € RN

with initial condition w(0; ) = w(p)
e This is the high-dimensional model (HDM)
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Model reduction of nonlinear equations

High-dimensional model (HDM)

dw

() =£(w(0). 1)
e Reduced-order modeling assumption using a reduced basis V

w(t) ~ Vq(t)

e q(t): reduced (generalized) coordinates
e Inserting in the HDM equation
d
Vo) ~ E(Va(t). 1)
e N, equations in terms of k£ unknowns q
e Galerkin projection
1) = vTr(va@) 1)
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Issue with the model reduction of nonlinear equations

e Galerkin projection
dq
—(t
7 ()
e k equations in terms of £ unknowns
To evaluate £, (Vq(t),t):

@ Compute w(t) = Vq(t)

© Evaluate f(Vq(t),t)

© Left-multiply by VT: VIf(Vq(t),t)
The computational cost associated with these three steps scales linearly
with the dimension N,, of the HDM

e Hence no significant speedup can be expected when solving the
projection-based ROM

= VTE(Vq(t), 1)
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The Gappy POD

e First applied to face recognition (Emerson and Sirovich, "Karhunen-Loeve
Procedure for Gappy Data” 1996)
e Procedure

@ Build a database of m faces (snapshots)

© Construct a POD basis V for the database

© For anew face f, record a few pixels fi,-- -, fn

© Using the POD basis V, approximately reconstruct the new face f
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The Gappy POD

e First applied to face recognition (Emerson and Sirovich, "Karhunen-Loeve
Procedure for Gappy Data” 1996)
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The Gappy POD

e Other applications

o Flow sensing and estimation (Willcox, 2004)
e Flow reconstruction
e Nonlinear model reduction
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Nonlinear function approximation by gappy POD

e Approximation of the nonlinear function f in

dq _ T

e The evaluation of all the entries in the vector f(-,¢) is expensive (scales
with Ny,)
e Only a small subset of these entries will be evaluated (gappy approach)

e The other entries will be reconstructed either by interpolation or a
least-squares strategy using a pre-computed specific reduced-order
basis V¢

e The solution space is still reduced by any preferred model reduction
method (by POD for instance)
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Nonlinear function approximation by gappy POD

A complete model reduction method should then provide algorithms for
o Selecting the evaluation indices Z = {41, ,in, }
e Selecting a reduced-order bases V¢ for the nonlinear function

* Reconstructing the complete approximated nonlinear function vector
f('v t)
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Construction of a POD basis for f

e Construction of a POD basis V¢ of dimension k¢
@ Collection of snapshots for the nonlinear function from a transient simulation

F = [f(wW(t1),t1), -, E(W(tmg), tmg)] € RVWX™E
@ Singular value decomposition
F = U3 Z{
© Basis truncation (kr < me)

Ve =[ug, -, Uf k)
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Reconstruction of an approximated nonlinear function

Assume k; indices have been chosen
1= {7:17"' 77’k7}

The choice of indices will be specified later
Consider the Ny, -by-k; matrix

P = |:ei17"' ’eiki:l

At each time ¢, for a given value of the state w(t) = Vq(t), only the
entries in the function f corresponding to those indices will be evaluated
fir (w(t), 1)

PTf(w(t),t) = :
fiki (w(t),t)
This is cheap if k; < Ny

Usually only a subset of the entries in w(t) will be required to construct
that vector (case of sparse Jacobian)
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Discrete Empirical Interpolation Method

e Case where k; = kg: interpolation

Idea: fzi (w,t) = fi,(w,t), Yw € R M, Vj=1,-- ki
This means that .
P f(w(t),t) = P f(w(t),t)

Remember that f(-, ¢) belongs to the span of the vectors in V¢, that is

£(Vq(t),t) = Vit (q(t), 1)

Then
PVif, (q(t),t) = PTE(Vq(t), 1)

Assuming P”V; is nonsingular
fr(a(t),t) = (PTVe)'PTE(Va(t), 1)
In terms of f(-, ¢):
£(,t) = Ve(P" V) 'PTE( 1) = Ty, pf(-, 1)
This results in an oblique projection of the full nonlinear vector
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Oblique projection of the full nonlinear vector

£(-,t) = Ve(PTVe) ' PTE(, t) = Iy, pf(-, 1)

o Iy w = V(WTV)~'WT': oblique projector onto V orthogonally to W
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Reduced-order dynamical system

e Case where k; > kg: least-squares reconstruction

o ldea: fi;(w,t) ~ fi,(w,t), Yw € R", Vj=1,..- N, in the least squares

sense
e |dea: minimize
f-(q(t)) = argmin |[P* Vey, — PTf(Vq(t),0)]2
Yr
¢ Note that M = PTV; ¢ R*:**t ig a skinny matrix
e One can compute its singular value decomposition

M =Uxz"
e The left inverse of M is then defined as
M =zsTu”
where 3f :diag(g—ll,~~~ ,%70,~-~ ,0) if X =diag(o1,---,04,0,---,0) with
op>-0,>0
e Then

f(q(t)) = Ve(PT V)" PTE(Vq(t), t)
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Greedy function sampling

 This selection takes place after the vectors [v;1,--- , vy k] have already
been computed by POD

e Greedy algorithm (Chaturantabut et al. 2010):

[s,i1] = max{|vy[}

: Ve=[vy], P =e;]

cforl=2: ks do

Solve PTV¢c =PTvy, for ¢

r=vy; — Vgc

[s,4] = max{|r|}

V= [vavf,lL P= [Pa eiz]

: end for

N>R b2
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Model reduction at the fully discrete level
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o Fully discrete level (implicit, backward Euler scheme)

(n+1) _ ~(n)
a Q- (n+1) (n+1))
e Fully discrete residual
(n+1) _ ~(n)
rg)H)(q( ) = VW —f (Vq( SR +1))

Model reduction by least-squares (Petrov-Galerkin)

("+1) = argm1n||r et )( )2
y

e rp(q”t1) is nonlinear = use the gappy POD idea
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Gappy POD at the fully discrete level

e Gappy POD procedure for the fully discrete residual rp
e Algorithm
@ Build a reduced basis V. € RM~**r for rp

© Construct a sample mesh Z (indices i1, - - - , ix,) by a greedy procedure
© Consider the gappy approximation

+
rgl+1)(q(n+1)) ~ V,r, (q("+1)) ~V, (PTVr) PTr(n+1)(Vq("+l>)
Q Solve
q"*Y = argmin | Ve, (v) |,
y

= argmin ||rg, (y
Y H e ( )HQ (1)

= argmin
y

(PTVF)T Pt (vy)

2
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Gauss-Newton for nonlinear least squares problem

Nonlinear least squares problem miny, ||r(y)]2
Equivalent function to be minimized

f(y) =0.5[e(y)[5 = r(y)

e Gradient

where J(y) = 2X(y)
« lterative solution using Newton’s method y**1) = y(*) - Ay (k+1) with
V2 H(y*) Ayt = v (y™)

o Whatis V2f(y)?
V() = 30)TI0) + 3 G )

e Gauss-Newton method
Vi f(y) = I(y)"I(y)
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Gauss-Newton for nonlinear least squares problem

o Gauss-Newton method y*+1) = y(*) 4+ Ay(+1) with
Iy"NTI(y") Ay *HD = —3(y ") Tr(y*))

e This is the normal equation for

Ay Y = argmin ‘J(y(k))z + r(y(k))H

2

QR decomposition of the Jacobian
J(y(k’)) — Q(k)R(k)

« Equivalent solution using the QR decomposition (assume R*) is full
rank)

Ay(k+1) _ _J(y(k))Tr(y(k)) - _ (R(k))fl (Q(k))T r(y(k))
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Gauss-Newton with Approximated Tensors

GNAT = Gauss-Newton + Gappy POD
Minimization problem

min
y

(v e |
2

Jacobian

In(y) = (PTV,) PTIC D (vy)
Define a small dimensional operator (constructed offline)

A= PV,

Least-squares problem at iteration &

Ay™® = argmin ‘APTJ("H)(Vy(k))VZ + APTI'(”+1)(Vy(k))H

2

GNAT solution using QR decomposition Q¥ R*) = APTJ(»+1)(vy())v

Ay®) — _ (Rw))’l (Qw))T APT D) (yy(h)
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Gauss-Newton with Approximated Tensors

e Further developments

e Concept of reduced mesh

e Concept of output mesh

o Error bounds

o GNAT using Local reduced bases

e More details in Carlberg et al., JCP 2013
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Application 1: compressible Navier-Stokes equations

Flow past the Ahmed body (automotive industry benchmark)
3D compressible Navier-Stokes equations

Ny =1.73 x 107

Re = 4.48 x 10, M, = 0.175 (216km/h
More details in Carlberg et al., JCP 201

w =
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Application 1: compressible Navier-Stokes equations

e Model reduction (POD+GNAT): k = 283, k¢ = 1,514, k; = 2,268

028 High-dimensional model’
= 0.27f — Reduced-order model
30.261
b=
S0.25¢
20.04}
a
0.23
022 002 004 006 008 0.1
Time (s)
\ Method | CPU Time | Number of CPUs | Relative Error |
Full-Order Model 13.28 h 512 -
ROM (GNAT) 3.88h 7 0.68%
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Application 2: design-optimization of a nozzle

e Full model: Ny, = 2,048, p = 5 shape parameters
e Model reduction (POD+DEIM): k = 8, k¢ = 20, k; = 20

Epl H iPs ip4 §p5

;%%15 | M (w(p)) — MtargetH2

st. f(w(p)),pn)=0
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Application 2: design-optimization of a nozzle

] Method | Offline CPU Time | Online CPU Time [ Total CPU Time |
Full-Order Model - 78.8s 78.8s
ROM (GNAT) 5.08 s 4.87s 9.96 s
075 2 —IT.ir«Tif(,nm
0.7 14l Optimization (Hermite RBF)
0.65
1
= 0.6 _
Zoss £ 097
~ os sl
0.45
0.7r
0.4 Target
0.35 —— Initial Guess 0.6
Optimization (Hermite RBF)
0.3 . .
0.5 l 15 0.5 ; 15
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