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Parameterized unsteady PDE

e Database approach

Interpolation of reduced-order bases
Interpolation of reduced-order matrices
o Applications
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Parametrized unsteady PDE

e Linear (linearized) PDE

dw

—r () = A(u)w(t) + B(p)ut)

der models



Example: aeroelasticity

e Example: aeroelastic analysis of full aircraft configuration

#* F-16 Block 40

CFD model FEM structural model

e Hundreds of flight conditions p = (M, «) to clear for flutter
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Example: aeroelasticity
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e Non-robustness with respect to the operating condition
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Example: aeroelasticity

e Can we afford rebuilding the POD basis?

i steady state
computation

& POD basis
Fluid ROM
construction

i ROM processing

O 10 20 30 40 50 60
( CPU time in min)

o Not suitable for real-time analysis
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Database approach
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\f O @0 interpolation

Mach number

e What should we interpolate?
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Database approach

e What should we interpolate?

Input W Output

(l-lu LERY H‘P")
‘ - Response Surface
- Model Interpolation Estimation (RSE)

(Adaptation)
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Model interpolation

Reduced set of equations (after Galerkin projection)

44

o (1) = V() A V()a(t) + V(i) Bu(?)

Full state reconstruction

Model: (V()" A(p)V(p), V(r)"B,V(p))
Approach #1:
@ interpolate V()

©Q evaluate (A(p), B(p))
Q form (V(p)" A(W)V(p), V()" B)
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Direct interpolation

 Natural idea: interpolate V(u) € RVw** entry-by-entry
e Input:
o target p
o precomputed reduced bases {V (u:)};~,
o multi-variate interpolation operator a(u) = Z(p; {a(1), i }i2q)
e Algorithm
1: fori=1: N, do

2. forj=1:kdo

3: Compute vi; () = Z(p; {vi; (), pa}iZy)
4. end for

5. end for

6

: Form V(p) = [vi;(p)]
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Direct interpolation doesn’t work

e Example
e Nw=3,k=2,p=1
e for n1 = O, V(O) = [Vl, Vg}
o for 2 = 1, V(l) = [*Vl,Vz}
e target parameter u = 0.5
e use linear interpolation

e Interpolation result:

V(0.5) = 0.5(V(0) + V(1)) = [0.5(v1 — v1),0.5(v2 + v2)] = [0, V2]

-V, ) N

e What went wrong?
e We haven't interpolated the correct object
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Subspace interpolation

¢ Projection-based model reduction

4a,4)

7 (1) = V() A V()a(t) + V(p) " Bu()

Equivalent full state equation (multiply by V(1))

dw

2 8 = v, v AR w(t) + v ), v, Bu(t)

¢ An orthogonal projection is independent of the choice of reduced basis
associated to the projection subspace

e Important quantity to interpolate: subspace
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The Grassmann manifold

A subspace S is typically represented by a reduced basis
The choice of reduced basis is not unique

S =range(V) =range(VQ), vQ € GL(k)

Matrix manifolds of interest
e G(k, Nyw) (Grassmann manifold): set of subspaces of dimension &k in RV
e ST (k, Nw) (orthogonal Stiefel manifold): set of orthogonal reduced bases of
dimension k in RNVw
Case of model reduction
e V(u) € ST(k, Nw)
e range(V(u)) € G(k, Nw)
Interpolation on the Grasmann manifold (quotient manifold) using
quantities belonging to the Stiefel manifold
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The Grassmann manifold

e Matrix manifolds of interest
¢ G(k, Nyw) (Grassmann manifold): set of subspaces of dimension &k in R
e ST (k, Nw) (orthogonal Stiefel manifold): set of orthogonal reduced bases of
dimension k in RMw

range”(range(V) )

v
ST(kN,) W
l range( )
G(kN,) . e . e
S=r.ange )
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Interpolation on matrix manifolds

o First example: the circle
P(s)

P(s,)

o Standard interpolation fails
¢ |dea: interpolate on a linear space = a tangent space to the manifold
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Interpolation on matrix manifolds

e Input:
e precomputed matrices {A (u:)};",
o multi-variate interpolation operator a(p) = Z(p; {a(1), i }i21)
e map ma from the manifold M to the tangent space of M at ma
e inverse map mj' from the tangent space to M at ma to the manifold M
fori=1:mdo
Compute I'(p;) = ma (A(r))
end for
fori=1: N, do
forj=1:kdo
Compute T (pr) = Z(p; {Ti5 (1), pra }i21)
end for
end for
Form T'(u) = [I;;(1)] and compute A () = mx"(T(1s))

e Requirement: the interpolation operator Z preserves the tangent space.

m

forinstance: a(p) = Z(w; {a(pmr), pi}y) Zel

© XN AN
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Interpolation on matrix manifolds

 How do we find ma and its inverse m'
e Idea: use concepts from differential geometry
e Geodesics

e generalize straight lines on manifolds

¢ uniquely defined given a point « of the manifold and a tangent vector ¢ at this

point
v(t;x,€) : [0,1] = M
7(0; ‘7:75) =, ’7(07 xv&) =¢

:';AV

e Exponential map
Exp, : T2 M — M £ — y(1;2,€)
e Logarithm map (defined in a neighborhood U, of z)
Log, : U, C M — T, M y+— Exp} ' (y)
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Interpolation on matrix manifolds

o Application to interpolation of points on a circle
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Interpolation on matrix manifolds

Case of the Grassmann manifold
e Logarithmic map
@ Compute the thin SVD

(I-VoVHVi(VEV,) ' =uxz”

@ Compute
I'=Utan '(X)Z"
Q Logs, (S1) & T
e Exponential map of £ € 75,G < T
@ Compute the thin SVD
r=uxz"

@ Compute
V =VgZcosX +UsinX®

Q Exps, (€) = range(V)

¢ Note: the trigonometric operators only apply to the diagonal elements of
the matrices
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Interpolation on matrix manifolds

e Case of the Grassmann manifold
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Application to aeroelasticity

e Aeroelastic behavior of the F-16

70,000 7 .
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Application to aeroelasticity

e Aeroelastic behavior a commercial aircraft
Airbus AMP model

Unsteady pressure distribution

Upp7ce Lower surface
Interpolated
ROB

Grassmann]
Pressure {xlOf' Pa]

Frequency (Hz)

Mode 1 h

1 5 26
Pressure (x10° Pa) ROM (46) Vetrano et al.,
M. @ d * ® ASD Journal 2011
078 079 0.8 0.81 0.82 ourn
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Application to aeroelasticity

e Aeroelastic behavior of the F-16

) 20 40 60 ( CPU time in min)

 steady state
computation
. i

Fluid ROM
construction

2 hl i ROM processing

e Dominant cost: computation of A(u) and B(u) for a new value of p
 Approach #2: interpolate (V(u)TA(u)V (), V() TB (1))
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Example

e Simple example: mass-spring system with two degrees of freedom

(] ‘Ll,: kl *01
Ikl ];; kz




Interpolation on a matrix manifold

e A(p) belongs to the manifold of symmetric positive definite matrices
(diagonal)
e Interpolate on the manifold using (A(0), A(2.9))

3.5

 m Pr
xxxx Ex
3|laaaa E ined by Step B Only

Eigenvalues Obtained by Steps A and B
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Example: Mode veering and mode crossing

e The issue is the mode veering: the coordinates of the reduced matrices
are not consistent

35

3

25

ERAReE
=

0 0.5 1 15 2 25 3

e There would be an issue also with mode crossing (the eigenfrequencies
are ordered increasingly in A)
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Consistent interpolation on matrix manifolds

e Solution: pre-process the reduced matrices (Step A)

Consistency enforced by the solution of an orthogonal Procrustes
problem

min ||ViQi*Vi0HF7 Vi = 1, ,m
Qi Q7 Q=1

Analytical solution using the SVD
@ Compute P ;, = VIV,
@ Compute the SVD Py iy = Ui 3244, Z7 4,
o Let QZ = Ui,iOZT

1,10
e Can be processed online or offline
e Step B: interpolation on a matrix manifold
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Application 1

3.5
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Application 2

e More challenging example: wing with tank and sloshing effect
e The hydro-elastic effects affect the eigen-frequencies and eigen-modes

of the structure
o The parameter ;. defines the level of fuel in the tank 0 < 1 < 100%
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Application
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Application
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Link with Modal Assurance Criterion

The MAC between two eigenmodes ¢ and ) is
"

(@7 o) (W)

When ¢ and ) are normalized MAC(¢, ) = |7 4|?

P, ;, is the matrix of square roots of the MACs between the modes
contained in V(u;) and those contained in V (g, ).
e This is the Modal Assurance Criterion Square Root (MACSR)
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Application 3

e Aeroelastic study of the wing-tank system
e 2 parameters: fill level and free-stream Mach number M,
e Database approach

100 @ ® R) O ® i o
75
. @ Database 1
g
:;j 50 @ ® ® O & O O @ atabase2
E @ Database 3
25
oe e) o o o o o
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Application 3

HFM Database
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Application 3

o Effect of Step A

ROM Interpolation - Choice 1 ROM Interpolation - Choice 1

Fill Level % 06 . Mach Number Fill Level % 0 08 ' Mach Number
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Application 3

e Bifurcation detection

HFM

30
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1.07

Fill Level % 0105 " Mach Number

Response Surface ROM Interpolation - Choice 1

Fill Tevel % 0 105 Alanh N - Fill Tevel % 0 1.05 -
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Mobile computing using a database of ROMs
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