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e The steady case

e Dimensionality reduction

e Proper orthogonal decomposition
¢ Projection-based model reduction
e Snapshot selection

e The unsteady case
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Parameterized PDE

e Parametrized partial differential equation (PDE)
LOV,x,t; 1) =0
e Associated boundary conditions
B(W, xgc,t; ) =0
e Initial condition

Wo(x) = Wic(x, )

W = W(x,t) € R?: state variable
x € Q C RY, d < 3: space variable
t > 0: time variable

p € D C RP: parameter vector
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Model parameterized PDE

e Advection-diffusion-reaction equation: W = W(x, t; u) solution of

%V+u-VW—KAW=fR(W,t7uH) forx € @

with appropriate boundary and initial conditions
W(x,t; pu) = Wp(x,t; up) forx € I'p

VW(x,t;pu) -n(x) =0forx € I'y
W(x,0; ) = Wo(x; pic) for x €

e Parameters of interest

H = [ula e auda Ha“R?“D)”lC]
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Semi-discretized problem

e The PDE is then discretized in space by one of the following methods
o Finite Differences approximation
e Finite Element method

Finite Volumes method

Discontinuous Galerkin method

Spectral method....

e This leads to a system of Ny, = ¢ x Nspace Ordinary differential equations
(ODEs)

dw

= f(w, t:
o (w,t; )

in terms of the discretized state variable
w=w(t;u) € RN

with initial condition w(0; ) = w(p)
e This is the high-dimensional model (HDM)
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Parameterized solutions

e Example: two dimensional advection-diffusion equation
ow

WJFU-VW—F&AW:Oforer

with boundary and initial conditions
W(x,t; ) = Wp(x,t; up) forx € T'p
VW(x,t;pu) -n(x) =0forx € T'y
W(x,0; u) = Wy(x) for x € Q2
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Parameterized solutions

e Example: two dimensional advection-diffusion equation

%;VwLU-VWf/{AW:OforXGQ

with boundary and initial conditions
W(x,t; ) = Wp(x,t; up) forx € T'p

VW(x,t;pu) -n(x) =0forx e I'y
W(x,0; u) = Wy(x) forx € Q

e 4 parameters of interest
K= [u17u27 K, IJ’D] € R4

e w € RV with N, = 2,701
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Parameterized solutions
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Steady parameterized PDE

e Steady parameterized HDM
f(w;p)=0

e Linear case
A(p)w =b(p)
o Example: steady advection-diffusion equation
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Dimensionality reduction

Consider the manifold of solutions

M = {w(p)st. pe D} c R

Often dim(M) < Ny,

Therefore, M could be described in terms of a much smaller set of
variables, rather than {e1,--- ,en,, }

e Hence dimensionality reduction
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Dimensionality reduction

e First idea: use solutions of the equation to describe M

o Consider pre-computed solution {w(g1),- -, w(pm)} where
{/1'17' o )MTYL} cD
e Let u € D. Then approximate w(u) as

w(p) ~ on(p)w(pr) + - + am () w(pm)

where {a1(p), -, am(p)} are coefficients to be determined
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Reduced-order basis

e There may be redundancies in the solutions {w (1), - , W(ttm)}-
o Better approach: remove the redundancies by considering an equivalent
independent set {vy,--- , v} with & < m such that

span {vi,- - ,vi} = span{w(p), -, witt)}

o V=[vy, - ,vi] € RVw*F is a reduced-order basis with k < N,
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Basis construction

e Lagrange basis

span {Vla T ’Vk} = span {W([lq), T ’W(H‘m)}

e Hermite basis

0 0
span (vi, - vi)} = span {wiiun) 2% ).+ 5 ) wia). - |
P
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Data compression

e |t is possible to remove more information from the snapshots
{wlp), - wlpm)}

e Consider the snapshot matrix W = [w(ge1), -+, W(ttm )]

e Can we quantify the main information contained in W and discard the
rest (noise)?

e This amount to data compression

e Here orthogonal projection will be used to compress the data
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Orthogonal projection

e Let V € RV~ x* be an orthogonal matrix (VZ'V = I) which columns
span S, a subspace of dimension &

e Let x € R™w. The orthogonal projection of x onto the subspace S is

vvTx

o Projection matrix
IMyv =VvV'V)'vl =vv7’

e special case 1: if x belongs to S
IIvvx = vvTix =x
e special case 2: if x is orthogonal to S

Iy vx=VVix =0
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X

S1 = span(V)
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Proper Orthogonal Decomposition

e POD seeks the subspace S of a given dimension k& minimizing the
projection error of the snapshots {w (1), -+, w(m)}

e Mathematical formulation § = range(V') where
V= arg‘r(ninz [w(ps) — My yw(p)|
=1

st. YI'Y =1,
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POD by eigenvalue decomposition

e Minimization problem

V = argmin Y |[w(p) — Ty yw(p)|l;
YTY=I; j—;
e Equivalent maximization problem
i 2
V = argmax YY ()
argmax )| I

— argmax |[Y"W||%,

YTY=I,
= argmax trace (YTWWTY)
YTY=I,
o Solution: V is the matrix of eigenvectors {¢;, - - - , ¢} associated with

the k largest eigenvalues of K = WW7T
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The method of snapshots

o POD: V is the matrix of eigenvectors {¢1, - - - , ¢} associated with the k
largest eigenvalues of K = WWT

e K € RVw*Nw g g large, dense matrix
Its rank is at most m < Ny,

e In 1987, Sirovich developed the method of snapshots by noticing that
R = WTW € R™*™ has the same non-zero eigenvalues {\;}7_; as K

r =rank(R) < m < N,, and

R’lpi:Awh 7;:1,"',7"

o Exercise: relationship between {¢1,--- , ¢, } and {1, , ¥, }?
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The method of snapshots

o Step 1: compute the eigenpairs {\;, ¥;}7_, associated with R
Rd’z :)‘d]u 1= 13 T

o Step 2: compute ¢; = =Wap;, i =1, 7

e In matrix form & = WWA 3
e POD reduced basis of dimension & < r:

V:[¢la"' ad)k]
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POD by singular value decomposition

e The POD basis V can also be computed by singular value decomposition

(SVD)
e SVD of W:
wW=1U,x,z"
e U, =[uy,---,u,] € R"*": left singular vectors (UZU, =1,)
e ¥, =diag(o1, - ,0,) € R™*": singular values
o Z, = [z1,--- ,2z,] € R™*": right singular vectors (ZI Z, = 1,))

e POD reduced basis of dimension k£ < r

V:[ula"' auk]

David Amsallem Parameterized Partial Differential Equations and the Proper Orthogonal D



POD basis size selection

e The POD basis V can also be computed by singular value decomposition
(SVD)

e SVD of W:
W =1U,x,2z"

e POD reduced basis of dimension k£ < r
Vi = [ug, -, uy]
¢ Relative projection error

W -V VIW e (Y oF

k —
e(k) Wi ST o7

o Typically k is chosen so that e(k) < 0.1
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Projection-based model reduction

High-dimensional model (HDM)
A(p)w =b(p)
e Reduced-order modeling assumption using a reduced basis V

w(p) ~ Va(p)

e q(u): reduced (generalized) coordinates
e Inserting in the HDM equation

AVq=~Db

e N,, equations in terms of k£ unknowns q

e Associated residual
r(q) = A(n)Vq —b(u)
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Galerkin projection

¢ Residual equation
r(q) = A(n)Vq —b(p)
e N, equations with & unknowns
o Galerkin projection enforces the orthogonality of r(q) to range(V):

Vir(q) =0

Reduced equations:
V'A(u)Va=V'b(p)

e fk equations in terms of £ unknowns

Ay(p)q = bi(p)
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Application to the steady advection diffusion equation

e m = 5 snapshots {u;}?_;
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Application to the steady advection diffusion equation

e m = 5 snapshots {u;}?_, = POD basis of dimension k& =5

POD vector #1 POD vector #2 POD vector #3
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Application to the steady advection diffusion equation

e Projection error

Q
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Application to the steady advection diffusion equation

* ps = (Us, Uz, 5, pp) = (1,10,3 x 107*,850)

ROM - k =1
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Exercise: Petrov-Galerkin projection

Other approach to get a unique solution to

A(p)Vq =~ b(p)

Least-squares approach
q = argmin [|A(n)Vy — b(p)||2
y
o Exercise: give the equivalent set of equations satisfied by y

e Solution:
VTA(W)"A(p)Va =V A(u)"b(p)
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Offline/online decomposition for parametric systems

o Offline phase: computation of V from snapshots {w(p1),- -, w(ttm)}
« Online phase: construction and solution of VI'A (u)Vq = VTb(u)
e Issue: constructing A, (pn) = VI A(p)V and by () = VIb(u) is

expensive
e Exception in the case of affine parameter dependence: ¢4 < N, and
H K NW
qgA ) ) b ) )
Ap) = £ WAD, blu) =37 £ (mb?
i=1 i=1
e Then

Zf() )WTADV, b(u Zf() )VTb)

e The following small d|men3|onal matrices can be computed offline
A =VTAOV e R =1, gy
b,(j) =V eRF i=1,---,q
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Snapshot selection

e For a given number of snapshots m, what are the best snapshot
parameter locations
M1, s Hm e D?

e The snapshots {w(u1),- -+, w(u,,)} should be optimally placed so that
they capture the physics over the parameter space D

e Difficult problem = use a heuristic approach (Greedy algorithm)
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Greedy approach

o Start by randomly selecting a parameter value p; and compute w( 1)

e Fori=1,---m, find the parameter u; which presents the highest error
between the ROM solution Vq(u) and the HDM solution w ()

e This however requires knowing the HDM solution (unknown)

e Instead, for i = 1,- - - m, find the parameter p; for which the residual
r(q(p)) = AVg(p) — b(p) is the highest

p; = argmin [[A(p)Va(p) — b(p)l2
pueD

where VA (u)Va(p) = Vib(p)

e The parameter domain p € D can be in practice replaced by a search
over a finite set
pe{p®, . p™Mycp
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Application to the steady advection diffusion equation

e Parameter domain (U;,Us) € [0, 10] x [0, 10]
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Application to the steady advection diffusion equation

initial snapshot iteration =1 iteration =2

08 08 ' 08
08 ' 08 '
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iteration =6 iteration =7 iteration =8
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Application to the steady advection diffusion equation

Maximum Residual
0.9+ ——Maximum Error

uantit
o
N

1 2 3 4 5 6 7 8
Iteration
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Application to the steady advection diffusion equation

Maximum Residual
0.9 ——Maximum Error

5 10 15 20
Iteration
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POD in time

e Consider an unsteady linear parametric problem

%V(t) = A(p)w(t) —b(p)u(?)

where u(t) is given for a time interval ¢ € [to, tn,]

e For a given parameter u, POD can also provide an optimal reduced basis
associated with the minimization problem

tN
. ¢ . T 2
JHin /1to [w(t, ) = VVIw(t, p)|, dt

¢ Solution by the method of snapshots: consider the solutions in time

w(to, i), - ,w(tn,, ). An approximation of the minimization problem is
Ny 9
i 8i |[w(ti, ) — VVTw(t;,
V;r\l}gh; [[witi, 1) witi,m,
where d, - -+, dy, are appropriate quadrature weights
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POD in time (continued)

e Equivalent maximization problem

S 25 [V w(ti )

e Solution by POD by the method of snapshots with the associated
snapshot matrix

W = [Voow(to, ), -+, /ON,W(tn,, 1t)]
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POD: Application to linearized aeroelasticity

e M, =0.99
e Ny = 2,188,394, m = 99 snapshots, & = 60 retained POD vectors
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HDM (2,188,394)
— ROM (69)

Lift (Ib)

-1000

-2000
0.00 0.10 020 030 0.40 0.50
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Global vs. local strategies

e Global strategy

¢ build a ROB V that captures the behavior of unsteady systems for all u € D
e POD based on snapshots

{W(t07l~l'1)> e 7W(tNt>IJ’1)7W(t07IJ'2)7 e 7W(tNt7l'l’m)}

e not optimal for a given w;
e Local strategy
e build a separate ROB V(1) for every value of u € D
o database approach: build offline a set of ROBs {V (u;)}i%; and use them
online to build V() for p € D
e each ROB V() is optimal at pu = p;
e requires an adaptation approach online (see Lecture 3)
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