Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition

David Amsallem

Stanford University

February 04, 2014

Outline

- Parameterized PDEs
- The steady case
- Dimensionality reduction
- Proper orthogonal decomposition
- Projection-based model reduction
- Snapshot selection
- The unsteady case

Parameterized PDE

Parametrized partial differential equation (PDE)

$$\mathcal{L}(\mathcal{W}, \mathbf{x}, t; \boldsymbol{\mu}) = 0$$

Associated boundary conditions

$$\mathcal{B}(\mathcal{W}, \mathbf{x}_{\mathsf{BC}}, t; \boldsymbol{\mu}) = 0$$

Initial condition

$$\mathcal{W}_0(\mathbf{x}) = \mathcal{W}_{\text{IC}}(\mathbf{x}, \boldsymbol{\mu})$$

- $W = W(\mathbf{x}, t) \in \mathbb{R}^q$: state variable
- $\mathbf{x} \in \Omega \subset \mathbb{R}^d$, $d \leq 3$: space variable
- t > 0: time variable
- $\mu \in \mathcal{D} \subset \mathbb{R}^p$: parameter vector

Model parameterized PDE

• Advection-diffusion-reaction equation: $W = W(\mathbf{x}, t; \boldsymbol{\mu})$ solution of

$$\frac{\partial \mathcal{W}}{\partial t} + \mathcal{U} \cdot \nabla \mathcal{W} - \kappa \Delta \mathcal{W} = f_{\mathsf{R}}(\mathcal{W}, t, \boldsymbol{\mu}_{\mathsf{R}}) \text{ for } \mathbf{x} \in \Omega$$

with appropriate boundary and initial conditions

$$\mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) = \mathcal{W}_D(\mathbf{x}, t; \boldsymbol{\mu}_{\mathsf{D}}) \text{ for } \mathbf{x} \in \Gamma_{\mathsf{D}}$$

$$\nabla \mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) \cdot \mathbf{n}(\mathbf{x}) = 0 \text{ for } \mathbf{x} \in \Gamma_{\mathsf{N}}$$

$$\mathcal{W}(\mathbf{x}, 0; \boldsymbol{\mu}) = \mathcal{W}_0(\mathbf{x}; \boldsymbol{\mu}_{\mathsf{IC}}) \text{ for } \mathbf{x} \in \Omega$$

· Parameters of interest

$$\boldsymbol{\mu} = [\mathcal{U}_1, \cdots, \mathcal{U}_d, \kappa, \boldsymbol{\mu}_\mathsf{R}, \boldsymbol{\mu}_\mathsf{D}, \boldsymbol{\mu}_\mathsf{IC}]$$

Semi-discretized problem

- The PDE is then discretized in space by one of the following methods
 - Finite Differences approximation
 - Finite Element method
 - · Finite Volumes method
 - Discontinuous Galerkin method
 - Spectral method....
- This leads to a system of $N_{\mathbf{w}} = q \times N_{\text{space}}$ ordinary differential equations (ODEs)

$$\frac{d\mathbf{w}}{dt} = \mathbf{f}(\mathbf{w}, t; \boldsymbol{\mu})$$

in terms of the discretized state variable

$$\mathbf{w} = \mathbf{w}(t; \boldsymbol{\mu}) \in \mathbb{R}^{N_{\mathbf{w}}}$$

with initial condition $\mathbf{w}(0; \boldsymbol{\mu}) = \mathbf{w}(\boldsymbol{\mu})$

This is the high-dimensional model (HDM)

Parameterized solutions

Example: two dimensional advection-diffusion equation

$$\frac{\partial \mathcal{W}}{\partial t} + \mathcal{U} \cdot \nabla \mathcal{W} - \kappa \Delta \mathcal{W} = 0 \text{ for } \mathbf{x} \in \Omega$$

with boundary and initial conditions

$$\mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) = \mathcal{W}_D(\mathbf{x}, t; \boldsymbol{\mu}_{\mathsf{D}}) \text{ for } \mathbf{x} \in \Gamma_{\mathsf{D}}$$
$$\nabla \mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) \cdot \mathbf{n}(\mathbf{x}) = 0 \text{ for } \mathbf{x} \in \Gamma_{\mathsf{N}}$$
$$\mathcal{W}(\mathbf{x}, 0; \boldsymbol{\mu}) = \mathcal{W}_0(\mathbf{x}) \text{ for } \mathbf{x} \in \Omega$$

Parameterized solutions

Example: two dimensional advection-diffusion equation

$$\frac{\partial \mathcal{W}}{\partial t} + \mathcal{U} \cdot \nabla \mathcal{W} - \kappa \Delta \mathcal{W} = 0 \text{ for } \mathbf{x} \in \Omega$$

with boundary and initial conditions

$$\mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) = \mathcal{W}_D(\mathbf{x}, t; \boldsymbol{\mu}_D) \text{ for } \mathbf{x} \in \Gamma_D$$

$$\nabla \mathcal{W}(\mathbf{x}, t; \boldsymbol{\mu}) \cdot \mathbf{n}(\mathbf{x}) = 0 \text{ for } \mathbf{x} \in \Gamma_N$$

$$\mathcal{W}(\mathbf{x}, 0; \boldsymbol{\mu}) = \mathcal{W}_0(\mathbf{x}) \text{ for } \mathbf{x} \in \Omega$$

4 parameters of interest

$$\boldsymbol{\mu} = [\mathcal{U}_1, \mathcal{U}_2, \kappa, \boldsymbol{\mu}_{\mathsf{D}}] \in \mathbb{R}^4$$

• $\mathbf{w} \in \mathbb{R}^{N_{\mathbf{w}}}$ with $N_{\mathbf{w}} = 2,701$

Parameterized solutions

Steady parameterized PDE

Steady parameterized HDM

$$f(\mathbf{w}; \boldsymbol{\mu}) = \mathbf{0}$$

Linear case

$$\mathbf{A}(\boldsymbol{\mu})\mathbf{w} = \mathbf{b}(\boldsymbol{\mu})$$

Example: steady advection-diffusion equation

Dimensionality reduction

Consider the manifold of solutions

$$\mathcal{M} = \{\mathbf{w}(oldsymbol{\mu}) ext{ s.t. } oldsymbol{\mu} \in \mathcal{D}\} \subset \mathbb{R}^{N_{\mathbf{w}}}$$

- Often $\dim(\mathcal{M}) \ll N_{\mathbf{w}}$
- Therefore, $\mathcal M$ could be described in terms of a much smaller set of variables, rather than $\{e_1,\cdots,e_{N_\mathbf w}\}$
- Hence dimensionality reduction

Dimensionality reduction

- First idea: use solutions of the equation to describe M
- Consider pre-computed solution $\{\mathbf w(\pmb\mu_1),\cdots,\mathbf w(\pmb\mu_m)\}$ where $\{\pmb\mu_1,\cdots,\pmb\mu_m\}\subset\mathcal D$
- Let $\mu \in \mathcal{D}$. Then approximate $\mathbf{w}(\mu)$ as

$$\mathbf{w}(\boldsymbol{\mu}) \approx \alpha_1(\boldsymbol{\mu})\mathbf{w}(\boldsymbol{\mu}_1) + \cdots + \alpha_m(\boldsymbol{\mu})\mathbf{w}(\boldsymbol{\mu}_m)$$

where $\{\alpha_1(\mu), \cdots, \alpha_m(\mu)\}$ are coefficients to be determined

Reduced-order basis

- There may be redundancies in the solutions $\{\mathbf{w}(\boldsymbol{\mu}_1),\cdots,\mathbf{w}(\boldsymbol{\mu}_m)\}.$
- Better approach: remove the redundancies by considering an equivalent independent set $\{\mathbf{v}_1,\cdots,\mathbf{v}_k\}$ with $k\leq m$ such that

$$\operatorname{span}\left\{\mathbf{v}_{1},\cdots,\mathbf{v}_{k}\right\}=\operatorname{span}\left\{\mathbf{w}(\boldsymbol{\mu}_{1}),\cdots,\mathbf{w}(\boldsymbol{\mu}_{m})\right\}$$

• $\mathbf{V} = [\mathbf{v}_1, \cdots, \mathbf{v}_k] \in \mathbb{R}^{N_\mathbf{w} \times k}$ is a reduced-order basis with $k \ll N_\mathbf{w}$

Basis construction

Lagrange basis

$$\operatorname{span}\left\{\mathbf{v}_1,\cdots,\mathbf{v}_k\right\}=\operatorname{span}\left\{\mathbf{w}(\boldsymbol{\mu}_1),\cdots,\mathbf{w}(\boldsymbol{\mu}_m)\right\}$$

Hermite basis

$$\operatorname{span}\left(\mathbf{v}_{1},\cdots,\mathbf{v}_{k}\right)\}=\operatorname{span}\left\{\mathbf{w}(\boldsymbol{\mu}_{1}),\frac{\partial\mathbf{w}}{\partial\mu_{1}}(\boldsymbol{\mu}_{1}),\cdots,\frac{\partial\mathbf{w}}{\partial\mu_{p}}(\boldsymbol{\mu}_{1}),\mathbf{w}(\boldsymbol{\mu}_{2}),\cdots\right\}$$

Data compression

- It is possible to remove more information from the snapshots $\{\mathbf{w}(\mu_1), \cdots, \mathbf{w}(\mu_m)\}$
- Consider the snapshot matrix $\mathbf{W} = [\mathbf{w}(\boldsymbol{\mu}_1), \cdots, \mathbf{w}(\boldsymbol{\mu}_m)]$
- Can we quantify the main information contained in W and discard the rest (noise)?
- This amount to data compression
- Here orthogonal projection will be used to compress the data

Orthogonal projection

- Let $\mathbf{V} \in \mathbb{R}^{N_{\mathbf{w}} \times k}$ be an orthogonal matrix $(\mathbf{V}^T \mathbf{V} = \mathbf{I}_k)$ which columns span \mathcal{S} , a subspace of dimension k
- Let $\mathbf{x} \in \mathbb{R}^{N_{\mathbf{w}}}$. The orthogonal projection of \mathbf{x} onto the subspace \mathcal{S} is

$$\mathbf{V}\mathbf{V}^T\mathbf{x}$$

Projection matrix

$$\mathbf{\Pi}_{\mathbf{V},\mathbf{V}} = \mathbf{V}(\mathbf{V}^T \mathbf{V})^{-1} \mathbf{V}^T = \mathbf{V} \mathbf{V}^T$$

• special case 1: if x belongs to S

$$\mathbf{\Pi}_{\mathbf{V},\mathbf{V}}\mathbf{x} = \mathbf{V}\mathbf{V}^T\mathbf{x} = \mathbf{x}$$

• special case 2: if x is orthogonal to S

$$\mathbf{\Pi}_{\mathbf{V},\mathbf{V}}\mathbf{x} = \mathbf{V}\mathbf{V}^T\mathbf{x} = \mathbf{0}$$

Proper Orthogonal Decomposition

- POD seeks the subspace S of a given dimension k minimizing the projection error of the snapshots $\{\mathbf{w}(\boldsymbol{\mu}_1),\cdots,\mathbf{w}(\boldsymbol{\mu}_m)\}$
- Mathematical formulation $S = \text{range}(\mathbf{V})$ where

$$\mathbf{V} = \operatorname*{argmin}_{\mathbf{Y}} \sum_{i=1}^m \left\| \mathbf{w}(oldsymbol{\mu}_i) - \mathbf{\Pi}_{\mathbf{Y},\mathbf{Y}} \mathbf{w}(oldsymbol{\mu}_i)
ight\|_2^2$$

s.t. $\mathbf{Y}^T \mathbf{Y} = \mathbf{I}_t$

POD by eigenvalue decomposition

Minimization problem

$$\mathbf{V} = \underset{\mathbf{Y}^T\mathbf{Y} = \mathbf{I}_k}{\operatorname{argmin}} \sum_{i=1}^m \left\| \mathbf{w}(\boldsymbol{\mu}_i) - \mathbf{\Pi}_{\mathbf{Y},\mathbf{Y}} \mathbf{w}(\boldsymbol{\mu}_i) \right\|_2^2$$

Equivalent maximization problem

$$\mathbf{V} = \underset{\mathbf{Y}^T \mathbf{Y} = \mathbf{I}_k}{\operatorname{argmax}} \sum_{i=1}^m \left\| \mathbf{Y} \mathbf{Y}^T \mathbf{w}(\boldsymbol{\mu}_i) \right\|_2^2$$
$$= \underset{\mathbf{Y}^T \mathbf{Y} = \mathbf{I}_k}{\operatorname{argmax}} \left\| \mathbf{Y}^T \mathbf{W} \right\|_F^2$$
$$= \underset{\mathbf{Y}^T \mathbf{Y} = \mathbf{I}_k}{\operatorname{argmax}} \operatorname{trace} \left(\mathbf{Y}^T \mathbf{W} \mathbf{W}^T \mathbf{Y} \right)$$

• Solution: V is the matrix of eigenvectors $\{\phi_1, \cdots, \phi_k\}$ associated with the k largest eigenvalues of $\mathbf{K} = \mathbf{W}\mathbf{W}^T$

The method of snapshots

- POD: V is the matrix of eigenvectors $\{\phi_1, \cdots, \phi_k\}$ associated with the k largest eigenvalues of $\mathbf{K} = \mathbf{W}\mathbf{W}^T$
- $\mathbf{K} \in \mathbb{R}^{N_{\mathbf{w}} \times N_{\mathbf{w}}}$ is a large, dense matrix
- Its rank is at most $m \ll N_{\mathbf{w}}$
- In 1987, Sirovich developed the method of snapshots by noticing that $\mathbf{R} = \mathbf{W}^T \mathbf{W} \in \mathbb{R}^{m \times m}$ has the same non-zero eigenvalues $\{\lambda_i\}_{i=1}^r$ as \mathbf{K}
- $r = \operatorname{rank}(\mathbf{R}) \le m \le N_{\mathbf{w}}$ and

$$\mathbf{R}\boldsymbol{\psi}_i = \lambda \boldsymbol{\psi}_i, \ i = 1, \cdots, r$$

• Exercise: relationship between $\{\phi_1, \dots, \phi_r\}$ and $\{\psi_1, \dots, \psi_r\}$?

The method of snapshots

• Step 1: compute the eigenpairs $\{\lambda_i,\psi_i\}_{i=1}^r$ associated with ${f R}$

$$\mathbf{R}\boldsymbol{\psi}_i = \lambda \boldsymbol{\psi}_i, \ i = 1, \cdots, r$$

- Step 2: compute $oldsymbol{\phi}_i = rac{1}{\sqrt{\lambda_i}} \mathbf{W} oldsymbol{\psi}_i, \; i=1,\cdots,r$
- In matrix form $\Phi = \mathbf{W} \Psi \Lambda^{-\frac{1}{2}}$
- POD reduced basis of dimension k < r:

$$\mathbf{V} = [\boldsymbol{\phi}_1, \cdots, \boldsymbol{\phi}_k]$$

POD by singular value decomposition

- The POD basis V can also be computed by singular value decomposition (SVD)
- SVD of W:

$$\mathbf{W} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{Z}_r^T$$

- $\mathbf{U}_r = [\mathbf{u}_1, \cdots, \mathbf{u}_r] \in \mathbb{R}^{N_\mathbf{w} \times r}$: left singular vectors $(\mathbf{U}_r^T \mathbf{U}_r = \mathbf{I}_r)$
- $\Sigma_r = \mathsf{diag}(\sigma_1, \cdots, \sigma_r) \in \mathbb{R}^{r \times r}$: singular values
- $\mathbf{Z}_r = [\mathbf{z}_1, \cdots, \mathbf{z}_r] \in \mathbb{R}^{m \times r}$: right singular vectors $(\mathbf{Z}_r^T \mathbf{Z}_r = \mathbf{I}_r)$
- POD reduced basis of dimension $k \le r$

$$\mathbf{V} = [\mathbf{u}_1, \cdots, \mathbf{u}_k]$$

POD basis size selection

- The POD basis V can also be computed by singular value decomposition (SVD)
- SVD of W:

$$\mathbf{W} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{Z}_r^T$$

• POD reduced basis of dimension $k \le r$

$$\mathbf{V}_k = [\mathbf{u}_1, \cdots, \mathbf{u}_k]$$

Relative projection error

$$e(k) = \frac{\|\mathbf{W} - \mathbf{V}_k \mathbf{V}_k^T \mathbf{W}\|_F}{\|\mathbf{W}\|_F} = \sqrt{\frac{\sum_{i=k+1}^r \sigma_i^2}{\sum_{i=1}^r \sigma_i^2}}$$

• Typically k is chosen so that e(k) < 0.1

Projection-based model reduction

High-dimensional model (HDM)

$$\mathbf{A}(\boldsymbol{\mu})\mathbf{w} = \mathbf{b}(\boldsymbol{\mu})$$

ullet Reduced-order modeling assumption using a reduced basis ${f V}$

$$\mathbf{w}(\boldsymbol{\mu}) \approx \mathbf{V}\mathbf{q}(\boldsymbol{\mu})$$

- $q(\mu)$: reduced (generalized) coordinates
- Inserting in the HDM equation

$$AVq \approx b$$

- $N_{\mathbf{w}}$ equations in terms of k unknowns \mathbf{q}
- Associated residual

$$\mathbf{r}(\mathbf{q}) = \mathbf{A}(\boldsymbol{\mu})\mathbf{V}\mathbf{q} - \mathbf{b}(\boldsymbol{\mu})$$

Galerkin projection

Residual equation

$$r(q) = A(\mu)Vq - b(\mu)$$

- $N_{\mathbf{w}}$ equations with k unknowns
- \bullet Galerkin projection enforces the orthogonality of $\mathbf{r}(\mathbf{q})$ to range(V):

$$\mathbf{V}^T\mathbf{r}(\mathbf{q})=\mathbf{0}$$

Reduced equations:

$$\mathbf{V}^T\mathbf{A}(\boldsymbol{\mu})\mathbf{V}\mathbf{q} = \mathbf{V}^T\mathbf{b}(\boldsymbol{\mu})$$

k equations in terms of k unknowns

$$\mathbf{A}_k(\boldsymbol{\mu})\mathbf{q} = \mathbf{b}_k(\boldsymbol{\mu})$$

• m=5 snapshots $\{\boldsymbol{\mu}_i\}_{i=1}^5$

• m=5 snapshots $\{\mu_i\}_{i=1}^5 \Rightarrow \mathsf{POD}$ basis of dimension k=5

Projection error

• $\mu_5 = (\mathcal{U}_1, \mathcal{U}_2, \kappa, \mu_D) = (1, 10, 3 \times 10^{-4}, 850)$

Exercise: Petrov-Galerkin projection

Other approach to get a unique solution to

$$\mathbf{A}(\boldsymbol{\mu})\mathbf{V}\mathbf{q} \approx \mathbf{b}(\boldsymbol{\mu})$$

Least-squares approach

$$\mathbf{q} = \operatorname*{argmin}_{\mathbf{y}} \|\mathbf{A}(\boldsymbol{\mu})\mathbf{V}\mathbf{y} - \mathbf{b}(\boldsymbol{\mu})\|_2$$

- ullet Exercise: give the equivalent set of equations satisfied by ${f y}$
- Solution:

$$\mathbf{V}^T \mathbf{A}(\boldsymbol{\mu})^T \mathbf{A}(\boldsymbol{\mu}) \mathbf{V} \mathbf{q} = \mathbf{V}^T \mathbf{A}(\boldsymbol{\mu})^T \mathbf{b}(\boldsymbol{\mu})$$

Offline/online decomposition for parametric systems

- Offline phase: computation of V from snapshots $\{\mathbf{w}(\boldsymbol{\mu}_1),\cdots,\mathbf{w}(\boldsymbol{\mu}_m)\}$
- Online phase: construction and solution of $\mathbf{V}^T \mathbf{A}(\mu) \mathbf{V} \mathbf{q} = \mathbf{V}^T \mathbf{b}(\mu)$
- Issue: constructing $\mathbf{A}_k(\boldsymbol{\mu}) = \mathbf{V}^T \mathbf{A}(\boldsymbol{\mu}) \mathbf{V}$ and $\mathbf{b}_k(\boldsymbol{\mu}) = \mathbf{V}^T \mathbf{b}(\boldsymbol{\mu})$ is expensive
- Exception in the case of affine parameter dependence: $q_A \ll N_{\mathbf{w}}$ and $q_b \ll N_{\mathbf{w}}$

$$\mathbf{A}(\boldsymbol{\mu}) = \sum_{i=1}^{q_A} f_A^{(i)}(\boldsymbol{\mu}) \mathbf{A}^{(i)}, \ \mathbf{b}(\boldsymbol{\mu}) = \sum_{i=1}^{q_b} f_b^{(i)}(\boldsymbol{\mu}) \mathbf{b}^{(i)}$$

Then

$$\mathbf{A}_k(\boldsymbol{\mu}) = \sum_{i=1}^{q_A} f_A^{(i)}(\boldsymbol{\mu}) \mathbf{V}^T \mathbf{A}^{(i)} \mathbf{V}, \ \mathbf{b}(\boldsymbol{\mu}) = \sum_{i=1}^{q_b} f_b^{(i)}(\boldsymbol{\mu}) \mathbf{V}^T \mathbf{b}^{(i)}$$

The following small dimensional matrices can be computed offline

$$\mathbf{A}_{k}^{(i)} = \mathbf{V}^{T} \mathbf{A}^{(i)} \mathbf{V} \in \mathbb{R}^{k \times k}, \ i = 1, \cdots, q_{A}$$
$$\mathbf{b}_{k}^{(i)} = \mathbf{V}^{T} \mathbf{b}^{(i)} \in \mathbb{R}^{k}, \ i = 1, \cdots, q_{b}$$

Snapshot selection

 \bullet For a given number of snapshots m, what are the best snapshot parameter locations

$$\mu_1, \cdots, \mu_m \in \mathcal{D}$$
?

- The snapshots $\{\mathbf{w}(\boldsymbol{\mu}_1),\cdots,\mathbf{w}(\boldsymbol{\mu}_m)\}$ should be optimally placed so that they capture the physics over the parameter space $\mathcal D$
- Difficult problem ⇒ use a heuristic approach (Greedy algorithm)

Greedy approach

- Start by randomly selecting a parameter value μ_1 and compute $\mathbf{w}(\mu_1)$
- For $i=1,\cdots m$, find the parameter μ_i which presents the highest error between the ROM solution $\mathbf{Vq}(\mu)$ and the HDM solution $\mathbf{w}(\mu)$
- This however requires knowing the HDM solution (unknown)
- Instead, for $i=1,\cdots m$, find the parameter μ_i for which the residual $\mathbf{r}(\mathbf{q}(\boldsymbol{\mu})) = \mathbf{A}\mathbf{V}\mathbf{q}(\boldsymbol{\mu}) \mathbf{b}(\boldsymbol{\mu})$ is the highest

$$\mu_i = \underset{\boldsymbol{\mu} \in \mathcal{D}}{\operatorname{argmin}} \|\mathbf{A}(\boldsymbol{\mu})\mathbf{V}\mathbf{q}(\boldsymbol{\mu}) - \mathbf{b}(\boldsymbol{\mu})\|_2$$

where $\mathbf{V}^T\mathbf{A}(\boldsymbol{\mu})\mathbf{V}\mathbf{q}(\boldsymbol{\mu}) = \mathbf{V}^T\mathbf{b}(\boldsymbol{\mu})$

• The parameter domain $\mu \in \mathcal{D}$ can be in practice replaced by a search over a finite set

$$\boldsymbol{\mu} \in \{\boldsymbol{\mu}^{(1)}, \cdots, \boldsymbol{\mu}^{(N)}\} \subset \mathcal{D}$$

Parameter domain $(\mathcal{U}_1,\mathcal{U}_2) \in [0,10] \times [0,10]$

POD in time

Consider an unsteady linear parametric problem

$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{A}(\boldsymbol{\mu})\mathbf{w}(t) - \mathbf{b}(\boldsymbol{\mu})\mathbf{u}(t)$$

where u(t) is given for a time interval $t \in [t_0, t_{N_t}]$

• For a given parameter μ , POD can also provide an optimal reduced basis associated with the minimization problem

$$\min_{\mathbf{V}^T\mathbf{V}=\mathbf{I}_k} \int_{t_0}^{t_{N_t}} \left\| \mathbf{w}(t, \boldsymbol{\mu}) - \mathbf{V}\mathbf{V}^T\mathbf{w}(t, \boldsymbol{\mu}) \right\|_2^2 dt$$

• Solution by the method of snapshots: consider the solutions in time $\mathbf{w}(t_0, \boldsymbol{\mu}), \cdots, \mathbf{w}(t_{N_t}, \boldsymbol{\mu})$. An approximation of the minimization problem is

$$\min_{\mathbf{V}^T\mathbf{V} = \mathbf{I}_k} \sum_{i=0}^{N_t} \delta_i \left\| \mathbf{w}(t_i, \boldsymbol{\mu}) - \mathbf{V} \mathbf{V}^T \mathbf{w}(t_i, \boldsymbol{\mu}) \right\|_2^2$$

where $\delta_0, \cdots, \delta_{N_t}$ are appropriate quadrature weights

POD in time (continued)

Equivalent maximization problem

$$\max_{\mathbf{V}^T\mathbf{V} = \mathbf{I}_k} \sum_{i=0}^{N_t} \delta_i \left\| \mathbf{V}^T \mathbf{w}(t_i, \boldsymbol{\mu}) \right\|_2^2$$

 Solution by POD by the method of snapshots with the associated snapshot matrix

$$\mathbf{W} = [\sqrt{\delta_0}\mathbf{w}(t_0, \boldsymbol{\mu}), \cdots, \sqrt{\delta_{N_t}}\mathbf{w}(t_{N_t}, \boldsymbol{\mu})]$$

POD: Application to linearized aeroelasticity

- $M_{\infty} = 0.99$
- $N_{\mathbf{w}}=2,188,394$, m=99 snapshots, k=60 retained POD vectors

Global vs. local strategies

- Global strategy
 - ullet build a ROB ${f V}$ that captures the behavior of unsteady systems for all ${m \mu}\in {\mathcal D}$
 - POD based on snapshots

$$\{\mathbf{w}(t_0,\boldsymbol{\mu}_1),\cdots,\mathbf{w}(t_{N_t},\boldsymbol{\mu}_1),\mathbf{w}(t_0,\boldsymbol{\mu}_2),\cdots,\mathbf{w}(t_{N_t},\boldsymbol{\mu}_m)\}$$

- not optimal for a given μ_i
- Local strategy
 - build a separate ROB $\mathbf{V}(\pmb{\mu})$ for every value of $\pmb{\mu} \in \mathcal{D}$
 - database approach: build offline a set of ROBs $\{V(\mu_i)\}_{i=1}^m$ and use them online to build $V(\mu)$ for $\mu \in \mathcal{D}$
 - each ROB $\mathbf{V}(\boldsymbol{\mu}_i)$ is optimal at $\boldsymbol{\mu} = \boldsymbol{\mu}_i$
 - requires an adaptation approach online (see Lecture 3)

References

- Lecture notes on projection-based model reduction: http://www.stanford.edu/~amsallem/CA-CME345-Ch3.pdf
- Lecture notes on POD: http://www.stanford.edu/~amsallem/CA-CME345-Ch4.pdf
- Holmes, P., Lumley, J., and Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Univ. Press, Cambridge, England, U.K., 1996.
- Sirovich, L.: Turbulence and the dynamics of coherent structures. Part I: coherent structures. Quarterly of applied mathematics 45(3), 561-571 (1987).
- Patera A. and Rozza G., Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations, Version 1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering.
- Haasdonk, B., Ohlberger, M.: Efficient reduced models and a-posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Stuttgart Research Centre for Simulation Technology (SRC SimTech) Preprint Series 23 (2009)