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Introduction

Why is it important to know how to implement constitutive equations in finite element codes ?

@ Few constitutive equations are available in commercial FE codes

@ Implement new constitutive models in commercial codes (ABAQUS, ANSYS, MARC, ...,
Code_Aster, CAST3M, ..., Zset, WARP3D)

@ Implement specific treatment of implemented models
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“Numerical” definition of constitutive equations
Methods (explicit/implicit) for numerical integration
Consistant tangent matrox

Example : von Mises plasticiy model
Convergence
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“ Numerical” definition of constitutive equations

@ In the case of a displacement based FE formulation, nodal displacements are known and
deformations can be computed
@ The constitutive equations are used to evaluate:

@ the stress tensor o

@ the “consistent” tangent matrix

OAc
OAe

é:

for a given deformation increment Acg.
@ Material behaviours are also characterized be internal variables A.
@ The constitutive equations are used to update these variables.
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Constitutive equations within the finite element method
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I:l : global computation

I::j : local time integration of the constitutive equations
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Generic interface for constitutive equations

Alto) At =t —tg A(ty)
e(t1) —| material behavior P a(t)
Ag L
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Constitutive equations as a set of differential equations

aA =A=G(A 1)
at
dA; .
721 = A = Gi(Ay,..., An, 1)

@ Time is used here to represent an imposed deformation as well as imposed external
parameters depending on both time and position such as an temperature (T(X, t)).

@ Evaluation of the constitutive equations = integrate the previous system from f; to #.
@ Usually: A = (ge, ... ) so that
a(t) = E(ty) : ge(tr)

@ L must still be computed. ..
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Integration methods for constitutive equations
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Integration methods for constitutive equations : Explicit Euler

A(t) = A(to) + A (A(t), o) At = A(to) + G (A(t), to) At
AA =G (A(l), ) At

@ The method is not stable ; it must not be employed
@ Explicit ? : because A is evaluated at t using (A(f), &)
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Integration methods for constitutive equations : Runge—Kutta

@ Numerical estimation of derivatives of A: dG/dA, d2G/dA2, d3G/dA3 ...
@ Error estimator to control the solution

The Runge—Kutta integration method is easy to set up as it only uses the differential equation:
A=G(A 1)

It however has some drawbacks:
@ Integration may require long CPU time

@ In the case of plastic material, the plastic multiplier must be computed. This can be tricky in
cases where material coefficients depend on external parameters (e.g. temperature).

@ The stability of the integration scheme is not certain for softening materials.
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Implicit method (or #-methods)

Estimation of A at time ty between f; and t

G(A(t()) + 60AA to + 0At)At
G(Ap, ty)At

°
@ lp=1+0Atavec0 <0< 1
@ Two solutions :
AA =
AA =

6 =0 — Euler

MAGIS

[(1 = 0)G(A(t), o) + OG(A(t), )] At
[(1 — 6)G(Aq, fo) + 0G(Aq + AA, ty + At)] At

Implicit i? : AA appears on both sides of the previous equations
Integrrate the constitutive equations = solve the previous equations

...in the following we will focus on the first method
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...implicit method

Resolution using the Newton-Raphson method
Residual expressed as:

R(AA) = AA — G(A(fy) + 0AA | t + OADAL
Ri(AA1,...,AAp) = AA; — Gi(A1(ty) + 0AAq, ..., An(ty) + 0AAR)AL

@ First order Taylor expansion at s estimate AAs
R = R(AA )-|-ﬁ (AA - AAs)=0
- TN Y s
@ Calculation of the next estimate (s + 1):
R \ !
AAg 1 = AAs — [ —— .R(AA
st ° (BAA)AA:AAS (84s)

J = OR/OAA (J; = 9R;/9A;): Jacobian matrix, J* = J~'
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@ The A vector often holds second order tensors
@ The Voigt notation is then used

@ Notation
Standard notation Preferred notation

€11 11 X11
€22 22 X22
€ o X33

€= 253132 n e U?z X7 | Vaxi,
2¢e03 023 \/éX23
2¢31 031 V2x3
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Examples
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Integration — Simple example : von Mises plasticity

@ Additive decomposition of deformations:

E=¢cetep
@ Yield surface
¢ = 0eq — A(P)
@ Normality
L0 3,8 _
&p = Pag 2P o

@ Internal variables : (ge, p)
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von Mises plasticity

@ Calculation of p using the consistency condition: ¢ = 0

@aveco=E:ce=E:(e—gp) 2a=E:ce=E:(E—£p) @
@ Finally one gets

. n:E:¢
p= n:E:n+H
@ System of differential equations to be solved
sur ge Ee=¢E—pn
n:E:é

sur p p:gi:é:g—i—H @

@ Attention must be paid on dependences on external parameters (temperature. . .) @
@ Ready for explicit Runge—Kutta integration !
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von Mises plasticity : implicit integration

Age = Ae — Apn

@ Evaluation of n, g, H?...attime ty = ty + OAL.

@ Application :

E® = E(T?) = E(T° + 0AT)

H? = H(p®) = H(p° + 6Ap)
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@ The equation
n:c

is correct but may be replaced by:
¢ =0 — R(p)=0

@ This equation is wrong if R depends on an external parameter as in that case:
. n:E:é—RsT n:E:Ne— R8T
p=—"—"--—-—""— - Ap=—"——————
n:E:n+H n:E:n+H

The incremental equation is then
n: EY: Ae — FI‘QTAT

Ap= n°E%:nf + HP

The method must be avoided and it is better to use the yield condition ¢ = o.q — R(p) =0
@ N.B.: in the following the supscript ¢ will be omitted for the sake of simplicity

Implementation of constitutive equations 19/1

MAGIS



Re = Ace+Apn-— Ac
Rp = ¢ =o0eq— R(P)
R = (Re, Rp)
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Writing the Jacobian matrix. . . a matter of some delicacy

@ Writing using sub-blocks

ORe O0Re

0Ace OAp
J— _ T4 \ T2
- “\ T2 Ssc
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Calculation of the derivatives of Re =

do —E
Oce -
Oce —01
OAcee -
so that:
ORe _14on:E
0Dge = = =
ORe .
oAp
MAGIS
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Calculation of the derivatives of R, = g.q — R(P)

aFI,p _ aO’eq:aig: aée _ HQE
0Acge 0o Ose OAcge

ORp OR op
—— |l=————=|—-0H
OAp op 0Ap -
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T: t matrix / “Consistent” tangent matrix

@ Tangent matrix

g=Lp:¢g
@ Calculation :
¢=E: (¢~ pn) @
and .
. E:¢
P=hEn+H

imply that

(E:n)®(n:E)
lp=F— —=— — — —
7= n:E:n+H

@ The tangent matrix cannot be defined for viscoplastic materials
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@ “Consistent” tangent matrix
__ 0Ag
N

Ag=E:(A:e—Apn)

@ calculation
A0 = : (6Ae — 6Apn — Apdn)

1 (6Ae — 6Apn) = ép AN
da

on
Apén=Ap— : — :6Ae = ApN: E : 5A
pon=Apo_ o, 0Ae=ApN: E:dAe+

E
£

so that
— ApE : N: E + O(ApP)

I~
o

It
&

@ The consistent tangent matrix can be defined for viscoplastic materials
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Automatic calculation of the consistent tangent matrix

@ [tis generally possible to write:

A = (e,a)
R = (Re,Ra)
Re = Ace+ Agir— Ac

@ Influence of a variation of Ag on the variations of integrated variables (ge,a) ?
@ At the solution point R must remain equal to 0

SR_0—2s (A§6+A§n) 5 (Ag)

Ra 0
oR SAg\ dAe
= PR (8) _usma (°5)

@ Therefore

SAA=Jd (5A§>
—u (%
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@ J~' can be expressed using sub-blocks
_ Jie V5
J1:J*:<ee ea>’
Jie Jia

0Ace = J55.0Ac

@ so that

@ Using Hooke’s law:
a(t) = a(ty) + Ag = E(ty) : ge(tr) = E(t1) : (ge(fo) + Ace)

therefore
dAg = E(ty) : 60Age = E(t) : Jge : 0Ac

Le = E(ﬁ) : gge

@ Finally
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@ In cases where E depends on an integrated variable (e.g. d =damage) the calculation is
more difficult

OE

Ag = —20Ad : e + E(t) : Ace
OE

Le= 075 S(ee ®Jge) + E : Joe
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Explicit versus Implicit integration

Explicit Implicit
easy to implement  difficult to implement
time consuming efficient
Le? calculation of L¢

@ Lc can be evaluated using a perturbation method

oj(Ae + 56&“) — gjj(Ag)
de

c __
Ly =

@ The tensor uk is such that:
Hf',('/ = i by
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Viscoplastity

@ To introduce rate dependency (viscoplastity) the above equations need to be slightly modified
@ Additive decomposition of deformations:

eE=cetep
@ Yield surface
¢ = 0w — R(p)
@ Normality )
. . 0¢
Ep = E

@ ¢ can now be positive
@ pis given by a specific material dependent law

p=F(¢)

o~ ()

@ Differential equations to be integrated are therefore

Fis such that F(x) =0ifx <0
@ For instance (Norton low)

ée = £€—pn
. /e\"
P= <K>
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Viscoplastity : integration

@ Runge-Kutta integration is straightforward

@ For the implicit integration
Be = Age+Apn— Ag
Rp Ap — F(¢)At

@ Evaluation of the Jacobian matrix: only the derivatives of R, have to be re-computed
with 7/ = 9F /9

BRp OF 09 Oa Oce /

= —-At——: —: = —0AtF'n: E
O0l¢e 0¢ Og  Oce OAce T =
LHP = _Ataiaﬁ@ﬂ:_gA[}"H
IAp ¢ OR Op OAp
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