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Introduction

Why is it important to know how to implement constitutive equations in finite element codes ?

Few constitutive equations are available in commercial FE codes

Implement new constitutive models in commercial codes (ABAQUS, ANSYS, MARC, . . . ,
Code_Aster, CAST3M, . . . , Zset, WARP3D)

Implement specific treatment of implemented models
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Outline

“ Numerical” definition of constitutive equations

Methods (explicit/implicit) for numerical integration

Consistant tangent matrox

Example : von Mises plasticiy model

Convergence
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“ Numerical” definition of constitutive
equations
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“ Numerical” definition of constitutive equations

In the case of a displacement based FE formulation, nodal displacements are known and
deformations can be computed
The constitutive equations are used to evaluate:

1 the stress tensor σ
2 the “consistent” tangent matrix

L =
∂∆σ

∂∆ε

for a given deformation increment ∆ε.

Material behaviours are also characterized be internal variables A.

The constitutive equations are used to update these variables.
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Constitutive equations within the finite element method
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Generic interface for constitutive equations
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Constitutive equations as a set of differential equations

dA
dt

= Ȧ = G(A, t)

dAi

dt
= Ȧi = Gi (A1, . . . , An, t)

Time is used here to represent an imposed deformation as well as imposed external
parameters depending on both time and position such as an temperature (T (~x , t)).

Evaluation of the constitutive equations = integrate the previous system from t0 to t1.

Usually: A = (εe, . . . ) so that
σ(t1) = E(t1) : εe(t1)

L must still be computed. . .
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Integration methods for constitutive equations
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Integration methods for constitutive equations : Explicit Euler

A(t1) = A(t0) + Ȧ (A(t0), t0)∆t = A(t0) + G (A(t0), t0)∆t

∆A = G (A(t0), t0)∆t

The method is not stable ; it must not be employed

Explicit ? : because Ȧ is evaluated at t0 using (A(t0), t0)
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Integration methods for constitutive equations : Runge–Kutta

Numerical estimation of derivatives of Ȧ: dG/dA, d2G/dA2, d3G/dA3 . . .

Error estimator to control the solution

The Runge–Kutta integration method is easy to set up as it only uses the differential equation:

Ȧ = G(A, t)

It however has some drawbacks:

Integration may require long CPU time

In the case of plastic material, the plastic multiplier must be computed. This can be tricky in
cases where material coefficients depend on external parameters (e.g. temperature).

The stability of the integration scheme is not certain for softening materials.
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Implicit method (or θ-methods)

Estimation of Ȧ at time tθ between t0 and t1
tθ = t0 + θ∆t avec 0 ≤ θ ≤ 1

Two solutions :

∆A = G(A(t0) + θ∆A , t0 + θ∆t)∆t

= G(Aθ, tθ)∆t

∆A = [(1− θ)G(A(t0), t0) + θG(A(t1), t1)]∆t

= [(1− θ)G(A0, t0) + θG(A0 + ∆A, t0 + ∆t)]∆t

Implicit i? : ∆A appears on both sides of the previous equations

Integrrate the constitutive equations = solve the previous equations

θ = 0→ Euler

. . . in the following we will focus on the first method
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. . . implicit method

Resolution using the Newton-Raphson method

Residual expressed as:

R(∆A) = ∆A− G(A(t0) + θ∆A , t0 + θ∆t)∆t

Ri (∆A1, . . . , ∆An) = ∆Ai − Gi (A1(t0) + θ∆A1, . . . , An(t0) + θ∆An)∆t

First order Taylor expansion at sth estimate ∆As

R = R(∆As) +
∂R

∂∆A
.(∆A−∆As) = 0

Calculation of the next estimate (s + 1):

∆As+1 = ∆As −
„

∂R
∂∆A

«−1

∆A=∆As

.R(∆As)

J = ∂R/∂∆A (Jij = ∂Rj/∂Aj ): Jacobian matrix, J? = J−1
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Remark

The A vector often holds second order tensors

The Voigt notation is then used

Notation
Standard notation Preferred notation

ε =

0BBBBB@
ε11
ε22
ε33

2ε12
2ε23
2ε31

1CCCCCA , σ =

0BBBBB@
σ11
σ22
σ33
σ12
σ23
σ31

1CCCCCA x =

0BBBBBB@

x11
x22
x33√
2x12√
2x23√
2x31

1CCCCCCA
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Examples
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Integration — Simple example : von Mises plasticity

Additive decomposition of deformations:

ε = εe + εp

Yield surface
φ = σeq − R(p)

Normality

ε̇p = ṗ
∂φ

∂σ
=

3
2

ṗ
s

σeq
= ṗn

Internal variables : (εe, p)
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von Mises plasticity

Calculation of ṗ using the consistency condition: φ̇ = 0

φ̇ =
∂φ

∂σ
: σ̇ +

∂φ

∂p
ṗ = n : σ̇ − Hṗ

avec σ = E : εe = E : (ε− εp)→ σ̇ = E : ε̇e = E : (ε̇− ε̇p) �

Finally one gets

ṗ =
n : E : ε̇

n : E : n + H

System of differential equations to be solved

sur εe ε̇e = ε̇− ṗn

sur p ṗ =
n : E : ε̇

n : E : n + H
�

Attention must be paid on dependences on external parameters (temperature. . . ) �

Ready for explicit Runge–Kutta integration !
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von Mises plasticity : implicit integration

ε̇e = ε̇− ṗn → ∆εe = ∆ε−∆pn

ṗ =
n : E : ε̇

n : E : n + H
→ ∆p =

n : E : ∆ε

n : E : n + H
�

Evaluation of n, E , H ? . . . at time tθ = t0 + θ∆t .

Application :

n =
3
2

sθ

σθ
eq

avec σθ = Eθ : εθ
e εθ

e = ε0
e + θ∆εe

Eθ = E(T θ) = E(T 0 + θ∆T )

Hθ = H(pθ) = H(p0 + θ∆p)
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The equation

∆p =
n : E : ∆ε

n : E : n + H

is correct but may be replaced by:

φ = σeq − R(p) = 0

� This equation is wrong if R depends on an external parameter as in that case:

ṗ =
n : E : ε̇− R,T Ṫ

n : E : n + H
→ ∆p =

n : E : ∆ε− R,T δT
n : E : n + H

The incremental equation is then

∆p =
nθ : Eθ : ∆ε− Rθ

,T ∆T

nθ : Eθ : nθ + Hθ

The method must be avoided and it is better to use the yield condition φ = σeq − R(p) = 0

N.B.: in the following the supscript θ will be omitted for the sake of simplicity
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Residuals

Re = ∆εe + ∆pn −∆ε

Rp = φ = σeq − R(p)

R = (Re, Rp)
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Writing the Jacobian matrix. . . a matter of some delicacy

Writing using sub-blocks

J =

0BBBBB@
∂Re

∂∆εe

∂Re

∂∆p

∂Rp

∂∆εe

∂Rp

∂∆p

1CCCCCA =

„
T4 T2
T2 Sc

«
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Calculation of the derivatives of Re = ∆εe + ∆pnθ −∆ε

∂Re

∂∆εe
= 1 + ∆p

∂n
∂σ

:
∂σ

∂εe
:

∂εe

∂∆εe

∂n
∂σ

= N =
1

σeq

„
3
2

J − n ⊗ n
«

where J is such that J : a = deviator(a)

∂σ

∂εe
= E

∂εe

∂∆εe
= θ1

so that:
∂Re

∂∆εe
= 1 + θN : E

∂Re

∂∆p
= n
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Calculation of the derivatives of Rp = σeq − R(p)

∂Rp

∂∆εe
=

∂σeq

∂σ
:

∂σ

∂εe
:

∂εe

∂∆εe
= θn : E

∂Rp

∂∆p
= −

∂R
∂p

∂p
∂∆p

= −θH
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Tangent matrix / “Consistent” tangent matrix

Tangent matrix
σ̇ = Lp : ε̇

Calculation :
σ̇ = E : (ε̇− ṗn) �

and

ṗ =
n : E : ε̇

n : E : n + H

imply that

Lp = E −
(E : n)⊗ (n : E)

n : E : n + H

The tangent matrix cannot be defined for viscoplastic materials
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“Consistent” tangent matrix

Lc =
∂∆σ

∂∆ε

∆σ = E : (∆ : ε−∆pn)

calculation

δ∆σ = E : (δ∆ε− δ∆pn −∆pδn)

E : (δ∆ε− δ∆pn) = Lp : δ∆ε

∆pδn = ∆p
∂n
∂σ

:
∂σ

∂∆ε
: δ∆ε = ∆pN : E : δ∆ε + . . .

so that

Lc ≈ Lp −∆pE : N : E + O(∆p2)

The consistent tangent matrix can be defined for viscoplastic materials
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Automatic calculation of the consistent tangent matrix

It is generally possible to write:

A = (εe, a)

R = (Re, Ra)

Re = ∆εe + ∆εirr −∆ε

Influence of a variation of ∆ε on the variations of integrated variables (εe, a) ?

At the solution point R must remain equal to 0

δR = 0 = δ

„
∆εe + ∆εirr

Ra

«
− δ

„
∆ε
0

«

δR =
∂R
∂A

−
„

δ∆ε
0

«
= J.δ∆A−

„
δ∆ε

0

«
Therefore

δ∆A = J−1.

„
δ∆ε

0

«
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J−1 can be expressed using sub-blocks

J−1 = J? =

„
J?

ee J?
ea

J?
ae J?

aa

«
,

so that
δ∆εe = J?

ee.δ∆ε

Using Hooke’s law:

σ(t1) = σ(t0) + ∆σ = E(t1) : εe(t1) = E(t1) : (εe(t0) + ∆εe)

therefore
δ∆σ = E(t1) : δ∆εe = E(t1) : J?

ee : δ∆ε

Finally
Lc = E(t1) : J?

ee
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In cases where E depends on an integrated variable (e.g. d =damage) the calculation is
more difficult

∆σ =
∂E

∂d
δ∆d : εe + E(t1) : ∆εe

Lc =
∂E

∂d
: (εe ⊗ J?

de) + E : J?
ee
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Explicit versus Implicit integration

Explicit Implicit
easy to implement difficult to implement

time consuming efficient
Lc ? calculation of Lc

Lc can be evaluated using a perturbation method

Lc
ijkl =

σij (∆ε + δεµkl )− σij (∆ε)

δε

The tensor µkl is such that:
µkl

ij = δik δlj
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Viscoplastity

To introduce rate dependency (viscoplastity) the above equations need to be slightly modified
Additive decomposition of deformations:

ε = εe + εp

Yield surface
φ = σeq − R(p)

Normality

ε̇p = ṗ
∂φ

∂σ

φ can now be positive
ṗ is given by a specific material dependent law

ṗ = F(φ)

F is such that F(x) = 0 if x ≤ 0
For instance (Norton low)

ṗ =

fi
φ

K

fln

Differential equations to be integrated are therefore

ε̇e = ε̇− ṗn

ṗ =

fi
φ

K

fln
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Viscoplastity : integration

Runge-Kutta integration is straightforward

For the implicit integration

Re = ∆εe + ∆pn −∆ε

Rp = ∆p −F(φ)∆t

Evaluation of the Jacobian matrix: only the derivatives of Rp have to be re-computed
with F ′ = ∂F/∂φ

∂Rp

∂∆εe
= −∆t

∂F
∂φ

∂φ

∂σ
:

∂σ

∂εe
:

∂εe

∂∆εe
= −θ∆tF ′n : E

∂Rp

∂∆p
= −∆t

∂F
∂φ

∂φ

∂R
∂R
∂p

∂p
∂∆p

= −θ∆tF ′H
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