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scalar a a
vector El a;
2Md order tensor & a;
4™ order tensor  a ajji
matrices a
Voigt notation a—a
V(a.b)
Products
c=ab c=ab;
¢ = é.B Ci = a,-,-b/-
c=ab Cj = aikby
c=a:b ¢ = a;bj
c=a:b cj=ajbu
® c=awb cj=ab
c=a®b cjy= ajby

[Einstein convention]
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@ Displacements and deformation
@ Stress measures
@ Constitutive equations
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Displacement and Deformation

Undeformed
configuration

Ko( B)

u(X+dX) = u(X)+du
% U
=

Deformed
configuration

K B)
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o Displacement field around X
B S
u(X +dX) = u(X)+du = u(X) + ﬁ.dx

d% = dX + dii = <1+ 8—'1) dX
oxX
@ Transformation gradient
oxX 8X,'
F=— Fi=—
= axX il 8X/
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Obijectivity

@ Rigid body transformation
X' =Q(t).X + ¢(1)

@ Quantities are objective if they are related by the rotation tensor as:

/

m = m
P o= Q)i
T = Qu.r.am’

@ Generalization
Ty = 0h ® -+~ ® Up objective if T(/,,) =Uj® --®U, where U = Q.0
@ F is not objective
o X OX 0%
T aX  oX X

@ B = F.FT is objective
B/ :E/-E/T _ QEETQT _ OEQT
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...and invariance

@ Quantities are invariant if they remain unchanged by the transformation
m =m, U =, TIr=T

@ C = F'.Fisinvariant
C=FTF=F Q" aF=C
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@ LetdxX = 5.6)? be an infinitesimal segment in the current configuration. One gets:

aox _dESX  0F % EsX — FF1.6% = Lo%
ot at

@ L can be separated into symmetric (D) and an skew-symmetric (W) parts:
L=FF'=D+W

@ D characterizes strain rate in the following way:

d /4 . dsx! o dox?
> (6%1.6%) o 0% 4+ 0%V Z 2 = (Dy -+ Wy)ax]ox? + ox] (Dy + Wy)ox?

= [D,'jéxj‘ 6x? + Djox} 6)(/2] + [W,-/éx; 6x,-2//$ Wjox} ész]
= 26X'.D.6x*
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@ For a transformation such that: £/ = Q(t).F

L/ — E/.E/—1 — (Q£+Q£)£71Q71
= Qad"+o(+w).Q" Q'=a’
= Q@pQ"+QQ"+awQ’
= D+W
@ With
D QD.Q"
w awa’+Qaq’

o Note that Q.QT is skew-symmetric as:
QQ" =1

@ Only D is objective
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= QQ@'+QQ"=0
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R.U— V.U decomposition

@ The deformation gradient F can be decomposed, using the polar decomposition theorem, into
a product of two second-order tensors

with (R rotation tensor)
RR"=1 uU=U" Vv=Vvl U

Undeformed K

configuration

Ko(fB)

I
[y
l
I<
]

Deformed
configuration

k(B)
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Calculation of R and U

e C=FTF=UU
@ detC = (detF)®> >0anddetC # 0
@ Eigen frame for C = PT.Cy.P

¢t 0 0 Ve 0 0
Q(): 0 Co 0 —»goz 0 \/5 0
0
P

@ Consequently

@ so that

idem for V
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Volume variation

@ Jacobian of the transformation

174
J=detF=— >0
etF Vo>

@ so that:
/ ed0= | eJdg
Q Q
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Some strain measures

@ Several rotation-independent symmetric deformation tensors are used in mechanics.
@ Right Cauchy-Green deformation tensor [Lagrangian tensor]

C=F"F Cy=FjFu=FuFu
o Left Cauchy-Green deformation tensor [Eulerian tensor]
B=FF" Bj= FiKF}z‘ = FixFk;
@ Some finite strain tensors
o Objective or invariant

@ MustbeOQfor F =1
@ Must correspond to the small deformation theory for a first order Taylor expansion with respect to F

_ 1 _ 1 >
Green-Lagrange E= > (c-1)= > (g —l)

Biot strain tensor EBet =y —1
Logarithmic strain tensor o2 — Jog U
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Principal stretches: );

@ U and V have the same eigenvalues )\; and can be expressed as:

@ so that:
3 3
c=YNRoN B=Y N
i=1 =1
@ One has:
3
V=RUR" = XN(RN)RN)
i=1
@ Note also that: o ’
i LR eN,
aC ~ 2x ' ®Ni
Finite Strains 14/1

MAGIS



Some strain measures: examples

@ Tension loading
ux = (AL/L)x, uy = (Al/)y, uz = (Al/l)z

1+4 o0 0
F=| o 1+4 o0
0 o 1+4

AL\? AN
C11:<1+T) C222033:(1+7)
1 AL\? AL 1 ANZ
Eiy = = 1 — 1)~ — Epp=Ez;3=— 1 — -1
11 2( + L) > [ Fe2 33 2<<+ l) >

) AL ; ; AL
e = o e ey = 4f
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@ Simple shear

1 4 0 1 vy 0 1+ v 0
F=10 1 0| C=(y +®+1 0] B=| »~ 1 0| =RCRA'
0o 0 1 0 0 1 0 0o 1

@ detF=detC=1
@ Eigenvalues of C

1 1
1 g4l 7 +5 \/47 +4 1+§72—§\/472+74

cosf —sinf 0
sm9 cose 0

1

@ R has the form

@ Solving B= R.C.RT, yields
6 = —arctanv/2

o Finally

2 Y
V442 2\/4+72
2

U=RTF= v ? L
\/4ar72 Va4 472 o VA+2
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@ First order Taylor expansion
1 ~ 0
=U

C=\|~ 1 0
0o 0 1
J—
2
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Stress measures and work equivalence

Cauchy stress g (o)
Stress measure in the final (f) configuration
Velocity gradient

L=FF'=D+W
@ Work

Kirchhoff stress
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@ Green-Lagrange strain tensor

1 T
E = S(EE-1)
E - 1 (EET+FET
= 2 P, z
. 1 .
—1 - _ Vi T T
o FLEET = S (ETE+ETETT)
1] (L+ LT) =D E=FDFT
EE TS (L+L E=FDF
@ Second Piola-Kirchhoff stress tensor
oiDjdQ = oyFy T ExFy; " JdQ

= Ja,»,-F;g‘/—‘j[TEKLQO
= JFq oiF TEk o

= SkEx
@ with
1
S=JUF'aF T o o= FSF'
@ The Second Piola-Kirchhoff stress, S, is the work conjugate of the Green-Lagrange strain
tensor, E.

MAGIS Finite Strains 19/1



@ First Piola-Kirchhoff/Boussinesq stress tensor

c:DdQ = o:F. F*‘JdQO because ¢ is symmetric
= JO',/F,KF on = JU,/F FKon
= NiFixdQ
n: FdQ,

@ The First Piola-Kirchhoff stress, .

, is the work conjugate of the transformation gradient F

=Jo.F~T or o=-NFT

ol =

@ [ is not symmetric @

@ Finally
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Interpretation of the various stress measures: tensile test

@ Transformation gradient — Cauchy stress [final configuation]

Fp, 0 0 o 0 0
F=|0 F. o0 J=FF% o=1|0 0 0
0 0 Fi 0 00

@ Kirchhoff stress

T=Jo

T=F| Fo T =0 forincompressible materials

@ Second Piola-Kirchhoff
7 F? . . _ 1
S=J .o.F S = F—a for incompressible materials S = EU
II i

@ First Piola-Kirchhoff stress

1
N=Jo.FT n= FoN engineering stress
I
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Stress rates - Jaumann stress rate

@ Recall of the relation

@ so that:
Q = wa-aow
el Q" w+w.Q'
@ For an objective displacement vector i’ = Q.d, one gets:

U=Qi+Qi=W.Q-QW).i+Qi=W.0-QWi+Q.i

So that:

U —W.0 =Q.(i- W.0)

@ This allows to define an objective derivative of vectors (Jaumann rate):

W=u- Wi
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@ Following the same methodology for second order tensors:

I = arQ'+arQ@’ +arqQ’
= Wao-aw)1Q"+o1.(-Q"W+wa+al.Q
= WT-QwTrQ -T.W+oTwa'+a7.qQ"

@ which is rewritten as:
T-wI+TW=0 (T-WwT+TW).Q"
@ An objective derivative (Jaumann derivative) is then obtained for second order tensors:

V=T-WT+TW
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Stress rates - Truesdell stress rate

@ Recall the relation between the Cauchy and the second Piola-Kirchhoff stress:
1
o=-FSF'  S=JF'oFT

@ As Sis invariant the following stress rate will be objective (it corresponds to the transport of
the rate of the second Piola-Kirchhoff stress):

@ Noting that:

@ So that:
J
o=50+FF lo+oF TF +6
o Note that d
G EE N =0=FF +FF
@ so that
FF'=-L and FTF =17

@ One also has .
J/J =TiL

@ Finally, one obtains the Truesdell stress rate

g=TiLo — Lo -0l +&
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Stress rates - Green-Naghdi stress rate

One defines the rotated stress og
cr=RoR" or ¢=R".0rR

@ Following the same methodology as for the Truesdell rate, one gets:
=R".sa.R

which defines an objective rate

@ Noting that . .
or=RaR"+RaR"+Rs.R"
@ one gets:
E =6+R"Ro+0RTR=6-Qo+aQ

@ with )

Q=RR"
@ Green-Naghdi stress rate

G=6-Qo+0Q
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Constitutive equations : hyperelasticity

@ Hyperelasticity is often used for elastomers
@ One first defines a strain energy density function W which depends on C
@ For isotropic materials, W only depends on the invariants of C

I1 = TK'Q
1 2
k= (e -mce)
I3 = detC for incompressible materials: /3 = 1

J=detF Il =J
@ The second Piola-Kirchhoff stress is then given by:
ow ow
S= =2—
=" 9E oc
@ Mooney-Rivlin law
W=Ci(h—3)+ Ca(k—3)

@ Ogden
N
W (A1, A2, A3) Z (A?p+)‘gp+)‘3ap73>
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@ Use of Penn invariant for nearly incompressible materials:

1

F—-F=——__F suchthat detF =1
T T (detF)V/3 T -
@ then o
C=F"F
@ and
/1 TIE
12 TI‘EE
detC =1

@ Modified strain energy density function

W = Ci(l1 — 3) + Ca(l2 — 3)

MAGIS Finite Strains 271



Constitutive equations : hypo-elasticity

@ The constitutive equations are written in a rate form relating any objective stress rate to the
deformation rate D:

J

g,

190
QO

1>

:D
@ These constitutive equations may be path dependent .. . not physical

s G
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Constitutive equations : F€.FP decomposition

@ One assume an elastic (F¢) / plastic (FP) transformation decomposition
E=E°FP

@ The decomposition defines an intermediate state :

@ The deformation rate is given by:
L=FF " =FF 4 FPEPEP Eo = Lo 4 FoLP o

o Express LP = DP + WP
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@ Crystal plasticity

Qp:Zﬁs(ms®ﬁs+f_ﬁs®ﬁs) ﬂp:Z'yS(mS®ﬁsfﬁ75®ﬁs)

S S

Fs = As(T : (Ms ® fs))
@ Isotropic von Mises plasticity
DP — “p= WP =0

@ T rotated stress (various possibilities)
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Constitutive equations : corotational formulations

@ The constitutive equation is expressed between the rotated stress
op=R.o.RT

and any stress measure constructed using U
@ The small strain formalism can be used for the constitutive equation
@ The corresponding objective stress stress rate is the Green-Naghdi rate.
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Constitutive equations : corotational formulations

@ The constitutive equations are expressed using:
co=Q0oc.Q"

where Q is obtained so that the instantaneous rotation rate of the medium wih respect to the
frame is zero: )
W=aaQ"+aw.Q" =0

so that )
Q=-ow

@ The corresponding strain tensor is:
ca= [QDO ot
t

@ The constitutive equations then relate:
oq = f(eq) small strain formalism

@ The corresponding objective stress stress rate is the Jaumann rate.
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