Finite Deformations

David Ryckelynck, Jacques Besson

Centre des Matériaux, Mines ParisTech, UMR CNRS 7633
BP 87 Evry cedex 91003, France

Notations

scalar	a	a
vector	\vec{a}	a_{i}
$2^{\text {nd }}$ order tensor	\underline{a}	$a_{i j}$
$4^{\text {th }}$ order tensor	$\underline{\underline{a}}$	$a_{i j k l}$
matrices	\underline{a}	
Voigt notation	$\underline{a} \rightarrow \mathbf{a}$	
	$\mathcal{V}(\underline{a} \cdot \underline{b})$	

Products		
\cdot	$c=\vec{a} \cdot \vec{b}$	$c=a_{i} b_{i}$
	$\vec{c}=\underline{a} \cdot \vec{b}$	$c_{i}=a_{i j} b_{j}$
	$\underline{c}=\underline{a} \cdot \underline{b}$	$c_{i j}=a_{i k} b_{k j}$
$:$	$c=\underline{a}: \underline{b}$	$c=a_{i j} b_{i j}$
	$\underline{c}=\underline{a}: \underline{b}$	$c_{i j}=a_{i j k l} b_{k l}$
\otimes	$\underline{c}=\overrightarrow{\vec{a}} \otimes \vec{b}$	$c_{i j}=a_{i} b_{j}$
	$\underline{\underline{c}}=\underline{a} \otimes \underline{b}$	$c_{i j k l}=a_{i j} b_{k l}$

[Einstein convention]

Outline

- Displacements and deformation
- Stress measures
- Constitutive equations

Displacement and Deformation

- Displacement field around \vec{X}

$$
\begin{gathered}
\vec{u}(\vec{X}+d \vec{X})=\vec{u}(\vec{X})+d \vec{u}=\vec{u}(\vec{X})+\frac{\partial \vec{u}}{\partial \vec{X}} \cdot d \vec{x} \\
d \vec{x}=d \vec{X}+d \vec{u}=\left(1+\frac{\partial \vec{u}}{\partial \vec{x}}\right) \cdot d \vec{X}
\end{gathered}
$$

- Transformation gradient

$$
\underline{F}=\frac{\partial \vec{x}}{\partial \vec{X}} \quad F_{i l}=\frac{\partial x_{i}}{\partial X_{l}}
$$

Objectivity

- Rigid body transformation

$$
\vec{x}^{\prime}=\underline{Q}(t) \cdot \vec{x}+\vec{c}(t)
$$

- Quantities are objective if they are related by the rotation tensor as:

$$
\begin{aligned}
m^{\prime} & =m \\
\vec{u}^{\prime} & =\underline{Q}(t) \cdot \vec{u} \\
\underline{T}^{\prime} & =\underline{Q}(t) \cdot \underline{T} \cdot \underline{Q}(t)^{T}
\end{aligned}
$$

- Generalization

$$
T_{(n)}=\vec{u}_{1} \otimes \cdots \otimes \vec{u}_{n} \quad \text { objective if } \quad T_{(n)}^{\prime}=\vec{u}_{1}^{\prime} \otimes \cdots \otimes \vec{u}_{n}^{\prime} \quad \text { where } \quad \vec{u}_{i}^{\prime}=\underline{Q} \cdot \vec{u}_{1}
$$

- \underline{F} is not objective

$$
\underline{F}^{\prime}=\frac{\partial \vec{x}^{\prime}}{\partial \vec{X}}=\frac{\partial \vec{x}^{\prime}}{\partial \vec{x}} \cdot \frac{\partial \vec{x}}{\partial \vec{X}}=\underline{Q} \cdot \underline{F}
$$

- $\underline{B}=\underline{F} \cdot \underline{F}^{T}$ is objective

$$
\underline{B}^{\prime}=\underline{F}^{\prime} \cdot \underline{F}^{\prime T}=\underline{Q} \cdot \underline{F} \cdot \underline{F}^{T} \cdot \underline{Q}^{T}=\underline{Q} \cdot \underline{B} \cdot \underline{Q}^{T}
$$

- Quantities are invariant if they remain unchanged by the transformation

$$
m^{\prime}=m, \quad \vec{u}^{\prime}=\vec{u}, \quad \underline{I}^{\prime}=\underline{I}
$$

- $\underline{C}=\underline{F}^{\top} . \underline{E}$ is invariant

$$
\underline{C}^{\prime}=\underline{F}^{\prime \top} \cdot \underline{F^{\prime}}=\underline{F}^{\top} \cdot \underline{Q}^{\top} \cdot \underline{Q} \cdot \underline{F}=\underline{C}
$$

Rates

- Let $\delta \vec{X}=\underline{F} \cdot \delta \vec{X}$ be an infinitesimal segment in the current configuration. One gets:

$$
\frac{d \delta \vec{x}}{d t}=\frac{d \underline{F} \cdot \delta \vec{X}}{d t}=\frac{d \underline{F}}{d t} \cdot \delta \vec{X}=\underline{\dot{E}} \cdot \delta \vec{X}=\underline{\dot{E}} \cdot \underline{F}^{-1} \cdot \delta \vec{x}=\underline{L} \cdot \delta \vec{x}
$$

- \underline{L} can be separated into symmetric (\underline{D}) and an skew-symmetric (\underline{W}) parts:

$$
\underline{L}=\underline{\dot{E}} \cdot \underline{F}^{-1}=\underline{D}+\underline{W}
$$

- \underline{D} characterizes strain rate in the following way:

$$
\begin{aligned}
\frac{d}{d t}\left(\delta \vec{x}^{1} \cdot \delta \vec{x}^{2}\right) & =\frac{d \delta \vec{x}^{1}}{d t} \cdot \delta \vec{x}^{2}+\delta \vec{x}^{1} \cdot \frac{d \delta \vec{x}^{2}}{d t}=\left(D_{i j}+W_{i j}\right) \delta x_{j}^{1} \delta x_{i}^{2}+\delta x_{i}^{1}\left(D_{i j}+W_{i j}\right) \delta x_{j}^{2} \\
& =\left[D_{i j} \delta x_{j}^{1} \delta x_{i}^{2}+D_{i j} \delta x_{i}^{1} \delta x_{j}^{2}\right]+\left[W_{i j} \delta x_{j}^{1} \delta x_{i}^{2} \hat{+}+W_{i j} \delta x_{i}^{1} \delta x_{j}^{2}\right] \\
& =2 \delta \vec{x}^{1} \cdot \underline{D} \cdot \delta \vec{x}^{2}
\end{aligned}
$$

- For a transformation such that: $\underline{F}^{\prime}=\underline{Q}(t) \cdot \underline{F}$

$$
\begin{aligned}
\underline{L}^{\prime} & =\dot{\vec{F}}^{\prime} \cdot \underline{F}^{\prime-1}=(\dot{Q} \cdot \underline{F}+\underline{Q} \cdot \dot{\dot{F}}) \cdot \underline{F}^{-1} \cdot \underline{Q}^{-1} \\
& =\underline{\dot{Q}} \cdot \underline{Q}^{T}+\underline{Q} \cdot(\underline{D}+\underline{W}) \cdot \underline{Q}^{T} \quad \underline{Q}^{-1}=Q^{T} \\
& =\underline{Q} \cdot \underline{D} \cdot \underline{Q}^{T}+\underline{\dot{Q}} \cdot \underline{Q}^{T}+\underline{Q} \cdot \underline{W} \cdot \underline{Q^{T}} \\
& =\underline{D}^{\prime}+\underline{W}^{\prime}
\end{aligned}
$$

- With

$$
\begin{aligned}
\underline{D}^{\prime} & =\underline{Q} \cdot \underline{D} \cdot \underline{Q}^{T} \\
\underline{W}^{\prime} & =\underline{Q} \cdot \underline{W} \cdot \underline{Q^{T}}+\underline{\dot{Q}} \cdot \underline{Q}^{T}
\end{aligned}
$$

- Note that $\underline{\dot{Q}} \cdot \underline{Q}^{T}$ is skew-symmetric as:

$$
\underline{Q} \cdot \underline{Q}^{T}=\underline{1} \quad \Rightarrow \quad \underline{\dot{Q}} \cdot \underline{Q}^{T}+\underline{Q} \cdot \dot{\dot{Q}}^{T}=\underline{0}
$$

- Only \underline{D} is objective

$\underline{R} . \underline{U}-\underline{V} . \underline{U}$ decomposition

- The deformation gradient \underline{F} can be decomposed, using the polar decomposition theorem, into a product of two second-order tensors

$$
\begin{gathered}
\underline{F}=\underline{R} \cdot \underline{U}=\underline{V} \cdot \underline{R} \\
F_{i J}=R_{i K} U_{K J}=V_{i k} R_{k J}
\end{gathered}
$$

with (\underline{R} rotation tensor)

$$
\underline{R} \cdot \underline{R}^{T}=\underline{1} \quad \underline{U}=\underline{U}^{T} \quad \underline{V}=\underline{V}^{T} \quad \underline{U}=\underline{R}^{T} \cdot \underline{V} \cdot \underline{R}
$$

Calculation of R and \underline{U}

- $\underline{C}=\underline{E}^{T} \cdot \underline{F} \equiv \underline{U} \cdot \underline{U}$
- $\operatorname{det} \underline{C}=(\operatorname{det} \underline{F})^{2}>0$ and $\operatorname{det} \underline{C} \neq 0$
- Eigen frame for $\underline{C}=\underline{P}^{T} \cdot \underline{C}_{0} \cdot \underline{P}$

$$
\begin{aligned}
\underline{C}_{0}=\left(\begin{array}{ccc}
c_{1} & 0 & 0 \\
0 & c_{2} & 0 \\
0 & 0 & c_{3}
\end{array}\right) & \rightarrow \underline{U}_{0}=\left(\begin{array}{ccc}
\sqrt{C_{1}} & 0 & 0 \\
0 & \sqrt{C_{2}} & 0 \\
0 & 0 & \sqrt{c_{3}}
\end{array}\right) \\
\underline{U} & =\underline{P}^{\top} \cdot \underline{U}_{0} \cdot \underline{P}
\end{aligned}
$$

- Consequently

$$
\underline{R}=\underline{F} \cdot \underline{U}^{-1} \text { and } \underline{R}^{T}=\underline{U}^{-1} \cdot \underline{F}^{T}
$$

- so that

$$
\underline{R} \cdot \underline{R}^{T}=\underline{F} \cdot \underline{U}^{-1} \cdot \underline{U}^{-1} \cdot \underline{F}^{T}=\underline{F} \cdot \underline{C}^{-1} \cdot \underline{E}^{T}=\underline{E} \cdot\left(\underline{F}^{-1} \cdot \underline{E}^{-T}\right) \cdot \underline{F}^{T}=\underline{1}
$$

- idem for \underline{V}

Volume variation

- Jacobian of the transformation

$$
J=\operatorname{det} \underline{F}=\frac{V}{V_{0}}>0
$$

- so that:

$$
\int_{\Omega} \bullet d \Omega=\int_{\Omega_{0}} \bullet J d \Omega_{0}
$$

Some strain measures

- Several rotation-independent symmetric deformation tensors are used in mechanics.
- Right Cauchy-Green deformation tensor [Lagrangian tensor]

$$
\underline{C}=\underline{F}^{T} \cdot \underline{F} \quad C_{l J}=F_{l k}^{T} F_{k J}=F_{k l} F_{k J}
$$

- Left Cauchy-Green deformation tensor [Eulerian tensor]

$$
\underline{B}=\underline{F} \cdot \underline{F}^{T} \quad B_{i j}=F_{i K} F_{K j}^{T}=F_{i K} F_{K j}
$$

- Some finite strain tensors
- Objective or invariant
- Must be $\underline{0}$ for $\underline{F}=1$
- Must correspond to the small deformation theory for a first order Taylor expansion with respect to \underline{F}

$$
\begin{aligned}
\text { Green-Lagrange } & \underline{E}=\frac{1}{2}(\underline{C}-\underline{1})=\frac{1}{2}\left(\underline{U}^{2}-\underline{1}\right) \\
\text { Biot strain tensor } & \underline{E}^{\text {Biot }}=\underline{U}-\underline{1} \\
\text { Logarithmic strain tensor } & \underline{E}^{\log }=\log \underline{U}
\end{aligned}
$$

Principal stretches: λ_{i}

- \underline{U} and \underline{V} have the same eigenvalues λ_{i} and can be expressed as:

$$
\underline{U}=\sum_{i=1}^{3} \lambda_{i} \vec{N}_{i} \otimes \vec{N}_{i} \quad \underline{V}=\sum_{i=1}^{3} \lambda_{i} \vec{n}_{i} \otimes \vec{n}_{i}
$$

- so that:

$$
\underline{C}=\sum_{i=1}^{3} \lambda_{i}^{2} \vec{N}_{i} \otimes \vec{N}_{i} \quad \underline{B}=\sum_{i=1}^{3} \lambda_{i}^{2} \vec{n}_{i} \otimes \vec{n}_{i}
$$

- One has:

$$
\underline{V}=\underline{R} \cdot \underline{U} \cdot \underline{R}^{T}=\sum_{i=1}^{3} \lambda_{i}\left(\underline{R} \cdot \vec{N}_{i}\right) \otimes\left(\underline{R} \cdot \vec{N}_{i}\right)
$$

- Note also that:

$$
\frac{\partial \lambda_{i}}{\partial \underline{C}}=\frac{1}{2 \lambda_{i}} \vec{N}_{i} \otimes \vec{N}_{i}
$$

Some strain measures: examples

- Tension loading

$$
\begin{gathered}
u_{x}=(\Delta L / L) x, u_{y}=(\Delta I / I) y, u_{z}=(\Delta I / I) z \\
\underline{F}=\left(\begin{array}{ccc}
1+\frac{\Delta L}{L} & 0 & 0 \\
0 & 1+\frac{\Delta I}{I} & 0 \\
0 & 0 & 1+\frac{\Delta I}{I}
\end{array}\right) \\
C_{11}=\left(1+\frac{\Delta L}{L}\right)^{2} C_{22}=C_{33}=\left(1+\frac{\Delta I}{I}\right)^{2} \\
E_{11}=\frac{1}{2}\left(\left(1+\frac{\Delta L}{L}\right)^{2}-1\right) \approx \frac{\Delta L}{L} E_{22}=E_{33}=\frac{1}{2}\left(\left(1+\frac{\Delta I}{I}\right)^{2}-1\right) \\
E_{11}^{\text {Biot }}=\frac{\Delta L}{L}, E_{22}^{\text {Biot }}=E_{33}^{\text {Biot }}=\frac{\Delta L}{L}
\end{gathered}
$$

- Simple shear

$$
\underline{F}=\left(\begin{array}{lll}
1 & \gamma & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \underline{C}=\left(\begin{array}{ccc}
1 & \gamma & 0 \\
\gamma & \gamma^{2}+1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \underline{B}=\left(\begin{array}{ccc}
1+\gamma^{2} & \gamma & 0 \\
\gamma & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\underline{R} \cdot \underline{C} \cdot \underline{R}^{T}
$$

- $\operatorname{det} \underline{F}=\operatorname{det} \underline{C}=1$
- Eigenvalues of \underline{C}

$$
1 \quad 1+\frac{1}{2} \gamma^{2}+\frac{1}{2} \sqrt{4 \gamma^{2}+\gamma^{4}} \quad 1+\frac{1}{2} \gamma^{2}-\frac{1}{2} \sqrt{4 \gamma^{2}+\gamma^{4}}
$$

- \underline{R} has the form

$$
\underline{R}=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Solving $\underline{B}=\underline{R} \cdot \underline{C} \cdot \underline{R}^{T}$, yields

$$
\theta=-\arctan \gamma / 2
$$

- Finally

$$
\underline{U}=\underline{R}^{T} \cdot \underline{F}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{4+\gamma^{2}}} & \frac{\gamma}{\sqrt{4+\gamma^{2}}} & 0 \\
\frac{\gamma}{\sqrt{4+\gamma^{2}}} & \frac{\gamma^{2}}{\sqrt{4+\gamma^{2}}}+\frac{2}{\sqrt{4+\gamma^{2}}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- First order Taylor expansion

$$
\begin{gathered}
\underline{C}=\left(\begin{array}{lll}
1 & \gamma & 0 \\
\gamma & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\underline{U} \\
\theta=-\frac{\gamma}{2}
\end{gathered}
$$

Stress measures and work equivalence

- Cauchy stress $\underline{\sigma}\left(\sigma_{i j}\right)$
- Stress measure in the final (t) configuration
- Velocity gradient

$$
\underline{L}=\underline{\dot{E}} \cdot \underline{F}^{-1}=\underline{D}+\underline{W}
$$

- Work

$$
w=\int_{\Omega} \underline{\sigma}: \underline{D} d \Omega
$$

- Kirchhoff stress

$$
\begin{gathered}
w=\int_{\Omega} \underline{\sigma}: \underline{D} d \Omega=\int_{\Omega_{0}} J \underline{\sigma}: \underline{D} d \Omega_{0}=\int_{\Omega_{0}} \underline{\tau}: \underline{D} d \Omega_{0} \\
\underline{\tau}=J \underline{\sigma} \quad \tau_{i j}=J \sigma_{i j}
\end{gathered}
$$

- Green-Lagrange strain tensor

$$
\begin{aligned}
\underline{E} & =\frac{1}{2}\left(\underline{F} \cdot \underline{F}^{T}-\underline{1}\right) \\
\underline{\dot{E}} & =\frac{1}{2}\left(\underline{\dot{F}} \cdot \underline{F}^{T}+\underline{F} \cdot \underline{\dot{F}}^{T}\right) \\
\text { or } \underline{F}^{-1} \cdot \dot{\dot{E}} \cdot \underline{F}^{-T} & =\frac{1}{2}\left(\underline{F}^{-1} \cdot \dot{\dot{F}}+\dot{\dot{F}}^{T} \cdot \underline{F}^{-T}\right) \\
\underline{F}^{-1} \cdot \dot{\dot{E}} \cdot \underline{F}^{-T} \frac{1}{2}\left(\underline{L}+\underline{L}^{T}\right)=\underline{D} & \underline{\dot{E}}=\underline{F} \cdot \underline{D} \cdot \underline{F}^{T}
\end{aligned}
$$

- Second Piola-Kirchhoff stress tensor

$$
\begin{aligned}
\sigma_{i j} D_{i j} d \Omega & =\sigma_{i j} F_{i K}^{-T} \dot{E}_{K L} F_{L j}^{-1} J d \Omega_{0} \\
& =J \sigma_{i j} F_{K i}^{-1} F_{j L}^{-T} \dot{E}_{K L} \Omega_{0} \\
& =J F_{K i}^{-1} \sigma_{i j} F_{j L}^{-T} \dot{E}_{K L} \Omega_{0} \\
& =S_{K L} \dot{E}_{K L} \Omega_{0}
\end{aligned}
$$

- with

$$
\underline{S}=J \underline{F}^{-1} \cdot \underline{\sigma} \cdot \underline{F}^{-T} \quad \text { or } \quad \underline{\sigma}=\frac{1}{J} \underline{F} \cdot \underline{S} \cdot \underline{F}^{T}
$$

- The Second Piola-Kirchhoff stress, \underline{S}, is the work conjugate of the Green-Lagrange strain tensor, \underline{E}.
- First Piola-Kirchhoff/Boussinesq stress tensor

$$
\begin{aligned}
\underline{\sigma}: \underline{D} d \Omega & =\underline{\sigma}: \underline{\dot{F}} \cdot \underline{F}^{-1} J d \Omega_{0} \quad \text { because } \underline{\sigma} \text { is symmetric } \\
& =J \sigma_{i j} \dot{F}_{i K} F_{K j}^{-1} d \Omega_{0}=J \sigma_{i j} F_{j K}^{-T} \dot{F}_{i K} d \Omega_{0} \\
& =\Pi_{i K} \dot{F}_{i K} d \Omega_{0} \\
& =\underline{\Pi}: \underline{\dot{F}} d \Omega_{0}
\end{aligned}
$$

- The First Piola-Kirchhoff stress, $\underline{\Pi}$, is the work conjugate of the transformation gradient \underline{F}

$$
\underline{\Pi}=J \underline{\sigma} \cdot \underline{F}^{-T} \quad \text { or } \quad \underline{\sigma}=\frac{1}{J} \underline{\Pi} \cdot \underline{F}^{T}
$$

- $\underline{\Pi}$ is not symmetric
- Finally

$$
\int_{\Omega} \underline{\sigma}: \underline{D} d \Omega=\int_{\Omega_{0}} \underline{\tau}: \underline{D} d \Omega_{0}=\int_{\Omega_{0}} \underline{S}: \underline{\dot{E}} d \Omega_{0}=\int_{\Omega_{0}} \underline{\Pi}: \dot{\tilde{E}} d \Omega_{0}
$$

Interpretation of the various stress measures: tensile test

- Transformation gradient - Cauchy stress [final configuation]

$$
\underline{F}=\left(\begin{array}{ccc}
F_{\|} & 0 & 0 \\
0 & F_{\perp} & 0 \\
0 & 0 & F_{\perp}
\end{array}\right) \quad J=F_{\|} F_{\perp}^{2} \quad \underline{\sigma}=\left(\begin{array}{ccc}
\sigma & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Kirchhoff stress

$$
\underline{\tau}=J \underline{\sigma} \quad \tau=F_{\|} F_{\perp}^{2} \sigma \quad \tau=\sigma \quad \text { for incompressible materials }
$$

- Second Piola-Kirchhoff

$$
\underline{S}=J \underline{F}^{-1} \cdot \underline{\sigma} \cdot \underline{F}^{-T} \quad S=\frac{F_{\perp}^{2}}{F_{\|}} \sigma \quad \text { for incompressible materials } \quad S=\frac{1}{F_{\|}^{2}} \sigma
$$

- First Piola-Kirchhoff stress

$$
\underline{\Pi}=J \underline{\sigma} \cdot \underline{F}^{-T} \quad \Pi=\frac{1}{F_{\|}} \sigma \approx \text { engineering stress }
$$

- Recall of the relation

$$
\underline{W}^{\prime}=\underline{Q} \cdot \underline{W} \cdot \underline{Q}^{T}+\underline{\dot{Q}} \cdot \underline{Q}^{T}
$$

- so that:

$$
\begin{aligned}
\dot{Q} & =\underline{W^{\prime}} \cdot \underline{Q}-\underline{Q} \cdot \underline{W} \\
\dot{\underline{Q}}^{T} & =-\underline{Q}^{T} \cdot \underline{W}^{\prime}+\underline{W} \cdot \underline{Q^{T}}
\end{aligned}
$$

- For an objective displacement vector $\vec{u}^{\prime}=\underline{Q} . \vec{u}$, one gets:

$$
\dot{\vec{u}}^{\prime}=\underline{\dot{Q}} \cdot \vec{u}+\underline{Q} \cdot \dot{\vec{u}}=\left(\underline{W}^{\prime} \cdot \underline{Q}-\underline{Q} \cdot \underline{W}\right) \cdot \vec{u}+\underline{Q} \cdot \dot{\vec{u}}=\underline{W}^{\prime} \cdot \vec{u}^{\prime}-\underline{Q} \cdot \underline{W} \cdot \vec{u}+\underline{Q} \cdot \dot{\vec{u}}
$$

- So that:

$$
\dot{\vec{u}}^{\prime}-\underline{W}^{\prime} \cdot \vec{u}^{\prime}=\underline{Q} \cdot(\dot{\vec{u}}-\underline{W} \cdot \vec{u})
$$

- This allows to define an objective derivative of vectors (Jaumann rate):

$$
\vec{u}^{J}=\dot{\vec{u}}-\underline{W} \cdot \vec{u}
$$

- Following the same methodology for second order tensors:

$$
\begin{aligned}
\dot{\bar{T}}^{\prime} & =\dot{Q} \cdot \cdot \underline{T} \cdot \underline{Q}^{T}+\underline{Q} \cdot \underline{T} \cdot \dot{\underline{Q}}^{T}+\underline{Q} \cdot \dot{\bar{T}} \cdot \underline{Q}^{T} \\
& =\left(\underline{W^{\prime}} \cdot \underline{Q}-\underline{Q} \cdot \underline{W}\right) \cdot \underline{T} \cdot \underline{Q}^{T}+\underline{Q} \cdot \underline{T} \cdot\left(-\underline{Q}^{T} \cdot \underline{W}^{\prime}+\underline{W} \cdot \underline{Q}^{T}\right)+\underline{Q} \cdot \dot{\bar{I}} \cdot \underline{Q}^{T} \\
& =\underline{W}^{\prime} \cdot \underline{T}^{\prime}-\underline{Q} \cdot \underline{W} \cdot \underline{T} \cdot \underline{Q}^{T}-\underline{T}^{\prime} \cdot \underline{W}^{\prime}+\underline{Q} \cdot \underline{T} \cdot \underline{W} \cdot \underline{Q}^{T}+\underline{Q} \cdot \dot{\tilde{U}} \cdot \underline{Q}^{T}
\end{aligned}
$$

- which is rewritten as:

$$
\dot{I}^{\prime}-\underline{W^{\prime}} \cdot \underline{I}^{\prime}+\underline{T}^{\prime} \cdot \underline{W^{\prime}}=\underline{Q} \cdot(\dot{\dot{I}}-\underline{W} \cdot \underline{T}+\underline{T} \cdot \underline{W}) \cdot \underline{Q}^{T}
$$

- An objective derivative (Jaumann derivative) is then obtained for second order tensors:

$$
\underline{T}^{J}=\underline{\dot{I}}-\underline{W} \cdot \underline{T}+\underline{T} \cdot \underline{W}
$$

Stress rates - Truesdell stress rate

- Recall the relation between the Cauchy and the second Piola-Kirchhoff stress:

$$
\underline{\sigma}=\frac{1}{J} \underline{F} \cdot \underline{S} \cdot \underline{F}^{T} \quad \underline{S}=J \underline{F}^{-1} \cdot \underline{\sigma} \cdot \underline{F}^{-T}
$$

- As \underline{S} is invariant the following stress rate will be objective (it corresponds to the transport of the rate of the second Piola-Kirchhoff stress):

$$
\stackrel{\circ}{\sigma}=\frac{1}{J} \underline{F} \cdot \underline{\dot{S}} \cdot \underline{F}^{T} \neq \dot{\underline{\sigma}}
$$

- Noting that:

$$
\underline{\dot{S}}=\dot{J} \underline{F}^{-1} \cdot \underline{\sigma} \cdot \underline{F}^{-T}+J \underline{\dot{F}}^{-1} \cdot \underline{\sigma} \cdot \underline{F}^{-T}+J \underline{F}^{-1} \cdot \underline{\dot{\sigma}} \cdot \underline{F}^{-T}+J \underline{F}^{-1} \cdot \underline{\sigma} \cdot \underline{\dot{F}}^{-T}
$$

- So that:

$$
\stackrel{\circ}{\underline{\sigma}}=\frac{\dot{J}}{\bar{J}} \underline{\sigma}+\underline{F} \cdot \dot{\dot{F}}^{-1} \cdot \underline{\sigma}+\underline{\sigma} \cdot \underline{\dot{F}}^{-T} \cdot \underline{F}^{T}+\underline{\dot{\sigma}}
$$

- Note that

$$
\frac{d}{d t}\left(\underline{F} \cdot \underline{F}^{-1}\right)=\underline{0}=\dot{\dot{E}} \cdot \underline{F}^{-1}+\underline{F} \cdot \dot{\dot{F}}^{-1}
$$

- so that

$$
\underline{F} \cdot \dot{\dot{F}}^{-1}=-\underline{L} \quad \text { and } \quad \dot{\underline{E}}^{-\top} \cdot \underline{\underline{F}}^{\top}=-\underline{L}^{\top}
$$

- One also has

$$
\dot{J} / J=\operatorname{Tr} \underline{\underline{L}}
$$

- Finally, one obtains the Truesdell stress rate

$$
\underline{\stackrel{\circ}{\sigma}}=\operatorname{Tr} \underline{L} \underline{\sigma}-\underline{L} \cdot \underline{\sigma}-\underline{\sigma} \cdot \underline{\underline{L}}^{T}+\underline{\dot{\sigma}}
$$

Stress rates - Green-Naghdi stress rate

- One defines the rotated stress $\underline{\sigma}_{R}$

$$
\underline{\sigma}_{R}=\underline{R} \cdot \underline{\sigma} \cdot \underline{R}^{T} \quad \text { or } \quad \underline{\sigma}=\underline{R}^{T} \cdot \underline{\sigma_{R}} \cdot \underline{R}
$$

- Following the same methodology as for the Truesdell rate, one gets:

$$
\underline{\underline{\sigma}}=\underline{R}^{T} \cdot \dot{\underline{\sigma}}_{R} \cdot \underline{R}
$$

which defines an objective rate

- Noting that

$$
\underline{\underline{\dot{\sigma}}}_{R}=\underline{\dot{R}} \cdot \underline{\sigma} \cdot \underline{R}^{T}+\underline{R} \cdot \sigma \cdot \underline{\dot{\theta}^{T}}+\underline{R} \cdot \underline{\dot{\sigma}} \cdot \underline{R}^{T}
$$

- one gets:

$$
\underline{\underline{\sigma}}=\underline{\dot{\sigma}}+\underline{R}^{\top} \cdot \underline{\dot{R}} \cdot \underline{\sigma}+\underline{\sigma} \cdot \dot{\underline{\dot{R}}}^{\top} \cdot \underline{R}=\underline{\dot{\sigma}}-\underline{\Omega} \cdot \underline{\sigma}+\underline{\sigma} \cdot \underline{\Omega}
$$

- with

$$
\underline{\Omega}=\underline{\dot{R}} \cdot \underline{\underline{R}}^{T}
$$

- Green-Naghdi stress rate

$$
\underline{\underline{\sigma}}=\underline{\dot{\sigma}}-\underline{\Omega} \cdot \underline{\sigma}+\underline{\sigma} \cdot \underline{\Omega}
$$

Constitutive equations : hyperelasticity

- Hyperelasticity is often used for elastomers
- One first defines a strain energy density function W which depends on \underline{C}
- For isotropic materials, W only depends on the invariants of \underline{C}

$$
\begin{aligned}
I_{1}= & \operatorname{Tr} \underline{C} \\
I_{2}= & \frac{1}{2}\left((\operatorname{Tr} \underline{C})^{2}-\operatorname{Tr} \underline{C} \cdot \underline{C}\right) \\
I_{3}= & \operatorname{det} \underline{C}
\end{aligned} \quad \text { for incompressible materials: } I_{3}=1 .
$$

- The second Piola-Kirchhoff stress is then given by:

$$
\underline{S}=\frac{\partial W}{\partial \underline{E}}=2 \frac{\partial W}{\partial \underline{C}}
$$

- Mooney-Rivlin Iaw

$$
W=C_{1}\left(I_{1}-3\right)+C_{2}\left(I_{2}-3\right)
$$

- Ogden

$$
W\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\sum_{p=1}^{N} \frac{\mu_{p}}{\alpha_{p}}\left(\lambda_{1}^{\alpha_{p}}+\lambda_{2}^{\alpha_{p}}+\lambda_{3}^{\alpha_{p}}-3\right)
$$

- Use of Penn invariant for nearly incompressible materials:

$$
\underline{F} \rightarrow \overline{\bar{F}}=\frac{1}{(\operatorname{det} \underline{F})^{1 / 3}} \underline{F} \quad \text { such that } \operatorname{det} \underline{\bar{F}}=1
$$

- then

$$
\underline{\bar{C}}=\underline{\bar{F}}^{\top} \cdot \overline{\bar{E}}
$$

- and

$$
\begin{aligned}
& \bar{l}_{1}=\operatorname{Tr} \underline{\bar{C}} \\
& \bar{I}_{2}=\operatorname{Tr} \underline{\bar{C}} \cdot \overline{\bar{C}} \\
& \operatorname{det} \underline{\bar{C}}=1
\end{aligned}
$$

- Modified strain energy density function

$$
w=C_{1}\left(\bar{T}_{1}-3\right)+C_{2}\left(\bar{T}_{2}-3\right)
$$

Constitutive equations : hypo-elasticity

- The constitutive equations are written in a rate form relating any objective stress rate to the deformation rate \underline{D} :

$$
\underline{\sigma}^{J}, \underline{\stackrel{\circ}{\sigma}}, \underline{\square}, \cdots=\underline{\underline{\alpha}}: \underline{D}
$$

- These constitutive equations may be path dependent ... not physical

Constitutive equations : $\underline{F}^{e} \cdot \underline{F}^{p}$ decomposition

- One assume an elastic $\left(\underline{F}^{e}\right)$ / plastic $\left(\underline{F}^{p}\right)$ transformation decomposition

$$
\underline{F}=\underline{F}^{e} \cdot \underline{F}^{p}
$$

- The decomposition defines an intermediate state :

- The deformation rate is given by:

$$
\underline{L}=\dot{\dot{F}} \cdot \underline{F}^{-1}=\dot{\dot{F}}^{e} \cdot \underline{F}^{e-1}+\underline{F}^{e} \cdot \underline{\dot{\dot{F}}}^{p} \cdot \underline{F}^{p-1} \cdot \underline{F}^{e-1}=\underline{L}^{e}+\underline{F}^{e} \cdot \underline{\underline{F}}^{p} \cdot \underline{F}^{e-1}
$$

- Express $\underline{L}^{p}=\underline{D}^{p}+\underline{W}^{p}$
- Crystal plasticity

$$
\begin{gathered}
\underline{D}^{p}=\sum_{s} \dot{\gamma}_{s}\left(\vec{m}_{s} \otimes \vec{n}_{s}+\vec{m}_{s} \otimes \vec{n}_{s}\right) \quad \underline{W}^{p}=\sum_{s} \dot{\gamma}_{s}\left(\vec{m}_{s} \otimes \vec{n}_{s}-\vec{m}_{s} \otimes \vec{n}_{s}\right) \\
\dot{\gamma}_{s}=\dot{\gamma}_{s}\left(\underline{I}:\left(\vec{m}_{s} \otimes \vec{n}_{s}\right)\right)
\end{gathered}
$$

- Isotropic von Mises plasticity

$$
\underline{D}^{p}=\frac{3}{2} \dot{p} \frac{T^{\prime}}{T_{\text {eq }}^{\prime}} \quad \underline{W}^{p}=\underline{0}
$$

- I rotated stress (various possibilities)

Constitutive equations : corotational formulations

- The constitutive equation is expressed between the rotated stress

$$
\underline{\sigma}_{R}=\underline{R} \cdot \underline{\sigma} \cdot \underline{R^{T}}
$$

and any stress measure constructed using \underline{U}

- The small strain formalism can be used for the constitutive equation
- The corresponding objective stress stress rate is the Green-Naghdi rate.

Constitutive equations : corotational formulations

- The constitutive equations are expressed using:

$$
\underline{\sigma}_{Q}=\underline{Q} \cdot \underline{\sigma} \cdot \underline{Q}^{T}
$$

where Q is obtained so that the instantaneous rotation rate of the medium wih respect to the frame is zero:

$$
\underline{W}^{\prime}=\underline{\dot{Q}} \cdot \underline{Q}^{T}+\underline{Q} \cdot \underline{W} \cdot \underline{Q}^{T}=\underline{0}
$$

so that

$$
\dot{\underline{Q}}=-\underline{Q} \cdot \underline{W}
$$

- The corresponding strain tensor is:

$$
\underline{\varepsilon}_{Q}=\int_{t} \underline{Q} \cdot \underline{D} \cdot \underline{Q}^{T} d t
$$

- The constitutive equations then relate:

$$
\underline{\sigma}_{Q}=f\left(\underline{\varepsilon}_{Q}\right) \quad \text { small strain formalism }
$$

- The corresponding objective stress stress rate is the Jaumann rate.

