
Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Solvers for Computational Mechanics

Arnaud Delaplace - David Ryckelynck

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Outline

Static algorithms
Solving one system...
Nonlinear problems

Dynamic algorithms
What is dynamics?
Linear structural dynamics
Nonlinear structural dynamics
Stability and accuracy

Explicit schemes
Central different schemes
Runge-Kutta method
Predictor-corrector methods

Implicit schemes
linear problem
Nonlinear problem

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Solving one system...
Nonlinear problems

Discretized form of the static equations:

K(ut)ut = rt (1)

Solved by using either a direct method or an iterative one.

Matrix storage

In computational mechanics, K is usually a
sparse-symmetric matrix. One needs to
store only the non zero-elements (sparse
storage, skyline storage...).

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Solving one system...
Nonlinear problems

Direct solvers

I Gauss-Jordan elimination,

I LU decomposition,

I Inversion by partitionning,

I Cholesky decomposition...

Very efficient, robust, free libraries are available!!!

→ LAPACK (Linear Algebra PACKage) with BLAS (Basic Linear Algebra
Subprograms), ATLAS (Automatically Tuned Linear Algebra System),
SuiteSparse...

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Solving one system...
Nonlinear problems

Iterative solvers

I Mainly based on the conjugate gradient method family, and a
preconditioner

I Efficient for large system with sparse operator

Algorithm

1. Initialisation: uk
0 arbitrary, gk

0 = Kuk
0 − fk , zk

0 = P−1gk
0

2. i ⇐ 1

3. REPEAT

4. ωk
i = zk

i + γk
i−1ω

k
i−1 γk

i−1 = − (zk
i ,Kωk

i−1)

(Kωk
i−1,ω

k
i−1)

5. uk
i+1 = uk

i + αk
i ω

k
i

6. gk
i+1 = gk

i + αk
i Kωk

i αk
i = − (gk

i ,z
k
i)

(Kωk
i ,ω

k
i)

7. zk
i+1 = P−1gk

i+1

8. i ⇐ i + 1

9. UNTIL convergence

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Solving one system...
Nonlinear problems

I For a nonlinear problem, the solution is obtained with an iterative process,
where a succession of linear systems are solved.

I Examples: Newton-Raphson solver, radial return algorithm (mainly
dedicated to plasticity problem)

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Solving one system...
Nonlinear problems

Newton-Raphson solver

We search for:
Fi (x1, x2, ..., xN) = 0 for i = 1, 2, ...,N

Taylor series expansion:

Fi (x + δx) = Fi (x) +
NX

j=1

∂Fi

∂xj
δxj +O(δx2)

Using the Jacobian matrix Jij = ∂Fi/∂xj , the matrix notation leads to:

F(x + δx) = F(x) + Jδx +O(δx2)

If the term of order δx2 are neglected, one has to solve the system:

Jδx = −F

The corrections are added to the solution vector until convergence:

xnew = xold + δx

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Solving one system...
Nonlinear problems

Radial return algorithm

For a return mapping algorithm, the first (trial) solution is computed assuming
an elastic step. If the yield criterion is violated, then the solution is projected
back to the plastic yield surface to give the updated stress.

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

What is dynamics?
Linear structural dynamics
Nonlinear structural dynamics
Stability and accuracy

Dynamic problems

→ Inertia terms must be included in the equations of equilibrium

I Wave propagation problems (response governed by high frequency modes)
ex.: shock response, impact loading...

I Inertia problems (response governed by a small number of low frequency
modes)
ex.: seismic response...

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

What is dynamics?
Linear structural dynamics
Nonlinear structural dynamics
Stability and accuracy

Governing equations:

f i (t) + fD(t) + f int(t) = fext(t)

I f i (t): inertia forces

I fD(t): damping forces

I f int(t): internal forces

I fext(t): external forces

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

What is dynamics?
Linear structural dynamics
Nonlinear structural dynamics
Stability and accuracy

Equations of motion for linear structural dynamics

Müt + Cu̇t + Kut = rt (2)

I M: discrete mass matrix

I C: viscous damping matrix

I K: linear stiffness matrix

I rt : vector of external discrete forces

I üt , u̇t , ut : nodal acceleration, velocity and displacement vectors

We search the time-history response ut of the structure.

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

What is dynamics?
Linear structural dynamics
Nonlinear structural dynamics
Stability and accuracy

Initial conditions

u(0) = u0

u̇(0) = u̇0

The initial acceleration is obtained using the equations of motion:

ü0 = M−1 (r(0)− Cu̇0 −Ku0)

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

What is dynamics?
Linear structural dynamics
Nonlinear structural dynamics
Stability and accuracy

Equations of motion for nonlinear structural dynamics

Müt + Cu̇t + n(ut) = rt (3)

I M: discrete mass matrix

I C: viscous damping matrix

I n: vector of nonlinear internal forces

I rt : vector of external discrete forces

I üt , u̇t , ut : nodal acceleration, velocity and displacement vectors

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

What is dynamics?
Linear structural dynamics
Nonlinear structural dynamics
Stability and accuracy

Vector of nonlinear internal forces:

Kt(u) =
∂n(u)

∂u

I Kt : tangent stiffness matrix

n(u) =
X

e

Z
V

BTσ(ε)dV

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

What is dynamics?
Linear structural dynamics
Nonlinear structural dynamics
Stability and accuracy

Stability

The solution of a problem can be expressed in a recurrence relation form:

ut+∆t = Aut + ...

with A the amplification matrix. The stability of the scheme is obtained if the
spectral radius of A verifies:

ρ(A) ≤ 1

where ρ(A) = max(λi) and λi are the eigenvalues of A.

Accuracy

For a resolution over the time range [t0, tf], with a time increment ∆t
corresponding to n = (tf − t0)/∆t, the global error of a scheme is evaluated as:

e = utf − un

The order of accuracy p of the scheme is defined as:

e = O(∆tp) when ∆t → 0

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Central different schemes
Runge-Kutta method
Predictor-corrector methods

Explicit schemes

I Solution at time t + ∆t is obtained from equilibrium equations at time t

I Do not require the factorization of the stiffness matrix
(→ and no additional storage for a diagonal mass matrix)

I Efficient for short load durations (impact, explosions...)

But

Conditionally stable

Require generally small time steps (inversely proportional to the highest
frequency of the discrete system)

I Central different methods, Runge-Kutta methods, Predictor-corrector
methods, Taylor series schemes...

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Central different schemes
Runge-Kutta method
Predictor-corrector methods

u̇t =
1

∆t
(ut+∆t − ut−∆t) (4)

üt =
1

∆t2
(ut+∆t − ut + ut−∆t) (5)

Using equation (3),

`
1

∆t2 M + 1
2∆t

C
´

ut+∆t =

rt −
`
n(ut)− 2

∆t2 Mut

´
−
`

1
∆t2 M− 1

2∆t
C
´

ut−∆t

(with n(ut) = Kut for linear problem)

Without physical damping (C = 0),

ut+∆t = ∆t2M−1 (rt − n(ut)) + 2ut − ut−∆t

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Central different schemes
Runge-Kutta method
Predictor-corrector methods

Remark

If damping is included, one prefers the backward difference scheme, where
equation (4) is replaced by:

u̇t =
1

∆t
(ut − ut−∆t)

Then,

ut+∆t = M−1
“

∆t2(rt − n(ut))−∆tC(ut − ut−∆t)
”

+ 2ut − ut−∆t

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Central different schemes
Runge-Kutta method
Predictor-corrector methods

Algorithm

1. Initial calculations
1.1 Initialize u0 and u̇0.
1.2 Form structural mass matrix M and damping matrix C.
1.3 Select time step such that ∆t < ∆tcr .

2. For each time step
2.1 Calculate effective load at time t: r̂t = rt − C(ut − n(ut)
2.2 Solve for accelerations at time t: Müt = r̂t
2.3 Evaluate (for the first time step): ut−∆t = ut −∆tu̇t + ∆t2

4
üt

2.4 Evaluate displacement and velocity at time t + ∆t

ut+∆t = −ut−∆t + 2ut + ∆t2üt

u̇t+∆t = [ut+∆t − ut] /∆t

2.5 t ← t + ∆t and go to 2.1.

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Central different schemes
Runge-Kutta method
Predictor-corrector methods

Fourth order Runge-Kutta method

ut+∆t = ut + ∆tu̇t +
∆t2

6
(a0 + a1 + a2) +O(t5)

u̇t+∆t = u̇t +
∆t

6
(a0 + 2a1 + 2a2 + a3) +O(t5)

a0 = ü(t, ut)

a1 = ü(t +
∆t

2
, ut +

∆t

2
u̇t)

a2 = ü(t +
∆t

2
, ut +

∆t

2
u̇t +

∆t2

4
a0)

a3 = ü(t + ∆t, ut + ∆tu̇t +
∆t2

2
a1)

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Central different schemes
Runge-Kutta method
Predictor-corrector methods

I Self-starting scheme

I Accurate evaluation of the solution

I Acceleration vector must be evaluated four times per time step

I Requires a small time step

I Generally (computationally) slower than the central difference scheme

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

Central different schemes
Runge-Kutta method
Predictor-corrector methods

Predictor:

up
t+∆t = ut +

∆t

2
(3u̇t − u̇t−∆t)

Iterate with the corrector until convergence:

um+1
t+∆t = um

t+∆t +
∆t

2
(u̇t+∆t + u̇t)

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

linear problem
Nonlinear problem

Implicit schemes

I Solution at time t + ∆t involves the velocities and the accelerations at
time t + ∆t

I (Generally) unconditionally stable

I Efficient for long load durations (seismic loading...)

But

Require the solution of the stiffness matrix

Require more computational effort per time step

I Newmark family methods, Wilson-θ methods, HHT method...

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

linear problem
Nonlinear problem

Newmark time integration scheme

ut+∆t = ut + ∆tu̇t +
∆t2

2
[(1− 2β)üt + 2βüt+∆t]

u̇t+∆t = u̇t + ∆t [(1− γ)üt + γüt+∆t]

β and γ are the Newmark parameters which determine the stability and
accuracy of the algorithm.

Equations of motion

“
1

β(∆t)2 M + γ
β∆t

C
”

ut+∆t + n(ut+∆t) = rt+∆t

+C
“

γ
β∆t

ut + (γ
β
− 1)u̇t + ∆t(γ

2β
− 1)üt

”
+M

“
1

β(∆t)2 ut + 1
β∆t

u̇t + (1
2β
− 1)üt

”
(6)

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

linear problem
Nonlinear problem

Newmark family methods

Trapezoidal rule (β = 1/4 and γ = 1/2):

ut+∆t = ut + ∆tu̇t +
∆t2

4
[üt + üt+∆t]

u̇t+∆t = u̇t +
∆t

2
[üt + üt+∆t]

Central difference scheme (β = 0 and γ = 1/2):

ut+∆t = ut + ∆tu̇t +
∆t2

4
üt

u̇t+∆t = u̇t +
∆t

2
[üt + üt+∆t]

Linear acceleration method (β = 1/6 and γ = 1/2)...

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

linear problem
Nonlinear problem

Stability aspects

method type β γ stability
Trapezoidal rule implicit 1/4 1/2 unconditional

Linear acceleration implicit 1/6 1/2 Ωcrit = 2
√

3

Fox-Goodwin implicit 1/12 1/2 Ωcrit =
√

6
Central difference explicit 0 1/2 Ωcrit = 2

Rem.: all of these methods are 2-order of accuracy.

The Newmark family methods are unconditionally stable if γ ≥ 1/2 and
β ≥ (γ + 1/2)2/4.
The Newmark family methods are conditionally stable for γ ≥ 1/2, β < γ/2
and ω∆t ≥ Ωcrit

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

linear problem
Nonlinear problem

Newmark family methods

I Positive damping is introduced if γ > 1/2 (but the scheme looses its
second-roder accuracy).

I Negative damping is introduced if γ < 1/2 (leading eventually to an
unbounded response).

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

linear problem
Nonlinear problem

Wilson-θ method

The acceleration is assumed to be linear from time t to time t + θ∆t, with
θ ≥ 0. The method is unconditionnaly stable if θ ≥ 1.37. For 0 ≤ τ ≤ t + θ∆t,

üt+τ = üt +
τ

θ∆t
[üt+θ∆t − üt]

u̇t+τ = u̇t + τ üt +
τ 2

2θ∆t
[üt+θ∆t − üt]

ut+τ = ut + τ u̇t +
τ 2

2
üt +

τ 3

6θ∆t
[üt+θ∆t − üt]

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

linear problem
Nonlinear problem

HHT method

Equation of motion

Müt+∆t + (1 + α)Cu̇t+∆t − αCu̇t + (1 + α)Kut+∆t − αKut

= (1 + α)rt+∆t − αrt

α ∈ [−1/3, 0] is a dissipative parameter, β = 1
4
(1− α)2 and γ = 1

2
− α.

⇒ Dissipation of the high frequencies

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

linear problem
Nonlinear problem

Algorithm (1/2)

1. Initialize u0, u̇0 and ü0.

2. Calculate the following constants:

a0 = 1/(β∆t2); a1 = γ/(β∆t); a3 = 1/(2β)− 1

a4 = γ/β − 1; a5 = ∆t/2(γ/β − 2)

3. Form M, C and K.

4. Form the effective stiffness matrix, initially assuming a liner behavior:
K̂ = a0M + a1C + K

5. Form the effective load vector:

r̂t+∆t = rt+∆t + M(a2u̇t + a3üt) + C(a4u̇t + a5üt)− n(ut)

6. Solve for the displacement increments: δu = K̂−1r̂t+∆t

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

Static algorithms
Dynamic algorithms

Explicit schemes
Implicit schemes

linear problem
Nonlinear problem

Algorithm (2/2)

7. iterate for dynamic equilibrium:
7.1 i = i + 1
7.2 Evaluate the (i − 1)-th approximation to the displacements, velocities and

accelerations:

ui−1
t+∆t = ut + δui−1; u̇i−1

t+∆t = a1δui−1 − a4u̇t − a5üt

üi−1
t+∆t = a0δui−1 − a2u̇t − a3üt

7.3 Evaluate the i-th residual force:
ψi−1

t+∆t = rt+∆t − (Müi−1
t+∆t + Cu̇i−1

t+∆t + n(ui−1
t+∆t)

7.4 Solve for the i-th corrected displacement: ∆ui = K̂−1ψi−1
t+∆t

7.5 Evaluated the corrected displacement increments: δui = δui−1 + ∆ui

7.6 Check for convergence of the iteration process |∆ui |/|ut + δui | ≤ ε

Arnaud Delaplace - David Ryckelynck Solvers for Computational Mechanics

	Static algorithms
	Solving one system...
	Nonlinear problems

	Dynamic algorithms
	What is dynamics?
	Linear structural dynamics
	Nonlinear structural dynamics
	Stability and accuracy

	Explicit schemes
	Central different schemes
	Runge-Kutta method
	Predictor-corrector methods

	Implicit schemes
	linear problem
	Nonlinear problem

