Contents

Introduction

Basic elements of the thermodynamical approach First and second principle Thermoelasticity Dissipative processes

Crystal Plasticity model

Derivation of single crystal models Initial yield surfaces Identification under tension and tension-shear loadings

Brief notes on numerical methods

Slip system selection, onset of plastic flow Slip system selection, direction of plastic flow for various models Back to dislocations Example of FE computations

Replica of a tensile single crystal specimens

Initial yield (PhD F.Hanriot, 1993)

Single crystal specimens

An introduction to single crystal plasticity

Georges Cailletaud

Centre des Matériaux Ecole des Mines de Paris/CNRS

"Nul plus haut enseignement artistique ne me paraît pouvoir être reçu que du cristal" André Breton, *L'amour fou*

A reduced number of mechanisms, the slip systems (PhD F.Hanriot, 1993)

Polycrystal specimens

Slip systems in waspaloy (M. Clavel, 1978)

Replica of a tensile single crystal specimens (2)

End of life (PhD F.Hanriot, 1993)

Thermodynamics: first principle

• First principle, using internal energy on a domain \mathcal{D} , E, and specific internal energy, e

$$\frac{dE}{dt} = \int_{\mathcal{D}} \rho \frac{de}{dt} dV = \mathcal{P}^{(e)} + \dot{Q}$$

• Power of external forces

$$\mathcal{P}^{(e)} = \int_{\mathcal{D}} \mathbf{\sigma} : \dot{\mathbf{\varepsilon}} dV$$

 Heat exchanged, using the rate of captured heat, <u>q</u>, and <u>n</u>, outside normal to the surface ∂D, and r, volumetric heat

$$\hat{Q} = \int_{\mathcal{D}} r dV - \int_{\partial \mathcal{D}} \underline{\mathbf{q}} \cdot \underline{\mathbf{n}} dS = \int_{\mathcal{D}} (r - \operatorname{div} \underline{\mathbf{q}}) dV$$

• Variation of internal energy

$$\rho \frac{de}{dt} = \boldsymbol{\sigma} : \, \dot{\boldsymbol{\varepsilon}} + r - \operatorname{div} \boldsymbol{\underline{q}}$$

Polycrystal specimens

Cu–Zn–Al (F. Gourgues, 1999)

8 / 88

Dissipation

 Application of the method of local state: Ψ depends on temperature and state variables α_i

$$\frac{d\Psi}{dt} = \frac{\partial\Psi}{\partial T}\dot{T} + \frac{\partial\Psi}{\partial\alpha_{i}}\dot{\alpha}_{i}$$
$$s = -\frac{\partial\Psi}{\partial T}$$
$$\sigma_{ij}\dot{\varepsilon}_{ij} - \rho \frac{\partial\Psi}{\partial\alpha_{i}}\dot{\alpha}_{i} - \frac{1}{T}\underline{\mathbf{q}} \cdot \underline{\mathbf{grad}}(T) \ge 0 \tag{4}$$

• Intrinsic dissipation Φ_1 , thermal dissipation Φ_2 :

$$\Phi_1 = \sigma_{ij} \dot{\varepsilon}_{ij} - \rho \frac{\partial \Psi}{\partial \alpha_i} \dot{\alpha}_i \qquad \Phi_2 = -\frac{1}{T} \,\underline{\mathbf{q}} \,. \, \underline{\mathbf{grad}}(T)$$

10 / 88

Thermodynamics: second principle

The second principle provides a superior bound of the heat rate received by the volume D at a temperature T, and can be expressed as a function of the entropy S or of the specific entropy s:

$$\frac{dS}{dt} \ge \int_{\mathcal{D}} \frac{r}{T} dV - \int_{\partial \mathcal{D}} \frac{\mathbf{q} \cdot \mathbf{n}}{T} dS$$

$$d'o\dot{u}: \qquad \int_{\mathcal{D}} \left(\rho \frac{ds}{dt} - \frac{r}{T} + \operatorname{div}\left(\frac{\mathbf{q}}{T}\right)\right) dV \ge 0$$

Using Helmoltz free energy $\Psi,$ such as $e=\Psi+$ Ts, one get the so called Clausius-Duhem inegality

$$\underline{\sigma}: \underline{\dot{\varepsilon}} - \rho \frac{d\Psi}{dt} - \rho s \dot{T} - \frac{1}{T} \underline{\mathbf{q}} \cdot \underline{\mathbf{grad}}(T) \ge 0$$

Thermo-elasticity (1)

- Zero elastic strain for σ^{I} , zero thermal strain for T^{I}
- The state variable is elastic strain: $\alpha_I \equiv \varepsilon^e$ in intrinsic dissipation
- No dissipation for an elastic isothermal perturbation around equilibrium, then

$$\Phi_1 = \underline{\sigma} : \dot{\underline{\varepsilon}}^e - \rho \frac{\partial \Psi}{\partial \underline{\varepsilon}^e} : \dot{\underline{\varepsilon}}^e = 0$$

This provides a definition for stress.

 ε

• Two state variables, two energetically conjugated variables: State variable Conjugated variable

entropy
$$s = -\frac{\partial \Psi}{\partial T}$$

stress $\sigma = \frac{\partial \Psi}{\partial \varepsilon^{e}}$

Ψ is a *thermodynamic potential* characterizing reversible processes

Heat equation

- Decoupling of intrinsic and thermal dissipations, each of them must be positive
- Fourier's law :

$$\underline{\mathbf{q}} = -k(T, \alpha_i) \underline{\operatorname{grad}}(T)$$

• Heat equation in presence of mechanical strain:

$$div\left(k\underline{\mathbf{grad}}(T)\right) = \rho C_{\varepsilon} \dot{T} - r - \sigma_{ij} \dot{\varepsilon}_{ij} + \rho \left(\frac{\partial \Psi}{\partial \alpha_i} - T \frac{\partial^2 \Psi}{\partial T \partial \alpha_i}\right) \dot{\alpha}_i$$
(5)

(with $C_{\varepsilon} = T \frac{\partial s}{\partial T}$, specific heat at a constant deformation)

9 / 88

11 / 88

Temperature changes for elastic loadings

Temperature variation related to volume change:

$$(T-T') = -\frac{3K\alpha T'}{\rho C_{\varepsilon}} \varepsilon_{ll}^{e}$$

Cooling during tension

Loading curves

- isothermal :
$$\underline{\sigma} - \underline{\sigma}' = \lambda \operatorname{Tr} \underline{\varepsilon}^{e} \underline{\mathbf{I}} + 2\mu \underline{\varepsilon}^{e}$$

- adiabatic : $\underline{\sigma} - \underline{\sigma}' = \left(\lambda + \frac{9K^{2}\alpha^{2}T'}{\rho C_{\varepsilon}}\right) \operatorname{Tr} \underline{\varepsilon}^{e} \underline{\mathbf{I}} + 2\mu \underline{\varepsilon}^{e}$

No change on shear modulus, variation of the axial component

Thermo-elasticity (2)

Assume the following form for free energy:

$$egin{aligned} \psi &= arphi': arepsilon^e + rac{1}{2}\lambda \left(\operatorname{Tr} arepsilon^e
ight)^2 + \mu \, arepsilon^e: arepsilon^e - 3Klpha \operatorname{Tr} arepsilon^e (T - T') \ &- rac{1}{2}rac{
ho C_arepsilon}{T'} (T - T')^2 \end{aligned}$$

The stress is then:

$$\begin{split} & \boldsymbol{\sigma} = \rho \frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}^{e}} = \boldsymbol{\sigma}^{I} + \lambda \operatorname{Tr} \boldsymbol{\varepsilon}^{e} \boldsymbol{I} + 2 \, \mu \, \boldsymbol{\varepsilon}^{e} - 3K \alpha (T - T^{I}) \boldsymbol{\xi} \\ & \boldsymbol{\sigma} - \boldsymbol{\sigma}^{I} = \lambda \left(\operatorname{Tr} \boldsymbol{\varepsilon}^{e} - 3\alpha (T - T^{I}) \right) \boldsymbol{I} + 2\mu \boldsymbol{\varepsilon}^{e} \end{split}$$

Variation of specific entropy:

$$\rho \boldsymbol{s} = -\rho \frac{\partial \Psi}{\partial T} = 3K\alpha \operatorname{Tr} \boldsymbol{\varepsilon}^{\boldsymbol{e}} + \frac{\rho C_{\varepsilon}}{T'} \left(T - T'\right)$$

Standard models (1)

• A model is standard if one can find a potential $\Omega \equiv \Omega(Z)$ such as:

$$\dot{z} = \frac{\partial \Omega}{\partial Z}$$

• If Ω is a convex function of Z which includes the origin, the dissipation is automatically positive, since:

$$\phi_1 = Z \frac{\partial \Omega}{\partial Z}$$

(all the points of the surface Ω are on the same side of the tangent plane defined by $\frac{\partial\Omega}{\partial Z}$)

• One can also define (through the Legendre-Fenchel transform) a companion potential in terms of \dot{z} :

$$\Omega^*(\dot{z}) = \max_Z \left(Z \dot{z} - \Omega(Z) \right)$$

 A new potential, expressed as Ω^{*}(ż) or Ω(Z) must be introduced to characterize the dissipative processes.

Application to dissipative processes

• Definition of state variables $\alpha_{\rm I}$ and of hardening variables $A_{\rm I}$

State variableConjugated variableT
$$s = -\frac{\partial \Psi}{\partial T}$$
entropy ε^e $\sigma = \rho \frac{\partial \Psi}{\partial \varepsilon^e}$ stress α_I $A_I = \rho \frac{\partial \Psi}{\partial \alpha_I}$ state variables

• The intrinsic dissipation can be rewritten:

$$\Phi_1 = \underline{\sigma} : \underline{\dot{\varepsilon}}^p - A_I \dot{\alpha}_I = Z \dot{z}$$
with : $Z = \{\underline{\sigma}, A_I\}$; $z = \{\underline{\varepsilon}^p, -\alpha_I\}$

14 / 88

15/88

From viscoplasticity to plasticity

Plastic pseudo-potential

- Viscoplasticity = strain rate totally defined by the potential
- Plasticity = Consistency condition needed to define strain rate intensity

Operational way for material model development

- Define a set of two potentials, Ψ , Ω
- Derive the relation between state variables and hardening variables from Ψ
- Derive the nature of the hardening variables and their evolution rules from Ω

In the following, example of isotropic and kinematic nonlinear hardenings; the choice for the sets (A_I, α_I) is:

Type of hardening	State variable	Conjugated variable
Isotropic hardening	r	R
Kinematic hardening	$\stackrel{oldsymbol{lpha}}{\sim}$	$\stackrel{X}{\sim}$

NOTE: Previously, p for isotropic hardening, ε^{p} for linear kinematic hardening

Structure of a plastic model

• Let us define $\mathbb{F}(Z) = Z\dot{z} - \dot{\lambda} f$ and search for the zero of $\partial \mathbb{F} / \partial Z$

$$\dot{z} = \dot{\lambda} \frac{\partial f}{\partial Z}$$
 then: $\dot{\varepsilon}^{p} = \dot{\lambda} \frac{\partial f}{\partial \sigma} = \dot{\lambda} \, \mathbf{n}$; $\dot{\alpha}_{I} = -\dot{\lambda} \frac{\partial f}{\partial A_{I}}$

• $\dot{\lambda}$ (at first unknown) plays in plasticity the rôle of the equivalent strain rate in viscoplasticity

20 / 88

Plasticity framework

• Hill's "principle" (no hardening) The real stress field provides a maximum of the intrinsic dissipated power $\Phi_1 = \sigma^*$: $\dot{\varepsilon}^p$ of any admissible stress field:

$$\forall \sigma^* \text{ admissible } (\sigma - \sigma^*) \dot{\varepsilon}^p \ge 0$$

• With hardening

$$\Phi_1 = \underline{\sigma}^* : \dot{\underline{\varepsilon}}^p - A_I^* \dot{\alpha}_I = \underline{\sigma} : \dot{\underline{\varepsilon}}^p - \dot{\Psi}_p = Z\dot{z} \qquad maximum$$

With Z including stress and the hardening variables A_{I} , *z* including plastic strain and the state variables $(-\alpha_1)$:

$$(Z-Z^*)\dot{z} \ge 0$$

• The maximization of Φ_1 under the constraint $f \leq 0$ can be seen as an extension of Hill's principle.

• (Visco)plastic strain rate

$$\dot{\varepsilon}^{p} = \sum_{s} \dot{\gamma}^{s} \mathfrak{m}$$

- A collection of N slip
- Normal to slip plane **n**^s
- Direction of slip system **I**^s
- Orientation tensor

$$\mathbf{m}^{s} = \frac{1}{2} (\mathbf{\underline{n}}^{s} \otimes \mathbf{\underline{l}}^{s} + \mathbf{\underline{l}}^{s} \otimes \mathbf{\underline{n}}^{s})$$

- One yield function, f^s, for
- (Visco)plastic flow

$$\dot{\gamma}^{s} = \Phi(f^{r})$$
 or ... $\dot{\gamma}^{s} = \Phi((f^{r},\dot{\tau}^{r}))$

• Elasticity (non-dissipative process) is fully defined as

Free energy

$$\rho\psi^{e} = \frac{1}{2}\,\underline{\varepsilon}^{e}: \bigwedge_{\approx}:\underline{\varepsilon}^{e}$$

• State variables; α^{s} and ρ^{s} in the free energy

$$\rho\psi^{p} = \frac{1}{2}c\sum_{s}(\alpha^{s})^{2} + \frac{1}{2}Q\sum_{r}\sum_{s}h_{rs}\rho^{r}\rho^{s}$$

• Hardening variables x^s and r^s defined as partial derivatives:

$$x^r = c \alpha^r$$
 ; $r^r = b Q \sum_s h_{rs} \rho^s$

• Note the interaction matrix, whose components h_{rs} characterize self-hardening (if r = s) and cross-hardening (if $r \neq s$)

State coupling, dissipative coupling

• State coupling, in the free energy (note the symmetry of the interactions):

$$\Psi(\alpha_1, \alpha_2) = \frac{1}{2}c_{11}\alpha_1^2 + \frac{1}{2}c_{22}\alpha_2^2 + \frac{1}{2}c_{12}\alpha_1\alpha_2$$

 $\alpha_1 \text{ et } \alpha_2$:

$$\frac{\partial A_1}{\partial \alpha_2} = \frac{\partial A_2}{\partial \alpha_1} = \frac{\partial^2 \phi}{\partial \alpha_1 \partial \alpha_2}$$

• Dissipative coupling, when Ω is the sum of several potential functions, Ω_{κ} :

$$\dot{z} = \sum_{K} \frac{\partial \Omega_{F}}{\partial Z}$$

(more in [Germain et al., 1983, Lemaitre and Chaboche, 1990, Besson et al., 1998])

State variables and hardening rules on slip systems

Phenomenon	State variable	Associated variable
Elasticity	$arepsilon^e_{\sim}$	σ_{\sim}
Isotropic hardening	$ ho^{s}$, $s=1N$	r ^s , s = 1N
Kinematic hardening	$lpha^{s}$, $s=1N$	x ^s , s = 1N

• Strain partition (small strain)

$$\dot{\varepsilon} = \dot{\varepsilon}^{e} + \dot{\varepsilon}^{p}$$

• The relation between state and associated variables comes from free energy

$$\rho\psi(\boldsymbol{\varepsilon}^{e}, \boldsymbol{\rho}^{s}, \boldsymbol{\alpha}^{s}) = \rho\psi^{e}(\boldsymbol{\varepsilon}^{e}) + \rho\psi^{p}(\boldsymbol{\rho}^{s}, \boldsymbol{\alpha}^{s})$$

• Viscoplasticity needs the definition of a viscoplastic potential, plasticity needs the definition of a plastic pseudopotential. They are built using the expression of the yield criterion on each slip system

$$f^s = |\tau^s - x^s| - r^s - \tau_0$$

Hardening rules

• Standard model

$$\dot{\alpha}^{s} = \frac{\partial\Omega}{\partial x^{s}} = \sum_{r} \frac{\partial\Omega_{r}}{\partial x^{s}} = \frac{\partial\Omega_{s}}{\partial f^{s}} \frac{\partial f^{s}}{\partial x^{s}} = \dot{v}^{s} \eta^{s} = \dot{\gamma}^{s}$$
$$\dot{\rho}^{s} = \frac{\partial\Omega}{\partial r^{s}} = \sum_{r} \frac{\partial\Omega_{r}}{\partial r^{s}} = \frac{\partial\Omega_{s}}{\partial f^{s}} \frac{\partial f^{s}}{\partial r^{s}} = \dot{v}^{s}$$

• Non standard model

$$\dot{\alpha}^{s} = (\eta^{s} - x^{s}) - d\alpha^{s})\dot{v}$$
$$\dot{\rho}^{s} = (1 - b\rho^{s})\dot{v}^{s}$$

26 / 88

Viscoplastic formulation

• Viscoplastic potential

$$\Omega = \sum_{r} \Omega_{r}(f^{r}) = \frac{K}{n+1} \sum_{r} \left\langle \frac{f^{r}}{K} \right\rangle^{n+1}$$

• Viscoplastic flow

$$\dot{\varepsilon}^{p} = \frac{\partial\Omega}{\partial\underline{\sigma}} = \sum_{r} \frac{\partial\Omega_{r}}{\partial\underline{\sigma}} = \sum_{r} \frac{\partial\Omega_{r}}{\partial f^{r}} \frac{\partial f^{r}}{\partial\underline{\sigma}} = \sum_{r} \dot{v}^{r} \underline{\mathfrak{m}}^{r} \eta^{r} = \sum_{r} \gamma^{r} \underline{\mathfrak{m}}^{r}$$

• Characterization of shear rate

$$\frac{\partial\Omega}{\partial f^r} = \left\langle \frac{f^r}{K} \right\rangle^n = \dot{v}^r \qquad \dot{\gamma}^r = \dot{v}^r \operatorname{sign}(\tau^r - x^r) = \dot{v}^r \eta^r$$

Normality rule

$$\frac{\partial f^{r}}{\partial \underline{\sigma}} = \frac{\partial (|\underline{\mathfrak{m}}^{r} : \underline{\sigma} - x^{r}| - r^{r} - \tau_{0})}{\partial \underline{\sigma}} = \underline{\mathfrak{m}}^{r} \eta$$

Anatomy of viscoplastic and plastic formulations

Viscoplastic potential:

$$\begin{split} \Omega &= \sum_{s=1}^{N} \frac{K}{n+1} \left\langle \frac{f^{s}}{K} \right\rangle^{n+1} \\ \dot{\varepsilon}^{p} &= \sum_{s=1}^{N} \frac{\partial \Omega}{\partial f^{s}} \frac{\partial f^{s}}{\partial \sigma} = \sum_{s=1}^{N} \left\langle \frac{f^{s}}{K} \right\rangle^{n} \tilde{\mathbf{m}}^{s} \\ Regularization of the yield surface \end{split}$$

Plasticity

 $f^s = 0$ $\dot{f}^s = 0$

 $\dot{\varepsilon}^{p} = \sum_{s=1}^{N} \dot{\lambda}^{s} \frac{\partial f^{s}}{\partial \sigma} = \sum_{s=1}^{N} \dot{\lambda}^{s} \mathbf{\tilde{m}}^{s}$ Selection of the slip systems ?

28 / 88

Dissipation

- Viscous dissipation : $\sum_{s} f^{s} \dot{v}^{s}$
- Friction dissipation : $\tau_0 \sum_s \dot{v}^s$
- Dissipation due to nonlinear hardening: $\left(\frac{d}{c} (x^s)^2 + br^s \rho^s\right) \dot{v}^s$

System to be solved for the plastic formulation

• For a given total strain rate, N equations (N = number of active slip)systems):

$$\sum_{r} \left(\underbrace{\mathsf{m}}^{s} : \underbrace{\mathsf{\Lambda}}_{\simeq} : \underbrace{\mathsf{m}}^{r} + \mathcal{H}_{sr} \right) \dot{v}^{r} = \underbrace{\mathsf{m}}^{s} : \underbrace{\mathsf{\Lambda}}_{\simeq} : \dot{\varepsilon}$$

• Present model, non symmetric matrix:

$$\dot{x}^{s} = c\dot{\gamma}^{s} - dx^{s}\dot{v}^{s} = (c\eta^{s} - dx^{s})\dot{v}^{s} = \sum_{r} (c\eta^{r} - dx^{r})\delta_{rs}\dot{v}^{r}$$
$$\dot{r}^{s} = Q\sum_{r} bh_{sr} \exp(-bv^{r})\dot{v}^{r}$$
$$H_{sr} = (c\eta^{r} - dx^{r})\delta_{sr} + Qbh_{sr} \exp(-bv^{r})$$
$$\bullet \text{ With no kinematic hardening and linear isotropic hardening,}$$
$$r^{s} = \sum_{r} h_{sr}v^{r}$$

 $H_{sr} = h_{sr}$

Equations for the plastic model

(1) Strain partition (small strain):

$$\dot{\sigma} = \bigwedge_{\approx} : \left(\dot{\varepsilon} - \sum_{r} \mathbf{m}^{r} \dot{\gamma}^{r} \right)$$

(2) Application of the consistency condition to active slip systems:

$$f^{s} = |\underline{\mathfrak{m}}^{s} : \underline{\sigma} - x^{s}| - r^{s} = 0 \qquad 0 = \eta^{s} \underline{\mathfrak{m}}^{s} : \underline{\dot{\sigma}} - \eta^{s} \dot{x}^{s} - \dot{r}^{s}$$
using the notation $\eta^{s} = sign(\tau^{s} - x^{s})$

• Compute \mathbf{m}^s : $\dot{\sigma}$ in (2), introducing H_{sr} (see next page):

$$\mathbf{m}^{s}: \dot{\boldsymbol{\sigma}} = \dot{\boldsymbol{x}}^{s} + \eta^{s} \dot{\boldsymbol{r}}^{s} = \sum_{r} H_{sr} \dot{\boldsymbol{v}}^{r}$$

• Then replace $\dot{\sigma}$ by its expression in (1):

$$\mathfrak{m}^{s}: \mathfrak{k}: \dot{\varepsilon} - \sum_{r} \mathfrak{m}^{s}: \mathfrak{k}: \mathfrak{m}^{r} \eta^{r} \dot{v}^{r} = \sum_{r} H_{sr} \dot{v}^{r}$$

Octahedral and cubic slip systems in FCC single crystals

• The classical slip planes in FCC alloys are 111, and the direction is 110.

• For Ni-Base superalloys,

110.

cubic planes 001 are also observed, with directions

★(100)

The four octahedral planes in a cubic crystal

Yield surfaces obtained from these definitions, using

 $|\tau^{s}| - \tau_{c} = 0$ or $\boldsymbol{\sigma}: \mathbf{m}^{s} - \tau_{c} = 0$

32 / 88

Remark on the order of magnitude

• Note that

$$\begin{split} \mathbf{m}^{s} &: \mathbf{l} = m_{ij}^{s} \delta_{ij} = trace(\mathbf{m}^{s}) = m_{ii}^{s} = n_{i}^{s} l_{i}^{s} = 0\\ \mathbf{m}^{s} &: \mathbf{m}^{s} = m_{ij}^{s} m_{ij}^{s} = \frac{1}{4} (n_{i}^{s} l_{j}^{s} + l_{i}^{s} n_{j}^{s}) (n_{i}^{s} l_{j}^{s} + l_{i}^{s} n_{j}^{s}) = \frac{1}{2}\\ \mathbf{m}^{s} &: \mathbf{m}^{r} = m_{ij}^{s} m_{ij}^{r} = \frac{1}{4} (n_{i}^{r} l_{j}^{r} + l_{i}^{r} n_{j}^{r}) (n_{i}^{s} l_{j}^{s} + l_{i}^{s} n_{j}^{s}) \end{split}$$

• Isotropic elasticity

$$\Lambda_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$
$$\Lambda_{ijkl} m_{kl}^{r} = \mu m_{ij}^{r}$$
$$\tilde{\mathfrak{m}}^{s} : \mathbf{M}^{s} : \mathbf{M}^{r} = \mu m_{ij}^{s} m_{ij}^{r}$$

Orientation tensors of a FCC single crystal

num syst	1	2	3	4	5	6	 7	8	9	 10	11	12
6	_								_			
$\sqrt{6m_{11}}$	-1	0	-1	-1	0	1	0	-1	-1	-1	1	0
$\sqrt{6}m_{22}$	0	-1	1	0	-1	-1	-1	1	0	1	0	1
$\sqrt{6}m_{33}$	1	1	0	1	1	0	1	0	1	0	-1	-1
$2\sqrt{6}m_{12}$	-1	-1	0	1	1	0	1	0	1	0	1	1
$2\sqrt{6}m_{23}$	1	0	1	-1	0	1	0	1	1	-1	1	0
$2\sqrt{6}m_{31}$	0	1	-1	0	1	1	-1	1	0	1	0	1

 If the only non zero terms of the stress tensor are σ₁₁, σ₁₂ and σ₂₁, the criterion writes:

$$|\sigma_{11}m_{11} + 2\sigma_{12}m_{12}| - \tau_c = 0$$

• If the only non zero terms of the stress tensor are σ_{11} , et σ_{33} , the criterion writes:

 $|\sigma_{11}m_{11} + \sigma_{33}m_{33}| - \tau_c = 0$

Definition of the slip systems in a FCC single crystal

The four octahedral planes of a cubic crystal previously shown have three systems. Here is the collection of the 12 systems, defined by \underline{n} and \underline{m} :

num syst	1	2	3	4	5	6	 7	8	9	1	0	11	12
$\sqrt{3}n_1$	1	1	1	1	1	1	-1	-1	-1		1	1	1
$\sqrt{3}n_2$	1	1	1	-1	-1	-1	1	1	1		1	1	1
$\sqrt{3}n_3$	1	1	1	1	1	1	1	1	1	-	1	-1	-1
$\sqrt{2}m_1$	-1	0	-1	-1	0	1	0	1	1	-	1	1	0
$\sqrt{2}m_2$	0	-1	1	0	1	1	-1	1	0		1	0	1
$\sqrt{2}m_3$	1	1	0	1	1	0	1	0	1		0	1	1

Elastic domain σ_{11} – σ_{33} of a FCC single crystal

This figure is computed for τ_c =100 MPa.

RSS for σ_{11} - σ_{12} and σ_{11} - σ_{33} in a FCC single crystal

For the σ_{11} and σ_{12} stresses, the τ^s values are respectively:

num syst	1	2	3	4	5	6
τ^s	$-\sigma_{11} - \sigma_{12}$	$-\sigma_{12}$	$-\sigma_{11}$	$-\sigma_{11}+\sigma_{12}$	σ_{12}	σ_{11}
num syst	7	8	9	10	11	12
τ^{s}	σ_{12}	$-\sigma_{11}$	$-\sigma_{11}+\sigma_{12}$	$-\sigma_{11}$	$\sigma_{11} + \sigma_{12}$	σ_{12}

And for σ_{11} and σ_{33} stresses,

num syst	1	2	3	4	5	6
$ au^s$	$-\sigma_{11} + \sigma_{33}$	σ_{33}	$-\sigma_{11}$	$-\sigma_{11} + \sigma_{33}$	σ_{33}	σ_{11}
	_	-				
num syst	7	8	9	10	11	12
τ^s	σ_{33}	$-\sigma_{11}$	$-\sigma_{11} + \sigma_{33}$	$-\sigma_{11}$	$\sigma_{11} - \sigma_{33}$	$-\sigma_{33}$

• upper path: $\varepsilon_{12}^{max}/\varepsilon_{11}^{max} = 0,525$ • lower path: $\varepsilon_{12}^{max}/\varepsilon_{11}^{max} = 0,475$

-300 -200 -100

0

stress sig11 (MPa)

100 200 300 400 500

100

100

Monotonic tests on AM1 superalloy

coeff (MPa,s)	syst. octa
$ au_0$	100
Q	-10
Ь	1000
С	20000
d	300
K	500
п	5
h _{ij}	1

Octahedral slip systems only

[001]

Strain jauges are in 100 and 001 areas

Experiments performed at ONERA

<123>

simulation

ε^v11 (%)

T = 376 s $\Delta \epsilon = 2.\%$

Cyclic tests on AM1 superalloy

(more in [Méric et al., 1991, Hanriot et al., 1991])

Location of the soft zones for different ratio tension/torsion on the tube

(more in [Nouailhas and Cailletaud, 1995])

48 / 88

Single crystal tube in torsion (2)

Strain jauges response in pure torsion

Equivalence between single crystal and von Mises

• Single crystal model in multiple slip, with N equivalent slip systems, Schmid factor m

$$\dot{\varepsilon}^{p} = \sum_{s} \underbrace{\mathfrak{m}}^{s} \dot{v}^{s} = \sum_{s} \underbrace{\mathfrak{m}}^{s} \left\langle \frac{|\tau^{s} - x^{s}| - r^{s}}{k} \right\rangle^{n}$$

becomes

$$\dot{\varepsilon}^{p} = Mm\dot{\gamma}^{s} = Mm\left\langle \frac{m(\sigma-x)-r}{k} \right\rangle^{n}$$

• Equivalent to a macroscopic model

$$\dot{\varepsilon}^{p} = \left\langle \frac{(\sigma - X) - R}{K} \right\rangle^{n}$$
 with $K = \frac{k}{m} \frac{1}{mM}^{1/n}$, $X = \frac{x}{m}$, $R = \frac{r}{m}$

What is the best set of active slip systems ?

- Physical responses (Hill, Taylor)
- Algorithmic responses (many authors)

Are they consistent ?

52 / 88

Yield surface determined on the single crystal tube

Note that Hill's criterion give wrong results

49 / 88

50 / 88

Equivalence between single crystal and von Mises (2)

Coefficient	Value for multiple	Value for	Value for
	slip (m,M)	001 tension	111 tension
		$N=8,\ m=1/\sqrt{6}$	$N = 6, m = \sqrt{2}/3$
К	k	$\sqrt{6}k$	3 <i>k</i>
	$m(Mm)^{1/n}$	$(8/\sqrt{6})^{1/n}$	$2^{(n+1)/2n}$
Ro	<u>r</u> _o	$\sqrt{6}r_{o}$	$\frac{3r_o}{}$
Ŭ	m		$\sqrt{2}$
Q	<u>\</u>	$\sqrt{6}Q$	
	m b	·/6b	$\sqrt{2}$
b		$\frac{\sqrt{0D}}{2}$	
	C	о 3с	$\frac{\sqrt{2}}{3c}$
C	$\overline{Mm^2}$	4	2
	d	$\sqrt{6}d$	d
	Mm	8	$\sqrt{2}$

There is a relation between the coefficients of a macro model and a crystal plasticity model

Bishop and Hill

Find the stress state which...

• Maximize the the external power, written as

 $\mathcal{P}_e = \sigma : \dot{\varepsilon}^p$

• The constraint is

$$g^{s}(\underline{\sigma}) = \tau_{c}^{s} - \underline{\sigma} : \underline{\mathsf{m}}^{s} \ge 0$$

• The lagrangian function is then now:

$$\mathcal{F}_{e}(\boldsymbol{\sigma}, \dot{\mu}^{s}) = \mathcal{P}_{e} + \sum_{s} \dot{\mu}^{s} g^{s}$$
$$\frac{\partial \mathcal{F}_{e}}{\partial \boldsymbol{\sigma}} = \dot{\boldsymbol{\varepsilon}}^{p} - \sum_{s} \mathbf{\tilde{m}}^{s} \dot{\mu}^{s} = 0 \qquad \frac{\partial \mathcal{F}_{e}}{\partial \dot{\mu}^{s}} = \tau_{c}^{s} - \boldsymbol{\sigma} : \mathbf{\tilde{m}}^{s} = 0$$

• The multiplyiers μ^s are nothing but plastic strain rates.

To find a stress tensor, find a set of plastic shear strain rates which are zero on the inactive slip systems, and positive on the active slip systems.

Taylor

Select a set of admissible shear rates $\dot{\gamma}^s$ for a prescribed plastic strain rate $\dot{\varepsilon}^p$ (assuming $\varepsilon \equiv \varepsilon^p$)

• Minimize the internal power of the material element:

$$\mathcal{P}_i = \sum_{s} \tau_c^s \dot{\gamma}^s$$

• The shear strain rates are submitted to the constraint:

$$\mathbf{g}(\dot{\gamma}^{s}) = \dot{\varepsilon}^{p} - \sum_{s} \mathbf{m}^{s} \dot{\gamma}^{s} = 0$$

• Let us define the lagrangian \mathcal{F}_i , and search for the saddle point

$$\mathcal{F}_{i}\left(\dot{\gamma}^{s},\underline{\lambda}\right) = \mathcal{P}_{i} + \underline{\lambda}:\underline{\mathbf{g}}$$
$$\frac{\partial\mathcal{F}_{i}}{\partial\underline{\lambda}} = \dot{\varepsilon}^{p} - \sum_{s} \underline{\mathbf{m}}^{s} \dot{\gamma}^{s} = \mathbf{0} \qquad \frac{\partial\mathcal{F}_{i}}{\partial\dot{\gamma}^{s}} = \tau_{c}^{s} - \underline{\lambda}:\underline{\mathbf{m}}^{s} = \mathbf{0}$$

• The tensor λ is nothing but the stress tensor.

To find the set of shear strain rates, which minimizes internal power, find a stress tensor which obeys the yield conditions, i.e. allows to built resolved shear stresses which reach τ_c^s on the active slip systems and which are smaller than τ_c^s one the inactive ones.

Incremental form

Small strain, linear isotropic hardening

• (1) Strain partition:

$$\Delta \underline{\sigma} = \mathbf{\Lambda} : \left(\Delta \varepsilon - \sum_{r} \mathbf{m}^{r} \Delta p^{r} \right)$$

• (2) Criterion:

$$f^{s} = \tau^{s} - r^{s} = 0$$
 with $r^{s} = \sum_{r} h_{sr} p^{r}$
 $\mathfrak{m}^{s} : \Delta \mathfrak{m} - \sum_{r} h_{sr} \Delta p^{r}$

Project (1) on \mathbf{m}^r to eliminate $\Delta \boldsymbol{\sigma}$, compute $\mathbf{m}^s : \Delta \boldsymbol{\sigma}$:

$$\sum_{r} \left(h_{rs} + \underline{\mathfrak{m}}^{r} : \underline{\Lambda} : \underline{\mathfrak{m}}^{s} \right) \Delta p^{r} = \underline{\mathfrak{m}}^{s} : \underline{\Lambda} : \Delta \varepsilon$$

Synthesis of the various conditions

• Taylor, Bishop–Hill

$$\underline{\sigma}^*: \dot{\underline{\varepsilon}}^p \leqslant \underline{\sigma}: \dot{\underline{\varepsilon}}^p = \sum_s \tau_c^s \dot{\gamma^s} \leqslant \sum_s \tau_c^s \dot{\gamma'}^s$$

• In the thermodynamical approach, the dissipation can be written:

$$\Phi_1 = \sigma : \dot{\varepsilon}^p - \sum_s r^s \dot{\gamma}^s$$

• The variables r^s are the increase of critical resolved shear stress. One has

$$\Phi_1 = \sum_s r_0^s \dot{\gamma}^s$$

Algorithmic form

Internal variables
$$\varepsilon^e$$
 et p^s ($s = 1...N$)

• (1) Strain partition:

$$\mathcal{F}_{e} = -\Delta \underline{\varepsilon}^{*} + \Delta \underline{\varepsilon}^{e} + \sum_{r} \underline{\mathsf{m}}^{r} \Delta \mu$$

• (2) Criterion for a plastic model:

$$\mathcal{F}_{p}^{s} = \left| \mathbf{m}^{s} : \mathbf{\Lambda} : (\boldsymbol{\varepsilon}^{e} + \Delta \boldsymbol{\varepsilon}^{e}) \right| - \tau_{0} - \sum_{r} h_{sr}(p^{r} + \Delta p^{r})$$

• (2bis) Viscoplastic model:

$$\mathcal{F}_{p}^{s} = \left| \mathbf{m}^{s} : \mathbf{\Lambda} : (\mathbf{g}^{e} + \Delta \mathbf{g}^{e}) \right| - \tau_{0} - \sum_{r} h_{sr} (p^{r} + \Delta p^{r}) - \mathcal{K} \left(\frac{\Delta p^{s}}{\Delta t} \right)^{1/r}$$

Evaluation of the dissipation for various values of latent hardening

Evaluation of the dissipation for various values of latent hardening

Evaluation of the dissipation for various values of latent hardening

• 1 active system:

$$\mathcal{D} = \frac{\sqrt{6}(\cos\theta + \sin\theta)}{6h_0}$$

• 2 active systems:

$$\mathcal{D} = rac{\sqrt{6}(\cos heta + \sin heta)}{3(h_0 + h_1)}$$

• 6 active systems:

$$\mathcal{D} = \frac{\sqrt{6}(\cos\theta + 3\sin\theta}{3(h_0 + 5h_1)}$$

• 8 active systems:

$$\mathcal{D} = \frac{4\sqrt{6}\sin\theta}{3(h_0 + 7h_1)}$$

Number of active slip systems according to h_1 values

h1	0-2	2-6	6-8
0	-45	0	45
0.33	-45	45	80
0.50	-45	66	84
1.	-45	87	90
1.5	-45	88	90
2.	-45	90	90

The algorithmic solution is not always in good agreement with the maximum dissipation principle

A generic formulation of single crystal models

$$au^lpha = {\cal B}^lpha \pm {\cal S}^lpha \pm {\hat f}_
u(\dot\gamma^lpha,{\cal R}^lpha)$$

- Kinematic hardening, B^{α} (back stress)
- Additive isotropic hardening, S^{α} , (friction stress)
- Multiplicative isotropic hardening, R^α, (drag stress)
 One can found associated state variables, resp. b^α, s^α, r^α

What is the best set of active slip systems (2) ?

- Tests responses on critical loading paths
- Various subroutines tested: Anand (LA), Busso (EB), Cailletaud (GC)(code Zebulon), McDowell (MD)

(more in [Busso and Cailletaud, 2005])

62 / 88

63 / 88

Functions for the different single crystal models

Model	Equation
$\dot{S}^{lpha}_{GC} =$	$\sum_eta \; m{h}^{lphaeta} \; \left[m{h}_s \; - \; m{d}_s \; m{s}^eta ight] \left \dot{\gamma}^eta ight $
$\dot{S}^{lpha}_{EB} =$	$\sum_eta h^{lphaeta} \left(h_{s} \; - \; d_{s} \left[\mathcal{S}^eta - \mathcal{S}_0 ight] ight) \dot{\gamma}^eta $
$\dot{R}^{lpha}_{LA} =$	$\sum_{eta} h_s \left[q_l + (1-q_l) \delta^{lphaeta} ight] \left\{ 1 \ - \ rac{R^eta}{R^*} ight\}^{lpha} \dot{\gamma}^eta $
$\dot{R}^{lpha}_{DM} =$	$\sum_{eta} q_l \; h_s \dot{\gamma}^eta \; - \; (q_l - 1) h_s \; \dot{\gamma}^lpha \; - \; d_s \; R^lpha \; \left[\sum_eta \; q_l \; \dot{\gamma}^eta \; - \; (q_l - 1) \; \dot{\gamma}^lpha ight]$
$\dot{B}^{lpha} =$	$[h_B {\it sign}(\dot{\gamma}^lpha) \ - \ d_B \ B^lpha] \ \dot{\gamma}^lpha $
	66 / 88

Loading paths in the 11-22 plane

Identification of the four models for pure tension

Functions for the different single crystal models

Function	GC	EB	LA	DN
f^{lpha}	$ \tau^{\alpha}-B^{\alpha} - S^{\alpha} - S_0$	$ au^{lpha}-B^{lpha} - S^{lpha}$	$ au^{lpha}-B^{lpha} $	$ \tau^{\alpha} -$
$ \dot{\gamma}^{lpha} $	$\dot{\gamma}_0 \left\langle rac{f^lpha}{\hat{ au}_0} ight angle^n$	$\dot{\gamma}_0 \exp\left\{-rac{F_o}{k heta}\left\langle 1-\left\langlerac{f^lpha}{\hat{ au}_0} ight angle^p ight angle^q ight\}$	$\dot{\gamma}_0 \left\langle rac{f^lpha}{R^lpha} ight angle^n$	$\dot{\gamma}_0 \left\langle \frac{f'}{R'} \right\rangle$
$\hat{f}^{\alpha}_r\{r^{\alpha}\}$	_	_	$rac{1}{2}h_s\sum_lpha (r^lpha)^2$	$\frac{1}{2} h_s \sum_{\alpha}$
$\hat{f}^{lpha}_{s}\{s^{lpha}\}$	$rac{1}{2} h_s \sum_{lpha} (s^{lpha})^2$	$rac{1}{2} h_s \sum_{lpha} (s^{lpha})^2$	-	-
$\hat{f}^{\alpha}_b\{b^{\alpha}\}$	$rac{1}{2} h_b \sum_{lpha} (b^{lpha})^2$	$rac{1}{2} h_b \sum_lpha (b^lpha)^2$	$rac{1}{2} h_b \sum_{lpha} (b^{lpha})^2$	$\frac{1}{2} h_b \sum_{\alpha}$
R^{lpha}	_	_	$h_s r^{lpha}$	h _s r
S^{lpha}	$\sum_eta \ \mathbf{h}^{lphaeta} \ \mathbf{s}^eta$	$h_s s^{lpha}$	-	_
Βα	$h_b b^{lpha}$	$h_b b^{lpha}$	$h_b b^{lpha}$	h _b b

71/88

Numerical simulations of single crystal turbine blades (Snecma)

 $\label{eq:constraint} Thermal \ + \ mechanical \ loading \\ Post \ treatment \ needed \ for \ life \ prediction \\$

A model using dislocations

(more in [Tabourot et al., 1997])

73 / 88

79 / 88

Literature	Busso, E. and McClintock, F. (1996). A dislocation mechanics-based crystallographic model of a B2-type intermetallic alloy. Int. J. of Plasticity, 12:1–28.
 Books [Havner, 1992, Teodosiu, 1997] Models, isotropic hardening, plastic or viscoplastic 	 Busso, E., Toulios, M., and Cailletaud, G. (2003). Constitutive material formulations and advanced life assessment methods for single crystal gas turbine blades. In Lecomte-Beckers, J., Carton, M., Schubert, F., and Ennis, P.J., S. d. F. Z. J., editors, 7th Conf. Materials for advanced power engineering, Liège, 30 sept2 oct. 2002, pages 1175–1185.
[Taylor, 1938, Bishop and Hill, 1951, Kolter, 1960, Mandel, 1965, Mandel, 1971, Hill, 1966, Hill and Rice, 1972, Kocks and Brown, 1966, Chin and Mammel, 1969, Kocks, 1970, Rice, 1970, Rice, 1971, Asaro and Rice, 1977, Franciosi et al., 1980, Asaro, 1983b,	 Cailletaud, G., Chaboche, JL., Forest, S., and Rémy, L. (2001). On the design of single crystal turbine blades. Revue de Métallurgie, février 2003:165–172.
 Asaro, 1983a, Franciosi, 1985, Tabourot et al., 1997] New generation of models, appropriate for complex/cyclic loadings [Méric et al., 1991, Hanriot et al., 1991, Jordan and Walker, 1985, Méric et al., 1994, Nouailhas and Cailletaud, 1995, Busso and McClintock, 1996, Forest et al., 1996, 	Chin, G. and Mammel, W. (1969). Generalization and equivalence of the minimum work (Taylor) and maximum work (Bishop–Hill) principles for crystal plasticity. Trans. of the Met. Soc. of AIME, 245:1211–1214.
Nouailhas and Cailletaud, 1996, Busso and Cailletaud, 2005] Numerical integration [Pierce et al., 1985, Asaro and Needleman, 1985, Méric and Cailletaud, 1991. 	Cuitino, A. and Ortiz, M. (1992). Computational modelling of single crystals. Modelling Simul. Mater. Sci. Eng., 1:225–263.
Cuitino and Ortiz, 1992, Simo and Hughes, 1997, Schröder and Miehe, 1997, Anand and Kothari, 1996, McGinty, 2001] Cracks [Flouriot et al., 2003]	 Flouriot, S., Forest, S., Cailletaud, G., Köster, A., Rémy, L., Burgardt, B., Gros, V., and Mosset, S. Delautre, J. (2003). Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multiphase materials. Int. J. Frac, 124:43–77.
 Industrial applications [Cailletaud et al., 2001, Busso et al., 2003] [2001] [2001] [2001]	Forest, S., Olschewski, J., Ziebs, J., Kühn, HJ., Meersmann, J., and Frenz, H. (1996). The elastic/plastic deformation behaviour of various oriented sc16 single crystals under combined tension/torsion fatigue loading.
Crack in single crystals: comparison with experiments	Anand, L. and Kothari, M. (1996). A computational procedure for rate-independent crystal plasticity. J. Mech. Phys. Sol., 44:525-558.
Elastic and plastic zones	Asaro, R. (1983a). Crystal plasticity. J. of Applied Mechanics, 50:921–934.
X_{2} [110] (111) X_{1}	Asaro, R. (1983b). Micromechanics of crystals and polycrystals. Advances in Appl. Mech., 23:1–115.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Asaro, R. and Needleman, A. (1985). Texture development and strain hardening in rate dependent polycrystals. Acta Metall., 33:923–953.
	Asaro, R. and Rice, J. (1977). Strain localization in ductile single crystals. J. Mech. Phys. Sol., 25:309–338.
(III) * * * * * * * * * * * * * * * * * *	 Besson, J., Le Riche, R., Foerch, R., and Cailletaud, G. (1998). Object-oriented programming applied to the finite element method. Part II: Application to material behaviors. Revue Européenne des Éléments Finis, 7(5):567–588.
3D F.E. Simulation	 Bishop, J. and Hill, R. (1951). A theoretical derivation of the plastic properties of a polycrystalline face-centered metal. Philosophical Magasine, 42:414–427.
(more in [Flouriot et al., 2003])	Busso, E. and Cailletaud, G. (2005). On the selection of active slip systems in crystal plasticity. Int. J. of Plasticity, in press.

