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Replica of a tensile single crystal specimens

Initial yield (PhD F.Hanriot, 1993)

4 / 88



Replica of a tensile single crystal specimens (2)

End of life (PhD F.Hanriot, 1993)
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Polycrystal specimens

Slip systems in waspaloy (M. Clavel, 1978)
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Polycrystal specimens

Cu–Zn–Al (F. Gourgues, 1999)
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Thermodynamics: first principle

First principle, using internal energy on a domain D, E , and specific
internal energy, e

dE

dt
=

∫

D

ρ
de

dt
dV = P(e) + Q̇

Power of external forces

P(e) =

∫

D

σ
∼

: ε̇
∼

dV

Heat exchanged, using the rate of captured heat, q, and n, outside
normal to the surface ∂D, and r , volumetric heat

Q̇ =

∫

D

rdV −
∫

∂D

q.ndS =

∫

D

(r − divq) dV

Variation of internal energy

ρ
de

dt
= σ

∼

: ε̇
∼

+ r − divq
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Thermodynamics: second principle

The second principle provides a superior bound of the heat rate received
by the volume D at a temperature T , and can be expressed as a function
of the entropy S or of the specific entropy s :

dS

dt
>

∫

D

r

T
dV −

∫

∂D

q.n

T
dS

d’où :

∫

D

(

ρ
ds

dt
− r

T
+ div

( q

T

)

)

dV > 0

Using Helmoltz free energy Ψ, such as e = Ψ + Ts, one get the so called
Clausius-Duhem inegality

σ
∼

: ε̇
∼

− ρ
dΨ

dt
− ρsṪ − 1

T
q.grad(T ) > 0
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Dissipation

Application of the method of local state: Ψ depends on temperature
and state variables αi

dΨ

dt
=
∂Ψ

∂T
Ṫ +

∂Ψ

∂αi
α̇i

s = −∂Ψ

∂T

σij ε̇ij − ρ
∂Ψ

∂αi
α̇i −

1

T
q . grad(T ) > 0 (4)

Intrinsic dissipation Φ1, thermal dissipation Φ2:

Φ1 = σij ε̇ij − ρ
∂Ψ

∂αi
α̇i Φ2 = − 1

T
q . grad(T )
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Heat equation

Decoupling of intrinsic and thermal dissipations, each of them must
be positive

Fourier’s law :
q = −k(T , αi ) grad(T )

Heat equation in presence of mechanical strain:

div
(

k grad(T )
)

= ρCεṪ−r−σij ε̇ij+ρ

(

∂Ψ

∂αi
− T

∂2Ψ

∂T∂αi

)

α̇i (5)

(with Cε = T ∂s
∂T , specific heat at a constant deformation)
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Thermo-elasticity (1)

Zero elastic strain for σ
∼

I , zero thermal strain for T I

The state variable is elastic strain: αI ≡ ε
∼

e in intrinsic dissipation

No dissipation for an elastic isothermal perturbation around
equilibrium, then

Φ1 = σ
∼

: ε̇
∼

e − ρ
∂Ψ

∂ε
∼

e
: ε̇

∼

e = 0

This provides a definition for stress.

Two state variables, two energetically conjugated variables:

State variable Conjugated variable

T entropy s = −∂Ψ

∂T

ε
∼

e stress σ
∼

=
∂Ψ

∂ε
∼

e

Ψ is a thermodynamic potential characterizing reversible processes
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Thermo-elasticity (2)

Assume the following form for free energy:

ρΨ = σ
∼

I : ε
∼

e +
1

2
λ (Tr ε

∼

e)2 + µ ε
∼

e : ε
∼

e − 3KαTr ε
∼

e(T − T I )

− 1

2

ρCε

T I
(T − T I )2

The stress is then:

σ
∼

= ρ
∂Ψ

∂ε
∼

e
= σ

∼

I + λTr ε
∼

eI
∼

+ 2µ ε
∼

e − 3Kα(T − T I )I
∼

σ
∼

− σ
∼

I = λ
(

Tr ε
∼

e − 3α(T − T I )
)

I
∼

+ 2µε
∼

e

Variation of specific entropy:

ρs = −ρ∂Ψ

∂T
= 3KαTr ε

∼

e +
ρCε

T I
(T − T I )
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Temperature changes for elastic loadings

Temperature variation related to volume change:

(T − T I ) = −3KαT I

ρCε
εell

Cooling during tension

Loading curves

— isothermal : σ
∼

− σ
∼

I = λTr ε
∼

eI
∼

+ 2µε
∼

e

— adiabatic : σ
∼

− σ
∼

I =

(

λ+
9K 2α2T I

ρCε

)

Tr ε
∼

eI
∼

+ 2µε
∼

e

No change on shear modulus, variation of the axial component
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Application to dissipative processes

Definition of state variables αI and of hardening variables AI

State variable Conjugated variable

T s = −∂Ψ

∂T
entropy

ε
∼

e
σ
∼

= ρ
∂Ψ

∂ε
∼

e
stress

αI AI = ρ
∂Ψ

∂αI
state variables

The intrinsic dissipation can be rewritten:

Φ1 = σ
∼

: ε̇
∼

p − AI α̇I = Z ż

with : Z = {σ
∼

,AI} ; z =
{

ε
∼

p,−αI

}
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Standard models (1)

A model is standard if one can find a potential Ω ≡ Ω(Z ) such as:

ż =
∂Ω

∂Z

If Ω is a convex function of Z which includes the origin, the
dissipation is automatically positive, since:

φ1 = Z
∂Ω

∂Z

(all the points of the surface Ω are on the same side of the tangent plane

defined by
∂Ω

∂Z
)

One can also define (through the Legendre-Fenchel transform) a
companion potential in terms of ż :

Ω∗(ż ) = max
Z

(Zż − Ω(Z ))

A new potential, expressed as Ω∗(ż ) or Ω(Z ) must be introduced to
characterize the dissipative processes.
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Operational way for material model development

Define a set of two potentials, Ψ, Ω

Derive the relation between state variables and hardening variables
from Ψ

Derive the nature of the hardening variables and their evolution rules
from Ω

In the following, example of isotropic and kinematic nonlinear hardenings;
the choice for the sets (AI , αI ) is:

Type of hardening State variable Conjugated variable
Isotropic hardening r R
Kinematic hardening α

∼

X
∼

NOTE: Previously, p for isotropic hardening, ε
∼

p for linear kinematic hardening
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From viscoplasticity to plasticity

σ
~

Ω

Viscoplastic potential
~
σ

Ind(f)

Plastic pseudo–potential

Viscoplasticity = strain rate totally defined by the potential

Plasticity = Consistency condition needed to define strain rate
intensity
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Plasticity framework

Hill’s ”principle” (no hardening) The real stress field provides a
maximum of the intrinsic dissipated power Φ1 = σ

∼

∗ : ε̇
∼

p of any
admissible stress field:

∀σ
∼

∗ admissible (σ
∼

− σ
∼

∗)ε̇
∼

p
> 0

With hardening

Φ1 = σ
∼

∗ : ε̇
∼

p − A∗
I α̇I = σ

∼

: ε̇
∼

p − Ψ̇p = Z ż maximum

With Z including stress and the hardening variables AI ,
z including plastic strain and the state variables (-αI ) :

(Z − Z∗)ż > 0

The maximization of Φ1 under the constraint f 6 0 can be seen as
an extension of Hill’s principle.
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Structure of a plastic model

Let us define F(Z) = Zż − λ̇ f and search for the zero of ∂F/∂Z

ż = λ̇
∂f

∂Z
then: ε̇

∼

p = λ̇
∂f

∂σ
∼

= λ̇n
∼

; α̇I = −λ̇ ∂f

∂AI

λ̇ (at first unknown) plays in plasticity the rôle of the equivalent
strain rate in viscoplasticity
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State coupling, dissipative coupling

State coupling, in the free energy (note the symmetry of the
interactions):

Ψ(α1, α2) =
1

2
c11α

2
1 +

1

2
c22α

2
2 +

1

2
c12α1α2

α1 et α2 :
∂A1

∂α2
=
∂A2

∂α1
=

∂2φ

∂α1∂α2

Dissipative coupling, when Ω is the sum of several potential
functions, ΩK :

ż =
∑

K

∂ΩK

∂Z

(more in [Germain et al., 1983, Lemaitre and Chaboche, 1990, Besson et al., 1998])
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Basic ingredients of crystal plasticity

normal

slip
direction

A collection of N slip
systems

Normal to slip plane ns

Direction of slip system ls

Orientation tensor

m
∼

s =
1

2
(ns ⊗ ls + ls ⊗ ns)

Resolved shear stress

τ s = σ
∼

: m
∼

s

(Visco)plastic strain rate

ε̇
∼

p =
∑

s

γ̇sm
∼

s

One yield function, f s , for
each system

(Visco)plastic flow

γ̇s = Φ(f r ) or ...

γ̇s = Φ((f r , τ̇ r ))
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State variables and hardening rules on slip systems

Phenomenon State variable Associated variable
Elasticity ε

∼

e
σ
∼

Isotropic hardening ρs , s = 1..N r s , s = 1..N
Kinematic hardening αs , s = 1..N x s , s = 1..N

Strain partition (small strain)

ε̇
∼

= ε̇
∼

e + ε̇
∼

p

The relation between state and associated variables comes from free
energy

ρψ(ε
∼

e , ρs , αs) = ρψe(ε
∼

e) + ρψp(ρs , αs)

Viscoplasticity needs the definition of a viscoplastic potential,
plasticity needs the definition of a plastic pseudopotential. They are
built using the expression of the yield criterion on each slip system

f s = |τ s − x s | − r s − τ0
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Free energy

Elasticity (non–dissipative process) is fully defined as

ρψe =
1

2
ε
∼

e : Λ
∼

∼

: ε
∼

e

State variables; αs and ρs in the free energy

ρψp =
1

2
c
∑

s

(αs)
2
+

1

2
Q
∑

r

∑

s

hrsρ
rρs

Hardening variables x s and r s defined as partial derivatives:

x r = cαr ; r r = b Q
∑

s

hrsρ
s

Note the interaction matrix, whose components hrs characterize
self–hardening (if r = s) and cross–hardening (if r 6= s)
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Viscoplastic formulation

Viscoplastic potential

Ω =
∑

r

Ωr (f
r ) =

K

n + 1

∑

r

〈

f r

K

〉n+1

Viscoplastic flow

ε̇
∼

p =
∂Ω

∂σ
∼

=
∑

r

∂Ωr

∂σ
∼

=
∑

r

∂Ωr

∂f r

∂f r

∂σ
∼

=
∑

r

v̇ rm
∼

rηr =
∑

r

γrm
∼

r

Characterization of shear rate

∂Ω

∂f r
=

〈

f r

K

〉n

= v̇ r γ̇r = v̇ r sign(τ r − x r ) = v̇ rηr

Normality rule

∂f r

∂σ
∼

=
∂(|m

∼

r : σ
∼

− x r | − r r − τ0)

∂σ
∼

= m
∼

rηr
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Hardening rules

Standard model

α̇s =
∂Ω

∂x s
=
∑

r

∂Ωr

∂x s
=
∂Ωs

∂f s

∂f s

∂x s
= v̇ sηs = γ̇s

ρ̇s =
∂Ω

∂r s
=
∑

r

∂Ωr

∂r s
=
∂Ωs

∂f s

∂f s

∂r s
= v̇ s

Non standard model

α̇s = (ηs − x s) − dαs)v̇ s

ρ̇s = (1 − bρs)v̇ s
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Dissipation

Since σ
∼

: ε̇
∼

p = σ
∼

:
∑

s

m
∼

s γ̇s =
∑

s

σ
∼

:m
∼

s γ̇s =
∑

s

τ s γ̇s

φ1 = σ
∼

: ε̇
∼

p −
∑

s

x s α̇s −
∑

s

r s ρ̇s

=
∑

s

(τ s γ̇s − x s(ηs − x s) − dαs)v̇ s − r s(1 − bρs)v̇ s)

=
∑

s

(f s + τ0 +
d

c
(x s)

2
+ br sρs)v̇ s

Viscous dissipation :
∑

s

f s v̇ s

Friction dissipation : τ0
∑

s

v̇ s

Dissipation due to nonlinear hardening:

(

d

c
(x s)

2
+ br sρs

)

v̇ s
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Anatomy of viscoplastic and plastic formulations

Viscoplastic potential: Plasticity

Ω =
N
∑

s=1

K

n + 1

〈

f s

K

〉n+1

f s = 0 ḟ s = 0

ε̇
∼

p =
N
∑

s=1

∂Ω

∂f s

∂f s

∂σ
∼

=
N
∑

s=1

〈

f s

K

〉n

m
∼

s
ε̇
∼

p =
N
∑

s=1

λ̇s ∂f s

∂σ
∼

=
N
∑

s=1

λ̇sm
∼

s

Regularization of the yield surface Selection of the slip systems ?
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Equations for the plastic model

(1) Strain partition (small strain):

σ̇
∼

= Λ
∼

∼

:

(

ε̇
∼

−
∑

r

m
∼

r γ̇r

)

(2) Application of the consistency condition to active slip systems:

f s = |m
∼

s : σ
∼

− x s | − r s = 0 0 = ηsm
∼

s : σ̇
∼

− ηs ẋ s − ṙ s

using the notation ηs = sign(τ s − x s)

Compute m
∼

s : σ̇
∼

in (2), introducing Hsr (see next page):

m
∼

s : σ̇
∼

= ẋ s + ηs ṙ s =
∑

r

Hsr v̇
r

Then replace σ̇
∼

by its expression in (1):

m
∼

s : Λ
∼

∼

: ε̇
∼

−
∑

r

m
∼

s : Λ
∼

∼

: m
∼

rηr v̇ r =
∑

r

Hsr v̇
r
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System to be solved for the plastic formulation

For a given total strain rate, N equations (N = number of active slip
systems):

∑

r

(

m
∼

s : Λ
∼

∼

: m
∼

r + Hsr

)

v̇ r = m
∼

s : Λ
∼

∼

: ε̇
∼

Present model, non symmetric matrix:

ẋ s = c γ̇
s − dx s v̇ s = (cη

s − dx s)v̇ s =
∑

r

(cη
r − dx r )δrs v̇

r

ṙ s = Q
∑

r

bhsr exp(−bv r )v̇ r

Hsr = (cη
r − dx r )δsr + Qbhsr exp(−bv r )

With no kinematic hardening and linear isotropic hardening,

r s =
∑

r

hsrv
r

Hsr = hsr
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Remark on the order of magnitude

Note that

m
∼

s : I
∼

= ms
ijδij = trace(ms

∼

) = ms
ii = ns

i l
s
i = 0

m
∼

s : m
∼

s = ms
ijm

s
ij =

1

4
(ns

i l
s
j + l si ns

j )(n
s
i l

s
j + l si ns

j ) =
1

2

m
∼

s : m
∼

r = ms
ijm

r
ij =

1

4
(nr

i l
r
j + l ri n

r
j )(n

s
i l

s
j + l si ns

j )

Isotropic elasticity

Λijkl = λδijδkl + µ(δikδjl + δilδjk)

Λijklm
r
kl = µmr

ij

m
∼

s : Λ
∼

∼

: m
∼

r = µms
ijm

r
ij
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Octahedral and cubic slip systems in FCC single crystals

(100)

(010)

(001)

The four octahedral planes in a cubic
crystal

The classical slip planes in
FCC alloys are 111, and
the direction is 110.

For Ni-Base superalloys,
cubic planes 001 are also
observed, with directions
110.

Yield surfaces obtained from these definitions, using

|τ s | − τc = 0 or σ
∼

: m
∼

s − τc = 0
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Definition of the slip systems in a FCC single crystal

The four octahedral planes of a cubic crystal previously shown have three
systems. Here is the collection of the 12 systems, defined by n and m :

num syst 1 2 3 4 5 6 7 8 9 10 11 12

√
3n1 1 1 1 1 1 1 -1 -1 -1 1 1 1√
3n2 1 1 1 -1 -1 -1 1 1 1 1 1 1√
3n3 1 1 1 1 1 1 1 1 1 -1 -1 -1

√
2m1 -1 0 -1 -1 0 1 0 1 1 -1 1 0√
2m2 0 -1 1 0 1 1 -1 1 0 1 0 1√
2m3 1 1 0 1 1 0 1 0 1 0 1 1
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Orientation tensors of a FCC single crystal

num syst 1 2 3 4 5 6 7 8 9 10 11 12

√
6m11 -1 0 -1 -1 0 1 0 -1 -1 -1 1 0√
6m22 0 -1 1 0 -1 -1 -1 1 0 1 0 1√
6m33 1 1 0 1 1 0 1 0 1 0 -1 -1

2
√

6m12 -1 -1 0 1 1 0 1 0 1 0 1 1

2
√

6m23 1 0 1 -1 0 1 0 1 1 -1 1 0

2
√

6m31 0 1 -1 0 1 1 -1 1 0 1 0 1

If the only non zero terms of the stress tensor are σ11, σ12 and σ21,
the criterion writes:

|σ11m11 + 2σ12m12| − τc = 0

If the only non zero terms of the stress tensor are σ11, et σ33, the
criterion writes:

|σ11m11 + σ33m33| − τc = 0
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RSS for σ11–σ12 and σ11–σ33 in a FCC single crystal

For the σ11 and σ12 stresses, the τ s values are respectively:

num syst 1 2 3 4 5 6
τ s −σ11 − σ12 −σ12 −σ11 −σ11 + σ12 σ12 σ11

num syst 7 8 9 10 11 12
τ s σ12 −σ11 −σ11 + σ12 −σ11 σ11 + σ12 σ12

And for σ11 and σ33 stresses,

num syst 1 2 3 4 5 6
τ s −σ11 + σ33 σ33 −σ11 −σ11 + σ33 σ33 σ11

num syst 7 8 9 10 11 12
τ s σ33 −σ11 −σ11 + σ33 −σ11 σ11 − σ33 −σ33
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Elastic domain σ11–σ33 of a FCC single crystal

� � � �

� � � �
�

� � �

� � �

� � � �

� � � � � � � � � � �

σ33

σ11

For biaxial tension:

systems 1, 4, 9 and 11
:

|σ11 − σ33| = τc
√

6

systems 3, 6, 8, 10 :

|σ11| = τc
√

6

systems 2, 5, 7, 13 :

|σ33| = τc
√

6

This figure is computed for τc=100 MPa.
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Subsequent evolution of the yield surfaces in σ11–σ22 plane
(FCC)

-300

-200

-100

0

100

200

300

400

-300 -200 -100 0 100 200 300 400 500

st
re

ss
 s

ig
22

 (
M

P
a)

stress sig11 (MPa)
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Elastic domain σ11–σ12 of a FCC single crystal
� � � �

� � � �
�

� � �
� � �

� � � � � � � � � � � � � � �

σ12

σ11

For tension–shear loading,
the domain is then defined
by 4 systems:

systems 1 and 11 give :

|σ11 + σ12| = τc
√

6

systems 4 and 9 give :

|σ11 − σ12| = τc
√

6

This figure is computed for τc=100 MPa.
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Loading path for two prescribed strain paths in 11–12 plane

� ��

� � �

� � �	 � ��
 	 � �
 � � �

	 � �
�


 	 � �

upper path: εmax
12 /εmax

11 = 0, 525

lower path: εmax
12 /εmax

11 = 0, 475
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Influence of cubic planes on σ11–σ12 yield surface (FCC)

σ11

σ12

σo

σo

σo �� 3

octa + cube systems

octa systems

σ11

σ12

σo

σo � � 2

� 2

σo �� 6
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A typical example in σ11 – σ12 plane

Stress response under prescribed tension–shear strain
ε12 = 2ε11

One slip system family: octahedral

� ��

� � �

� � �� � ��� � � �� � � �

� � �
� � �

�
� � � �

coeff octa cube
(MPa,s)

τ0 100 100
Q 20 10
b 10 10
c 10000 35000
d 200 700
K 20 20
n 2 2
hrs 1 1
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A typical example in σ11 – σ12 plane

Stress response under prescribed tension–shear strain
ε12 = 2ε11

Two slip system families: octahedral, cubic

� �	

� � �


 � �� � ��
 � � �
 
 � �


 � �
� � �

�

 � � �

coeff octa cube
(MPa,s)

τ0 100 100
Q 20 10
b 10 10
c 10000 35000
d 200 700
K 20 20
n 2 2
hrs 1 1
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Tensile curves for various crystallographic directions

�

�

�� ���� �� ��� ��� � � � ��

� � �
� � �

� � �
�

�� �
� � �

� � �
� � �

coeff (MPa,s) syst. octa
τ0 100
Q -10
b 1000
c 20000
d 300
K 500
n 5
hij 1

Octahedral slip systems only
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Monotonic tests on AM1 superalloy
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Cyclic tests on AM1 superalloy

(more in [Méric et al., 1991, Hanriot et al., 1991])
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Single crystal tube in torsion

001 cristallographic axis is in the direction of the tube axis

Strain jauges are in 100 and 001
areas

100 is a hard zone, 110 is a soft
area

Experiments performed at ONERA

46 / 88

Single crystal tube in torsion (2)

Strain jauges response in pure torsion
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Location of the soft zones for different ratio
tension/torsion on the tube

(more in [Nouailhas and Cailletaud, 1995])
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Yield surface determined on the single crystal tube

Note that Hill’s criterion give wrong results
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Equivalence between single crystal and von Mises

Single crystal model in multiple slip, with N equivalent slip systems,
Schmid factor m

ε̇
∼

p =
∑

s

m
∼

s v̇ s =
∑

s

m
∼

s

〈 |τ s − x s | − r s

k

〉n

becomes

ε̇p = Mmγ̇s = Mm

〈

m(σ − x) − r

k

〉n

Equivalent to a macroscopic model

ε̇p =

〈

(σ − X ) − R

K

〉n

with K =
k

m

1

mM

1/n

, X =
x

m
, R =

r

m
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Equivalence between single crystal and von Mises (2)

Coefficient Value for multiple Value for Value for
slip (m,M) 001 tension 111 tension

N = 8, m = 1/
√

6 N = 6, m =
√

2/3

K
k

m(Mm)1/n

√
6k

(8/
√

6)1/n

3k

2(n+1)/2n

R0
ro
m

√
6ro

3ro√
2

Q
Q

m

√
6Q

3Q√
2

b
b

mM

√
6b

8

b√
2

C
c

Mm2

3c

4

3c

2

D
d

Mm

√
6d

8

d√
2

There is a relation between the coefficients of a macro model and a crystal plasticity model
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What is the best set of active slip systems ?

Physical responses (Hill, Taylor)

Algorithmic responses (many authors)

Are they consistent ?
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Taylor
Select a set of admissible shear rates γ̇s for a prescribed plastic strain
rate ε̇

∼

p (assuming ε
∼

≡ ε
∼

p)

Minimize the internal power of the material element:

Pi =
∑

s

τ s
c γ̇

s

The shear strain rates are submitted to the constraint:

g
∼

(γ̇s) = ε̇
∼

p −
∑

s

m
∼

s γ̇s = 0

Let us define the lagrangian Fi , and search for the saddle point

Fi

(

γ̇s ,λ
∼

)

= Pi + λ
∼

: g
∼

∂Fi

∂λ
∼

= ε̇
∼

p −
∑

s

m
∼

s γ̇s = 0
∂Fi

∂γ̇s
= τ s

c − λ
∼

: m
∼

s = 0

The tensor λ
∼

is nothing but the stress tensor.
To find the set of shear strain rates, which minimizes internal power, find a

stress tensor which obeys the yield conditions, i.e. allows to built resolved shear

stresses which reach τ s
c on the active slip systems and which are smaller than

τ s
c one the inactive ones.
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Bishop and Hill

Find the stress state which...

Maximize the the external power, written as

Pe = σ
∼

: ε̇
∼

p

The constraint is

g s(σ
∼

) = τ s
c − σ

∼

: m
∼

s
> 0

The lagrangian function is then now:

Fe(σ
∼

, µ̇s) = Pe +
∑

s

µ̇sg s

∂Fe

∂σ
∼

= ε̇
∼

p −
∑

s

m
∼

s µ̇s = 0
∂Fe

∂µ̇s
= τ s

c − σ
∼

: m
∼

s = 0

The multiplyiers µ̇s are nothing but plastic strain rates.

To find a stress tensor, find a set of plastic shear strain rates which are zero on

the inactive slip systems, and positive on the active slip systems.
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Synthesis of the various conditions

Taylor, Bishop–Hill

σ
∼

∗ : ε̇
∼

p
6 σ

∼

: ε̇
∼

p =
∑

s

τ s
c γ̇

s 6
∑

s

τ s
c γ̇

′s

In the thermodynamical approach, the dissipation can be written:

Φ1 = σ
∼

: ε̇
∼

p −
∑

s

r s γ̇s

The variables r s are the increase of critical resolved shear stress.
One has

Φ1 =
∑

s

r s
0 γ̇

s
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Incremental form

Small strain, linear isotropic hardening

(1) Strain partition:

∆σ
∼

= Λ
∼

∼

:

(

∆ε−
∑

r

m
∼

r∆pr

)

(2) Criterion:

f s = τ s − r s = 0 with r s =
∑

r

hsrp
r

m
∼

s : ∆σ
∼

−
∑

r

hsr∆pr

Project (1) on m
∼

r to eliminate ∆σ
∼

, compute m
∼

s : ∆σ
∼

:

∑

r

(

hrs + m
∼

r : Λ
∼

∼

: m
∼

s
)

∆pr = m
∼

s : Λ
∼

∼

: ∆ε
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Algorithmic form

Internal variables ε
∼

e et ps (s = 1...N)

(1) Strain partition:

Fe = −∆ε
∼

∗ + ∆ε
∼

e +
∑

r

m
∼

r∆pr

(2) Criterion for a plastic model:

F s
p =

∣

∣

∣m
∼

s : Λ
∼

∼

: (ε
∼

e + ∆ε
∼

e)
∣

∣

∣− τ0 −
∑

r

hsr (p
r + ∆pr )

(2bis) Viscoplastic model:

F s
p =

∣

∣

∣m
∼

s : Λ
∼

∼

: (ε
∼

e + ∆ε
∼

e)
∣

∣

∣− τ0 −
∑

r

hsr (p
r +∆pr )−K

(

∆ps

∆t

)1/n
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Application to a specific loading just outside yield surface

σ12

θ

σ 11

σ 12

Syst 2, 5, 7, 12

Sys
t 4

, 9

Syst 1, 11

Sy
st

 3
, 6

, 8
, 1

0

8

2

6

Excursion outside yield surface
2, 4, 6, 8 systems ?

σ 12

Syst 1, 11

high latent hardening, a few systems
σ 12

Syst 2, 5, 7, 12

Syst 1, 11

low latent hardening, many
systems

58 / 88

Evaluation of the dissipation for various values of latent
hardening
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Evaluation of the dissipation for various values of latent
hardening

-4

-3

-2

-1

0

1

2

3

4

-90 -45 0 45 90

di
ss

ip
at

io
n

angle, degree

h0=1, h1=0.00

algo dissip

1 act slip syst

2 act slip syst

6 act slip syst

8 act slip syst

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-90 -45 0 45 90

di
ss

ip
at

io
n

angle, degree

h0=1, h1=0.50

algo dissip

1 act slip syst

2 act slip syst

6 act slip syst

8 act slip syst

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-90 -45 0 45 90

di
ss

ip
at

io
n

angle, degree

h0=1, h1=1.00

algo dissip

1 act slip syst

2 act slip syst

6 act slip syst

8 act slip syst

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-90 -45 0 45 90

di
ss

ip
at

io
n

angle, degree

h0=1, h1=2.00

algo dissip

1 act slip syst

2 act slip syst

6 act slip syst

8 act slip syst

60 / 88



Number of active slip systems according to h1 values

h1 0-2 2-6 6-8
0 -45 0 45

0.33 -45 45 80
0.50 -45 66 84
1. -45 87 90
1.5 -45 88 90
2. -45 90 90

The algorithmic solution is not always in good agreement with the
maximum dissipation principle
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Evaluation of the dissipation for various values of latent
hardening

1 active system:

D =

√
6(cos θ + sin θ)

6h0

2 active systems:

D =

√
6(cos θ + sin θ)

3(h0 + h1)

6 active systems:

D =

√
6(cos θ + 3 sin θ)

3(h0 + 5h1)

8 active systems:

D =
4
√

6 sin θ

3(h0 + 7h1)

62 / 88

What is the best set of active slip systems (2) ?

Tests responses on critical loading paths

Various subroutines tested: Anand (LA), Busso (EB), Cailletaud
(GC)(code Zebulon), McDowell (MD)

(more in [Busso and Cailletaud, 2005])
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A generic formulation of single crystal models

τα = Bα ± Sα ± f̂v (γ̇
α,Rα)

Kinematic hardening, Bα (back stress)

Additive isotropic hardening, Sα, (friction stress)

Multiplicative isotropic hardening, Rα, (drag stress)

One can found associated state variables, resp. bα, sα, rα
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Functions for the different single crystal models

Function GC EB LA DM

f α |τα − Bα| − Sα − S0 |τα − Bα| − Sα |τα − Bα| |τα − B

|γ̇α| γ̇0

〈

f α

τ̂0

〉n

γ̇0 exp
{

− Fo
kθ

〈

1 −
〈

f α

τ̂0

〉p〉q}

γ̇0

〈

f α

Rα

〉n

γ̇0

〈

f α

Rα

f̂ α
r {rα} − − 1

2 hs

∑

α
(rα)2 1

2 hs

∑

α
(r

f̂ α
s {sα} 1

2 hs

∑

α
(sα)2 1

2 hs

∑

α
(sα)2 − −

f̂ α
b {bα} 1

2 hb

∑

α
(bα)2 1

2 hb

∑

α
(bα)2 1

2 hb

∑

α
(bα)2 1

2 hb

∑

α
(b

Rα − − hs rα hs rα

Sα ∑

β
hαβ sβ hs sα − −

Bα hb bα hb bα hb bα hb bα
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Functions for the different single crystal models

Model Equation

Ṡα
GC =

∑

β
hαβ [hs − ds sβ ] |γ̇β |

Ṡα
EB =

∑

β
hαβ (hs − ds [Sβ − S0]) |γ̇β |

Ṙα
LA =

∑

β
hs [ql + (1 − ql) δαβ ]

{

1 − Rβ

R∗

}a

|γ̇β |

Ṙα
DM =

∑

β
ql hs |γ̇β | − (ql − 1) hs |γ̇α| − ds Rα

[

∑

β
ql |γ̇β | − (ql − 1) |γ̇α|

]

Ḃα = [hB sign(γ̇α) − dB Bα] |γ̇α|
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Identification of the four models for pure tension
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Loading paths in the 11-22 plane

σ22

σ11
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Loading paths in the 11-12 plane, Taylor type hardening
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Loading paths in the 11-12 plane, self-hardening only
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open
symbols:
ε11

ε12
= 0.02

filled
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ε11

ε12
= 0.4
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Algorithmic solution to select the slip systems

Plastic models

Loop on the slip systems, select the slip systems for which fs > 0,
check that ∆pr is positive, eliminate r such as ∆pr < 0 (Simo,
Miehe, Zebulon)

SDV decomposition (Anand)
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Loading paths in the 11-22 plane
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History of the total strain rate for 11-22 loadings
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Loading paths in the 11-12 plane
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A model using dislocations

γ̇s = γ̇0

(

τ s

τ s
µ

)1/m

τ s
µ = αµb

(

N
∑

r=1

hsrρ
r

)1/2

ρ̇s =
1

b







(

∑N
r=1 asrρr

)1/2

K
− 2ycρ

s






γ̇s

(more in [Tabourot et al., 1997])
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Numerical simulations of single crystal turbine blades
(Snecma)

Thermal + mechanical loading
Post treatment needed for life prediction
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Homogenization of multiperfored single crystals

Development of a model to account for hole distribution
Cardona PhD, 2000
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Crack in single crystals: discussion about plastic zones

Simulation of CT specimens with various orientations

Flouriot PhD, 2000
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Crack in single crystals: mesh of a CT specimen

Mesh with domain decomposition, ready for parallel computing
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Crack in single crystals: 3D effects

Rice solution on the symmetry plane
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Crack in single crystals: comparison with experiments

Elastic and plastic zones

(more in [Flouriot et al., 2003])
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